Geometric characterization of L_{1}-spaces

by
Normuxammad Yadgorov (Tashkent), Mukhtar Ibragimov (Nukus) and Karimbergen Kudaybergenov (Nukus)

Abstract

The paper is devoted to a description of all real strongly facially symmetric spaces which are isometrically isomorphic to L_{1}-spaces. We prove that if Z is a real neutral strongly facially symmetric space such that every maximal geometric tripotent from the dual space of Z is unitary, then the space Z is isometrically isomorphic to the space $L_{1}(\Omega, \Sigma, \mu)$, where (Ω, Σ, μ) is an appropriate measure space having the direct sum property.

1. Introduction. One of the main problems in operator algebras is a geometric characterization of operator algebras and operator spaces. In this connection in papers of Y. Friedman and B. Russo the so-called facially symmetric spaces were introduced (see [4|9, 12]). In [8], the complete structure of atomic facially symmetric spaces was determined. More precisely, it was shown that an irreducible, neutral, strongly facially symmetric space is linearly isometric to the predual of one of the Cartan factors of types 1 to 6 , provided that it satisfies some natural and physically significant axioms, four in number, which are known to hold in the preduals of all $J B W^{*}$-triples.

The project of classifying facially symmetric spaces was started in [7], where, using two of the pure state properties, denoted by $S T P$ and $F E$, geometric characterizations of complex Hilbert spaces and complex spin factors were given. The former is precisely a rank $1 J B W^{*}$-triple and a special case of a Cartan factor of type 1 , and the latter is the Cartan factor of type 4 and a special case of a $J B W^{*}$-triple of rank 2 . The explicit structure of a spin factor naturally embedded in a facially symmetric space was then used in [8] to construct abstract generating sets and complete the classification in the atomic case. In [12] a geometric characterization of the dual ball of global $J B^{*}$-triples was given.

The present paper is devoted to a description of all real strongly facially symmetric spaces which are isometrically isomorphic to L_{1}-spaces.

[^0]Key words and phrases: facially symmetric space, tripotent, unitary, L_{1}-space.

Using Kakutani's characterization of real L_{1}-spaces, we show that a neutral strongly facially symmetric space in which every maximal geometric tripotent is unitary, is isometrically isomorphic to an L_{1}-space. None of the extra axioms used in [7, 8, 12] are assumed.
2. Facially symmetric spaces. In this section we shall recall some basic facts and notation about facially symmetric spaces (see for details [4-8]).

Let Z be a real or complex normed space. Elements $x, y \in Z$ are orthogonal, notation $x \diamond y$, if $\|x+y\|=\|x-y\|=\|x\|+\|y\|$. Subsets $S, T \subset Z$ are said to be orthogonal, notation $S \diamond T$, if $x \diamond y$ for all $(x, y) \in S \times T$. A norm exposed face of the unit ball Z_{1} of Z is a non-empty set (necessarily $\neq Z_{1}$) of the form $F=F_{u}=\{x \in Z: u(x)=1\}$, where $u \in Z^{*},\|u\|=1$. Recall that a face G of a convex set K is a non-empty convex subset of K such that if $\lambda y+(1-\lambda) z \in G$, where $y, z \in K, \lambda \in(0,1)$, then $y, z \in G$. In particular, an extreme point of K is a face of K. An element $u \in Z^{*}$ is called a projective unit if $\|u\|=1$ and $\langle u, y\rangle=0$ for all $y \in F_{u}^{\diamond}$. Here, for any subset S, S^{\diamond} denotes the set of all elements orthogonal to each element of S.

A norm exposed face F_{u} in Z_{1} is said to be a symmetric face if there is a linear isometric symmetry S_{u} of Z onto Z with $S_{u}^{2}=I$ such that the fixed point set of S_{u} is $\left(\overline{\operatorname{sp}} F_{u}\right) \oplus F_{u}^{\diamond}$.

Recall that a normed space Z is said to be weakly facially symmetric (WFS) if every norm exposed face in Z_{1} is symmetric.

For each symmetric face F_{u} the contractive projections $P_{k}\left(F_{u}\right), k=$ $0,1,2$, on Z are defined as follows. First $P_{1}\left(F_{u}\right)=\left(I-S_{u}\right) / 2$ is the projection on the - 1 eigenspace of S_{u}. Next define $P_{2}\left(F_{u}\right)$ and $P_{0}\left(F_{u}\right)$ as the projections of Z onto $\overline{\mathrm{sp}} F_{u}$ and F_{u}^{\diamond}, respectively, so that $P_{2}\left(F_{u}\right)+P_{0}\left(F_{u}\right)=\left(I+S_{u}\right) / 2$. A geometric tripotent is a projective unit u with the property that F_{u} is a symmetric face and $S_{u}^{*} u=u$ for a symmetry S_{u} corresponding to u. The projections $P_{k}\left(F_{u}\right)$ are called the geometric Peirce projections.
$\mathcal{G} \mathcal{T}$ and $\mathcal{S F}$ denote the collections of geometric tripotents and symmetric faces respectively, and the $\operatorname{map} \mathcal{G} \mathcal{T} \ni u \mapsto F_{u} \in \mathcal{S F}$ is a bijection [5, Proposition 1.6]. For each geometric tripotent u in the dual of a WFS space Z, we shall denote the geometric Peirce projections by $P_{k}(u)=P_{k}\left(F_{u}\right), k=0,1,2$. Two elements f and g of Z^{*} are orthogonal if one of them belongs to $P_{2}(u)^{*}\left(Z^{*}\right)$ and the other to $P_{0}(u)^{*}\left(Z^{*}\right)$ for some geometric tripotent u.

A contractive projection Q on a normed space Z is said to be neutral if for each $x \in Z,\|Q(x)\|=\|x\|$ implies $Q(x)=x$. A normed space Z is neutral if for every symmetric face F_{u}, the projection $P_{2}\left(F_{u}\right)$ is neutral.

A WFS space Z is strongly facially symmetric (SFS) if for every norm exposed face F_{u} in Z_{1} and every $g \in Z^{*}$ with $\|g\|=1$ and $F_{u} \subset F_{g}$, we have $S_{u}^{*} g=g$, where S_{u} denotes a symmetry associated with F_{u}.

The principal examples of neutral complex strongly facially symmetric spaces are preduals of complex $J B W^{*}$-triples, in particular, the preduals of von Neumann algebras (see [6]). In these cases, as shown in [6], geometric tripotents correspond to tripotents in a $J B W^{*}$-triple and to partial isometries in a von Neumann algebra.

In a neutral strongly facially symmetric space Z, every non-zero element has a polar decomposition [5, Theorem 4.3]: for non-zero $x \in Z$ there exists a unique geometric tripotent $v=v_{x}$ with $\langle v, x\rangle=\|x\|$ and $\left\langle v, x^{\diamond}\right\rangle=0$. If $x, y \in Z$, then $x \diamond y$ if and only if $v_{x} \diamond v_{y}$, as follows from 4, Corollary 1.3(b) and Lemma 2.1].

A partial ordering can be defined on the set of geometric tripotents as follows: if $u, v \in \mathcal{G} \mathcal{T}$, then $u \leq v$ if $F_{u} \subset F_{v}$, or equivalently, by [5, Lemma 4.2], $P_{2}(u)^{*} v=u$, or $v-u$ is either zero or a geometric tripotent orthogonal to u.
3. Main result. Henceforth "face" means "norm exposed face".

Let Z be a real neutral strongly facially symmetric space. A geometric tripotent $u \in \mathcal{G} \mathcal{T}$ is said to be

- maximal if $P_{0}(u)=0$;
- unitary if $P_{2}(u)=I$.

It is clear that any unitary geometric tripotent is maximal.
Notice that a geometric tripotent e is unitary if and only if the convex hull of the set $F_{e} \cup F_{-e}$ coincides with the unit ball Z_{1}, i.e.

$$
\begin{equation*}
Z_{1}=\operatorname{co}\left\{F_{e} \cup F_{-e}\right\} \tag{3.1}
\end{equation*}
$$

Also note that property (3.1) is much stronger than the Jordan decomposition property of a face (see [12, Lemmata 2.3-2.6]). Recall that a face F_{u} has the Jordan decomposition property if its real span coincides with the geometric Peirce 2 -space of the geometric tripotent u.

Example 3.1. The space \mathbb{R}^{n} with the norm

$$
\|x\|=\sum_{i=1}^{n}\left|t_{i}\right|, \quad x=\left(t_{i}\right) \in \mathbb{R}^{n}
$$

is a SFS space. If $e \in \mathbb{R}^{n} \cong\left(\mathbb{R}^{n}\right)^{*}$ is a maximal geometric tripotent then

$$
e=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right), \quad \varepsilon_{i} \in\{-1,1\}, i \in \overline{1, n}
$$

and in this case the face

$$
F_{e}=\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n} \varepsilon_{i} t_{i}=1, \varepsilon_{i} t_{i} \geq 0, i=\overline{1, n}\right\}
$$

satisfies (3.1).

More generally, consider a measure space (Ω, Σ, μ) with measure μ having the direct sum property, i.e. there is a family $\left\{\Omega_{i}\right\}_{i \in J} \subset \Sigma, 0<\mu\left(\Omega_{i}\right)$ $<\infty, i \in J$, such that for any $A \in \Sigma$ with $\mu(A)<\infty$, there exist a countable subset $J_{0} \subset J$ and a set B of zero measure such that $A=\bigcup_{i \in J_{0}}\left(A \cap \Omega_{i}\right) \cup B$.

Let $L_{1}(\Omega, \Sigma, \mu)$ be the space of all real integrable functions on (Ω, Σ, μ). The space $L_{1}(\Omega, \Sigma, \mu)$ with the norm

$$
\|f\|=\int_{\Omega}|f(t)| d \mu(t), \quad f \in L_{1}(\Omega, \Sigma, \mu)
$$

is a SFS space. If $e \in L^{\infty}(\Omega, \Sigma, \mu) \cong L_{1}(\Omega, \Sigma, \mu)^{*}$ is a maximal geometric tripotent then

$$
e=\tilde{\chi}_{A}-\tilde{\chi}_{\Omega \backslash A} \quad \text { for some } A \in \Sigma
$$

where $\tilde{\chi}_{A}$ is the class containing the indicator function of the set $A \in \Sigma$. Then the face

$$
F_{e}=\left\{f \in L_{1}(\Omega, \Sigma, \mu):\|f\|=1, \int_{\Omega} e(t) f(t) d \mu(t)=1\right\}
$$

satisfies (3.1).
The next result is the main result of the paper, giving a description of all strongly facially symmetric spaces which are isometrically isomorphic to L_{1}-spaces.

Theorem 3.2. Let Z be a real neutral strongly facially symmetric space such that every maximal geometric tripotent from Z^{*} is unitary. Then there exists a measure space (Ω, Σ, μ) with measure μ having the direct sum property such that the space Z is isometrically isomorphic to the space $L_{1}(\Omega, \Sigma, \mu)$.

For the proof we need several lemmata.
Let $u, v \in \mathcal{G} \mathcal{T}$. If $F_{u} \cap F_{v} \neq \emptyset$ then by $u \wedge v$ we denote the unique geometric tripotent such that $F_{u \wedge v}=F_{u} \cap F_{v}$, otherwise we set $u \wedge v=0$.

Lemma 3.3. Let $e \in \mathcal{G \mathcal { T }}$ be unitary and let $v \in \mathcal{G} \mathcal{T}$. Then $F_{v} \cap F_{e} \neq \emptyset$ or $F_{-v} \cap F_{e} \neq \emptyset$.

Proof. Let $x \in F_{v}$. By equality (3.1) we obtain

$$
x=t y+(1-t) z
$$

for some $y,-z \in F_{e}$ and $0 \leq t \leq 1$.
If $t=1$ or $t=0$ then $x=y$ or $x=z$, respectively. Hence $x \in F_{v} \cap F_{e}$ or $-x \in F_{-v} \cap F_{e}$.

Let $0<t<1$. Since F_{v} is a face, $y, z \in F_{v}$. Therefore $F_{v} \cap F_{e} \neq \emptyset$ and $F_{-v} \cap F_{e} \neq \emptyset$.

Lemma 3.4. Let $e \in \mathcal{G} \mathcal{T}$ be unitary. Then for every $u \in \mathcal{G \mathcal { T }}$ there exist mutually orthogonal geometric tripotents $u_{1}, u_{2} \leq e$ such that $u=u_{1}-u_{2}$.

Proof. Put

$$
u_{1}=u \wedge e, \quad u_{2}=(-u) \wedge e
$$

Let us prove that

$$
u_{1} \diamond u_{2}, \quad u=u_{1}-u_{2}
$$

Let $x_{1} \in F_{u_{1}}$ and $x_{2} \in F_{u_{2}}$. Then

$$
x_{1}, x_{2} \in F_{e}, \quad x_{1},-x_{2} \in F_{u}
$$

and therefore

$$
\frac{x_{1}+x_{2}}{2} \in F_{e}, \quad \frac{x_{1}-x_{2}}{2} \in F_{u}
$$

Thus

$$
\left\|\frac{x_{1}+x_{2}}{2}\right\|=1, \quad\left\|\frac{x_{1}-x_{2}}{2}\right\|=1
$$

and

$$
\left\|x_{1}+x_{2}\right\|=\left\|x_{1}-x_{2}\right\|=2=\left\|x_{1}\right\|+\left\|x_{2}\right\|
$$

Hence $x_{1} \diamond x_{2}$, and therefore $u_{1} \diamond u_{2}$.
Now suppose that $v=u-u_{1}+u_{2} \neq 0$. By Lemma 3.3 we know that $F_{v} \cap F_{e} \neq \emptyset$ or $F_{-v} \cap F_{e} \neq \emptyset$. Without loss of generality it can be assumed that $F_{v} \cap F_{e} \neq \emptyset$. Thus there exists an element $x \in Z_{1}$ such that

$$
\langle v, x\rangle=\langle e, x\rangle=1
$$

Since $v \leq u$, we have $\langle u, x\rangle=1$. Thus $x \in F_{u} \cap F_{e}$, i.e. $x \in F_{u_{1}}$ or $\left\langle u_{1}, x\right\rangle=1$. Since $u_{1} \diamond u_{2}$, we have $\left\langle u_{2}, x\right\rangle=0$. Hence

$$
\langle v, x\rangle=\langle u, x\rangle-\left\langle u_{1}, x\right\rangle+\left\langle u_{2}, x\right\rangle=0,
$$

a contradiction.
Lemma 3.5. Let u, w be orthogonal geometric tripotents. Then $u+w$ is maximal if and only if $u-w$ is maximal.

Proof. Let $u+w$ be maximal. Suppose that $u-w$ is not maximal. Then there exists a maximal geometric tripotent e such that $e>u-w$. Set $w_{1}=e-u+w$. Then $w_{1} \diamond u$ and $w_{1} \diamond w$. Therefore $u+w<u+w+w_{1}$. This contradicts the maximality of $u+w$.

Recall that a face F of a convex set K is called a split face if there exists a face G, called complementary to F, such that $F \cap G=\emptyset$ and K is the direct convex sum $F \oplus_{c} G$, i.e. any element $x \in K$ can be uniquely represented in the form $x=t y+(1-t) z$, where $t \in[0,1], y \in F, z \in G$ (see e.g. [1, p. 420], [2]).

Lemma 3.6. Let u, w be orthogonal geometric tripotents. If $u+w$ is maximal then

$$
\begin{equation*}
F_{u+w}=F_{u} \oplus_{c} F_{w} \tag{3.2}
\end{equation*}
$$

Proof. First we shall show that

$$
F_{u+w}=\operatorname{co}\left\{F_{u} \cup F_{w}\right\} .
$$

It suffices to show that

$$
F_{u+w} \subseteq \operatorname{co}\left\{F_{u} \cup F_{w}\right\} .
$$

By Lemma 3.5 the geometric tripotent $u-w$ is maximal. Therefore the face F_{u-w} satisfies equality (3.1), i.e.

$$
Z_{1}=\operatorname{co}\left\{F_{u-w} \cup F_{w-u}\right\} .
$$

Thus every element $x \in F_{u+w}$ has the form

$$
x=t y+(1-t) z
$$

for some $y,-z \in F_{u-w}$ and $0 \leq t \leq 1$.
Consider the following three cases.
CASE 1. If $t=0$ then $x \in F_{u+w} \cap F_{w-u}=F_{w}$.
CASE 2. If $t=1$ then $x \in F_{u+w} \cap F_{u-w}=F_{u}$.
CASE 3. If $0<t<1$, then applying the geometric tripotent $u+w$ to the equality $x=t y+(1-t) z$ we obtain

$$
\begin{equation*}
t u(y)+t w(y)+(1-t) u(z)+(1-t) w(z)=1 . \tag{3.3}
\end{equation*}
$$

Since $y \in F_{u-w}$ and $z \in F_{w-u}$ we see that

$$
u(y)-w(y)=1, \quad w(z)-u(z)=1 .
$$

Thus

$$
\begin{equation*}
t u(y)-t w(y)-(1-t) u(z)+(1-t) w(z)=1 . \tag{3.4}
\end{equation*}
$$

Summing (3.3) and (3.4) we get

$$
t u(y)+(1-t) w(z)=1
$$

Since $|u(y)| \leq 1$ and $|w(z)| \leq 1$ the last equality implies that

$$
u(y)=w(z)=1 .
$$

This means that $y \in F_{u}$ and $z \in F_{w}$. Therefore

$$
x=t y+(1-t) z \in \operatorname{co}\left\{F_{u} \cup F_{w}\right\} .
$$

Consequently, $F_{u+w}=\operatorname{co}\left\{F_{u} \cup F_{w}\right\}$. Taking into account that $F_{u} \diamond F_{w}$ we get $F_{u+w}=F_{u} \oplus_{c} F_{w}$.

Let u be an arbitrary geometric tripotent and let e be a maximal geometric tripotent such that $u \leq e$. First we shall show that

$$
Z=\overline{\operatorname{sp}} F_{u} \oplus \overline{\operatorname{sp}} F_{w},
$$

where $w=e-u$. Using equalities (3.1) and (3.2) we obtain

$$
\begin{aligned}
Z & =\operatorname{sp} Z_{1}=\operatorname{sp}\left\{\operatorname{co}\left\{F_{e} \cup F_{-e}\right\}\right\} \\
& =\operatorname{sp} F_{e}=\operatorname{sp}\left\{F_{u} \oplus_{c} F_{w}\right\}=\operatorname{sp} F_{u} \oplus \operatorname{sp} F_{w}
\end{aligned}
$$

From $\operatorname{sp} F_{u} \diamond \operatorname{sp} F_{w}$ it follows that $\overline{\operatorname{sp}} F_{u} \diamond \overline{\operatorname{sp}} F_{w}$, and therefore

$$
Z=\overline{\operatorname{sp}} F_{u} \oplus \overline{\operatorname{sp}} F_{w} .
$$

This implies that

$$
P_{2}(u)+P_{2}(w)=I .
$$

Since $P_{1}(u) P_{0}(u)=0$ and $P_{2}(w)=P_{0}(u) P_{2}(w)$ (see [5, Corollary 3.4]) we obtain $P_{1}(u) P_{2}(w)=0$. Therefore

$$
P_{1}(u)=P_{1}(u) I=P_{1}(u)\left[P_{2}(u)+P_{2}(w)\right]=0
$$

So we have
Lemma 3.7. For every $u \in \mathcal{G} \mathcal{T}$ the projection $P_{1}(u)$ is zero.
For orthogonal geometric tripotents v_{1}, v_{2} we have

$$
\begin{equation*}
P_{2}\left(v_{1}+v_{2}\right)=P_{2}\left(v_{1}\right)+P_{2}\left(v_{2}\right) \tag{3.5}
\end{equation*}
$$

Indeed, by [5, Lemma 1.8] we have

$$
P_{0}\left(v_{1}+v_{2}\right)=P_{0}\left(v_{1}\right) P_{0}\left(v_{2}\right)
$$

Using the last equality and taking into account the equalities $P_{1}\left(v_{1}\right)=$ $P_{1}\left(v_{2}\right)=P_{1}\left(v_{1}+v_{2}\right)=0$, together with Corollary 3.4 of [5], we get

$$
\begin{aligned}
P_{2}\left(v_{1}+v_{2}\right) & =I-P_{0}\left(v_{1}+v_{2}\right)=I^{2}-P_{0}\left(v_{1}+v_{2}\right) \\
& =\left(P_{2}\left(v_{1}\right)+P_{0}\left(v_{1}\right)\right)\left(P_{2}\left(v_{2}\right)+P_{0}\left(v_{2}\right)\right)-P_{0}\left(v_{1}\right) P_{0}\left(v_{2}\right) \\
& =P_{2}\left(v_{1}\right)+P_{2}\left(v_{2}\right)+P_{0}\left(v_{1}\right) P_{0}\left(v_{2}\right)-P_{0}\left(v_{1}\right) P_{0}\left(v_{2}\right) \\
& =P_{2}\left(v_{1}\right)+P_{2}\left(v_{2}\right)
\end{aligned}
$$

Now we fix a unitary $e \in \mathcal{G} \mathcal{T}$.
On the space Z we define an order (depending on e) by the following rule:

$$
\begin{equation*}
x \geq y \Leftrightarrow x-y \in \mathbb{R}^{+} F_{e} . \tag{3.6}
\end{equation*}
$$

Lemma 3.8. Z is a partially ordered linear space, i.e.
(i) $x \leq x$;
(ii) $x \leq y, y \leq z \Rightarrow x \leq z$;
(iii) $x \leq y, y \leq x \Rightarrow x=y$;
(iv) $x \leq y \Rightarrow x+z \leq y+z$;
(v) $x \geq 0, \lambda \geq 0 \Rightarrow \lambda x \geq 0$.

Proof. The properties (i), (iv) and (v) are trivial.
To prove (ii), let $x \leq y$ and $y \leq z$. Then $y-x, z-y \in \mathbb{R}^{+} F_{e}$. Thus $z-x \in \mathbb{R}^{+} F_{e}$, i.e. $x \leq z$.

For (iii), let $x \leq y, y \leq x$. Then $y-x=\alpha a$ and $x-y=\beta b$ for some $\alpha, \beta \geq 0$ and $a, b \in F_{e}$. Therefore $\alpha a+\beta b=0$. Applying to this equality the geometric tripotent e we obtain $\alpha+\beta=0$. Thus $\alpha=\beta=0$, i.e. $x=y$.

Remark 3.9. Note that if $v \leq e$ then [12, Lemma 2.4] implies that

$$
\begin{equation*}
P_{k}(v)\left(F_{e}\right) \subseteq F_{e}, \quad k=0,2 . \tag{3.7}
\end{equation*}
$$

Lemma 3.10. Let $a, b, x, y \geq 0$ with $a \diamond b$. If $a-b=x-y$ then

$$
x-a=y-b \geq 0
$$

if in addition $x \diamond y$, then $x=a$ and $y=b$.
Proof. Let v_{a} be the smallest geometric tripotent such that $v_{a}(a)=\|a\|$ (polar decomposition). Since $a \geq 0$ it follows that $v_{a} \leq e$. Applying the projection $P_{2}\left(v_{a}\right)$ to the equality $a-b=x-y$ we obtain

$$
P_{2}\left(v_{a}\right)(x)-P_{2}\left(v_{a}\right)(y)=P_{2}\left(v_{a}\right)(a-b)=P_{2}\left(v_{a}\right)(a)=a .
$$

Using (3.7) we get

$$
P_{2}\left(v_{a}\right)(x)-a=P_{2}\left(v_{a}\right)(y) \in \mathbb{R}^{+} F_{e},
$$

and therefore

$$
\begin{aligned}
x-a & =P_{2}\left(v_{a}\right)(x)+P_{0}\left(v_{a}\right)(x)-a \\
& =\left[P_{2}\left(v_{a}\right)(x)-a\right]+P_{0}\left(v_{a}\right)(x) \in \mathbb{R}^{+} F_{e},
\end{aligned}
$$

i.e. $x \geq a$.

Now suppose that $x \diamond y$. Then as shown above, $x \geq a$ and $a \geq x$. Thus $x=a$ and $y=b$.

Lemma 3.11. For $x \in Z$ the following conditions are equivalent:
(i) $x \geq 0$;
(ii) $\|x\|=\langle e, x\rangle$.

Proof. Take $x \geq 0$, i.e. $x=\alpha y$ for some $\alpha \geq 0$ and $y \in F_{e}$. Then

$$
\|x\|=\|\alpha y\|=\alpha\|y\|=\alpha=\alpha\langle e, y\rangle=\langle e, x\rangle .
$$

Conversely, if $\|x\|=\langle e, x\rangle, x \neq 0$, then $x /\|x\| \in F_{e}$, i.e. $x \geq 0$.
Lemma 3.12. Every element $x \in Z$ can be uniquely represented as

$$
x=x_{+}-x_{-},
$$

where $x_{+}, x_{-} \geq 0$ and $x_{+} \diamond x_{-}$.
Proof. Take the smallest geometric tripotent $v_{x} \in \mathcal{G} \mathcal{T}$ such that $v_{x}(x)=$ $\|x\|$. By Lemma 3.4 there exist mutually orthogonal geometric tripotents $v_{1}, v_{2} \leq e$ such that $v_{x}=v_{1}-v_{2}$. Put

$$
x_{+}=P_{2}\left(v_{1}\right)(x), \quad x_{-}=-P_{2}\left(v_{2}\right)(x) .
$$

By the proof of [5, Theorem 4.3(d)] we get $\left\langle v_{1}, x\right\rangle=\left\|P_{2}\left(v_{1}\right)(x)\right\|$, and therefore

$$
\begin{aligned}
\left\langle e, x_{+}\right\rangle & =\left\langle e, P_{2}\left(v_{1}\right)(x)\right\rangle=\left\langle P_{2}^{*}\left(v_{1}\right) e, x\right\rangle \\
& =\left\langle v_{1}, x\right\rangle=\left\|P_{2}\left(v_{1}\right)(x)\right\|=\left\|x_{+}\right\|
\end{aligned}
$$

This means that $x_{+} \geq 0$. Similarly $x_{-} \geq 0$. Further using equality (3.5) we find that $x=x_{+}-x_{-}$and $x_{+} \diamond x_{-}$. Uniqueness follows from Lemma 3.10,

Lemma 3.13. Z is a lattice, i.e. for any $x, y \in Z$ there exist

$$
x \vee y, x \wedge y \in Z
$$

Proof. By Lemma 3.12 there exist mutually orthogonal elements $a, b \geq 0$ such that $x-y=a-b$. Then

$$
\begin{align*}
& x \vee y=\frac{x+y+a+b}{2}, \tag{3.8}\\
& x \wedge y=\frac{x+y-a-b}{2} . \tag{3.9}
\end{align*}
$$

Indeed,

$$
x \vee y-x=\frac{x+y+a+b}{2}-x=\frac{y-x+a+b}{2}=b \geq 0
$$

and

$$
x \vee y-y=\frac{x+y+a+b}{2}-y=\frac{x-y+a+b}{2}=a \geq 0 .
$$

Now let $x, y \leq z$, where $z \in Z$. Denote

$$
x_{1}=z-x \geq 0, \quad y_{1}=z-y \geq 0
$$

Thus $x-y=y_{1}-x_{1}$. Therefore $y_{1}-x_{1}=a-b$. Lemma 3.10 implies that

$$
y_{1}-a=x_{1}-b \geq 0
$$

Further

$$
\begin{aligned}
z-x \vee y & =\frac{x+y+x_{1}+y_{1}}{2}-\frac{x+y+a+b}{2} \\
& =\frac{x_{1}+y_{1}-a-b}{2}=y_{1}-a \geq 0 .
\end{aligned}
$$

This means that

$$
x \vee y=\frac{x+y+a+b}{2}
$$

In the same way we can prove equality (3.9).
A Banach lattice X is said to be an abstract L-space if

$$
\|x+y\|=\|x\|+\|y\|
$$

for all $x, y \in X$ with $x \wedge y=0$ (see [11, p. 14] and 10]).

Lemma 3.14. Z is an abstract L-space.
Proof. First we show that

- $0 \leq x \leq y \Rightarrow\|x\| \leq\|y\|$;
- $\|x\|=\||x|\|$,
where $|x|=x_{+}+x_{-}$is the absolute value of x.
Let $0 \leq x \leq y$. Then

$$
\|x\|=\langle e, x\rangle \leq\langle e, y\rangle=\|y\| .
$$

Further

$$
\||x|\|=\left\|x_{+}+x_{-}\right\|=\left[x_{+} \diamond x_{-}\right]=\left\|x_{+}-x_{-}\right\|=\|x\| .
$$

Hence Z is a Banach lattice.
For $x, y \geq 0$, using Lemma 3.11 we obtain

$$
\|x+y\|=\langle e, x+y\rangle=\langle e, x\rangle+\langle e, y\rangle=\|x\|+\|y\| .
$$

This means that Z is an abstract L-space.
Now Theorem 3.2 follows from Lemma 3.14 and [11, Theorem 1.b.2].
Remark 3.15. The following observations were kindly suggested by the referee, to whom the authors are deeply indebted.

Theorem 3.2 fails for complex spaces. Indeed, by [6, Theorem 2.11] for any finite von Neumann algebra its predual is a neutral strongly facially symmetric space in which every maximal geometric tripotent is unitary. However, that predual is not isometric to an L_{1}-space, for example for the algebra $B(H)$ of all bounded linear operators on the finite-dimensional Hilbert space H of dimension at least 2 .

The predual of a real $J B W^{*}$-triple is a neutral weakly facially symmetric space (see [3, Theorem 5.5] and [6, Theorem 3.1]) which is not strongly facially symmetric. The strong facial symmetry of the predual of a complex von Neumann algebra depends on the field being complex (see the proof of Corollary 2.9 in (6]). Indeed, if the predual of a non-commutative real von Neumann algebra were a strongly facially symmetric space, this would contradict Theorem 3.2 above.

Acknowledgments. The authors would like to thank the referee for valuable comments and suggestions.

References

[1] E. M. Alfsen and F. W. Shultz, Geometry of State Spaces of Operator Algebras, Birkhäuser, 2003.
[2] Sh. A. Ayupov and N. Zh. Yadgorov, Geometry of the state space of modular Jordan algebras, Russian Acad. Sci. Izv. Math. 43 (1994), 581-592.
[3] E. M. Edwards and G. T. Ruttimann, The facial and inner structure of a real $J B W^{*}$-triple, Math. Nachr. 222 (2001), 159-184.
[4] Y. Friedman and B. Russo, A geometric spectral theorem, Quart. J. Math. Oxford 37 (1986), 263-277.
[5] Y. Friedman and B. Russo, Affine structure of facially symmetric spaces, Math. Proc. Cambridge Philos. Soc. 106 (1989), 107-124.
[6] Y. Friedman and B. Russo, Some affine geometric aspects of operator algebras, Pacific J. Math. 137 (1989), 123-144.
[7] Y. Friedman and B. Russo, Geometry of the dual ball of the spin factor, Proc. London Math. Soc. 65 (1992), 142-174.
[8] Y. Friedman and B. Russo, Classification of atomic facially symmetric spaces, Canad. J. Math. 45 (1993), 33-87.
[9] M. M. Ibragimov, S. J. Tleumuratov and J. X. Seypullaev, Some geometric properties of a strongly facially space, Methods Funct. Anal. Topol. 11 (2005) 234-238.
[10] S. Kakutani, Concrete representation of abstract L-spaces and the mean ergodic theorem, Ann. of Math. 42 (1941), 523-537.
[11] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, II. Function Spaces, Springer, 1979.
[12] M. Neal and B. Russo, State space of JB*-triples, Math. Ann. 328 (2004), 585-624.

Normuxammad Yadgorov
National University of Uzbekistan
Vuzgorodok, 100174, Tashkent, Uzbekistan
E-mail: yadgorovm@mail.ru

Mukhtar Ibragimov, Karimbergen Kudaybergenov
(corresponding author)
Karakalpak State University
230113 Nukus, Uzbekistan
E-mail: mukhtar_nukus@mail.ru
karim2006@mail.ru

[^0]: 2010 Mathematics Subject Classification: Primary 46B20; Secondary 46E30.

