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Geometric characterization of L1-spaces

by
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Abstract. The paper is devoted to a description of all real strongly facially symmetric
spaces which are isometrically isomorphic to L1-spaces. We prove that if Z is a real
neutral strongly facially symmetric space such that every maximal geometric tripotent
from the dual space of Z is unitary, then the space Z is isometrically isomorphic to the
space L1(Ω,Σ, µ), where (Ω,Σ, µ) is an appropriate measure space having the direct sum
property.

1. Introduction. One of the main problems in operator algebras is a
geometric characterization of operator algebras and operator spaces. In this
connection in papers of Y. Friedman and B. Russo the so-called facially
symmetric spaces were introduced (see [4–9,12]). In [8], the complete struc-
ture of atomic facially symmetric spaces was determined. More precisely, it
was shown that an irreducible, neutral, strongly facially symmetric space is
linearly isometric to the predual of one of the Cartan factors of types 1 to 6,
provided that it satisfies some natural and physically significant axioms, four
in number, which are known to hold in the preduals of all JBW ∗-triples.

The project of classifying facially symmetric spaces was started in [7],
where, using two of the pure state properties, denoted by STP and FE, geo-
metric characterizations of complex Hilbert spaces and complex spin factors
were given. The former is precisely a rank 1 JBW ∗-triple and a special case
of a Cartan factor of type 1, and the latter is the Cartan factor of type 4
and a special case of a JBW ∗-triple of rank 2. The explicit structure of a
spin factor naturally embedded in a facially symmetric space was then used
in [8] to construct abstract generating sets and complete the classification
in the atomic case. In [12] a geometric characterization of the dual ball of
global JB∗-triples was given.

The present paper is devoted to a description of all real strongly fa-
cially symmetric spaces which are isometrically isomorphic to L1-spaces.
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Using Kakutani’s characterization of real L1-spaces, we show that a neutral
strongly facially symmetric space in which every maximal geometric tripo-
tent is unitary, is isometrically isomorphic to an L1-space. None of the extra
axioms used in [7, 8, 12] are assumed.

2. Facially symmetric spaces. In this section we shall recall some
basic facts and notation about facially symmetric spaces (see for details
[4–8]).

Let Z be a real or complex normed space. Elements x, y ∈ Z are orthog-
onal, notation x ♦ y, if ‖x + y‖ = ‖x − y‖ = ‖x‖ + ‖y‖. Subsets S, T ⊂ Z
are said to be orthogonal, notation S ♦ T, if x ♦ y for all (x, y) ∈ S × T.
A norm exposed face of the unit ball Z1 of Z is a non-empty set (necessarily
6= Z1) of the form F = Fu = {x ∈ Z : u(x) = 1}, where u ∈ Z∗, ‖u‖ = 1.
Recall that a face G of a convex set K is a non-empty convex subset of K
such that if λy + (1− λ)z ∈ G, where y, z ∈ K, λ ∈ (0, 1), then y, z ∈ G. In
particular, an extreme point of K is a face of K. An element u ∈ Z∗ is called
a projective unit if ‖u‖ = 1 and 〈u, y〉 = 0 for all y ∈ F♦u . Here, for any
subset S, S♦ denotes the set of all elements orthogonal to each element of S.

A norm exposed face Fu in Z1 is said to be a symmetric face if there is
a linear isometric symmetry Su of Z onto Z with S2

u = I such that the fixed
point set of Su is (spFu)⊕ F♦u .

Recall that a normed space Z is said to be weakly facially symmetric
(WFS) if every norm exposed face in Z1 is symmetric.

For each symmetric face Fu the contractive projections Pk(Fu), k =
0, 1, 2, on Z are defined as follows. First P1(Fu) = (I−Su)/2 is the projection
on the−1 eigenspace of Su. Next define P2(Fu) and P0(Fu) as the projections
of Z onto spFu and F♦u , respectively, so that P2(Fu) +P0(Fu) = (I+Su)/2.
A geometric tripotent is a projective unit u with the property that Fu is a
symmetric face and S∗uu = u for a symmetry Su corresponding to u. The
projections Pk(Fu) are called the geometric Peirce projections.
GT and SF denote the collections of geometric tripotents and symmetric

faces respectively, and the map GT 3 u 7→ Fu ∈ SF is a bijection [5, Propo-
sition 1.6]. For each geometric tripotent u in the dual of a WFS space Z, we
shall denote the geometric Peirce projections by Pk(u) = Pk(Fu), k = 0, 1, 2.
Two elements f and g of Z∗ are orthogonal if one of them belongs to
P2(u)∗(Z∗) and the other to P0(u)∗(Z∗) for some geometric tripotent u.

A contractive projection Q on a normed space Z is said to be neutral
if for each x ∈ Z, ‖Q(x)‖ = ‖x‖ implies Q(x) = x. A normed space Z is
neutral if for every symmetric face Fu, the projection P2(Fu) is neutral.

A WFS space Z is strongly facially symmetric (SFS) if for every norm
exposed face Fu in Z1 and every g ∈ Z∗ with ‖g‖ = 1 and Fu ⊂ Fg, we have
S∗ug = g, where Su denotes a symmetry associated with Fu.
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The principal examples of neutral complex strongly facially symmetric
spaces are preduals of complex JBW ∗-triples, in particular, the preduals of
von Neumann algebras (see [6]). In these cases, as shown in [6], geometric
tripotents correspond to tripotents in a JBW ∗-triple and to partial isome-
tries in a von Neumann algebra.

In a neutral strongly facially symmetric space Z, every non-zero element
has a polar decomposition [5, Theorem 4.3]: for non-zero x ∈ Z there exists
a unique geometric tripotent v = vx with 〈v, x〉 = ‖x‖ and 〈v, x♦〉 = 0. If
x, y ∈ Z, then x ♦ y if and only if vx ♦ vy, as follows from [4, Corollary
1.3(b) and Lemma 2.1].

A partial ordering can be defined on the set of geometric tripotents as
follows: if u, v ∈ GT , then u ≤ v if Fu ⊂ Fv, or equivalently, by [5, Lemma
4.2], P2(u)∗v = u, or v−u is either zero or a geometric tripotent orthogonal
to u.

3. Main result. Henceforth “face” means “norm exposed face”.
Let Z be a real neutral strongly facially symmetric space. A geometric

tripotent u ∈ GT is said to be

• maximal if P0(u) = 0;
• unitary if P2(u) = I.

It is clear that any unitary geometric tripotent is maximal.
Notice that a geometric tripotent e is unitary if and only if the convex

hull of the set Fe ∪ F−e coincides with the unit ball Z1, i.e.

Z1 = co{Fe ∪ F−e}.(3.1)

Also note that property (3.1) is much stronger than the Jordan decompo-
sition property of a face (see [12, Lemmata 2.3–2.6]). Recall that a face Fu
has the Jordan decomposition property if its real span coincides with the
geometric Peirce 2-space of the geometric tripotent u.

Example 3.1. The space Rn with the norm

‖x‖ =

n∑
i=1

|ti|, x = (ti) ∈ Rn,

is a SFS space. If e ∈ Rn ∼= (Rn)∗ is a maximal geometric tripotent then

e = (ε1, . . . , εn), εi ∈ {−1, 1}, i ∈ 1, n,

and in this case the face

Fe =
{
x ∈ Rn :

n∑
i=1

εiti = 1, εiti ≥ 0, i = 1, n
}

satisfies (3.1).
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More generally, consider a measure space (Ω,Σ, µ) with measure µ hav-
ing the direct sum property, i.e. there is a family {Ωi}i∈J ⊂ Σ, 0 < µ(Ωi)
<∞, i ∈ J, such that for any A ∈ Σ with µ(A) <∞, there exist a countable
subset J0 ⊂ J and a set B of zero measure such that A =

⋃
i∈J0(A∩Ωi)∪B.

Let L1(Ω,Σ, µ) be the space of all real integrable functions on (Ω,Σ, µ).
The space L1(Ω,Σ, µ) with the norm

‖f‖ =
�

Ω

|f(t)| dµ(t), f ∈ L1(Ω,Σ, µ),

is a SFS space. If e ∈ L∞(Ω,Σ, µ) ∼= L1(Ω,Σ, µ)∗ is a maximal geometric
tripotent then

e = χ̃A − χ̃Ω\A for some A ∈ Σ,
where χ̃A is the class containing the indicator function of the set A ∈ Σ.
Then the face

Fe =
{
f ∈ L1(Ω,Σ, µ) : ‖f‖ = 1,

�

Ω

e(t)f(t) dµ(t) = 1
}

satisfies (3.1).

The next result is the main result of the paper, giving a description of
all strongly facially symmetric spaces which are isometrically isomorphic to
L1-spaces.

Theorem 3.2. Let Z be a real neutral strongly facially symmetric space
such that every maximal geometric tripotent from Z∗ is unitary. Then there
exists a measure space (Ω,Σ, µ) with measure µ having the direct sum
property such that the space Z is isometrically isomorphic to the space
L1(Ω,Σ, µ).

For the proof we need several lemmata.
Let u, v ∈ GT . If Fu ∩ Fv 6= ∅ then by u ∧ v we denote the unique

geometric tripotent such that Fu∧v = Fu ∩ Fv, otherwise we set u ∧ v = 0.

Lemma 3.3. Let e ∈ GT be unitary and let v ∈ GT . Then Fv ∩ Fe 6= ∅
or F−v ∩ Fe 6= ∅.

Proof. Let x ∈ Fv. By equality (3.1) we obtain

x = ty + (1− t)z
for some y,−z ∈ Fe and 0 ≤ t ≤ 1.

If t = 1 or t = 0 then x = y or x = z, respectively. Hence x ∈ Fv ∩ Fe or
−x ∈ F−v ∩ Fe.

Let 0 < t < 1. Since Fv is a face, y, z ∈ Fv. Therefore Fv ∩ Fe 6= ∅ and
F−v ∩ Fe 6= ∅.

Lemma 3.4. Let e ∈ GT be unitary. Then for every u ∈ GT there exist
mutually orthogonal geometric tripotents u1, u2 ≤ e such that u = u1 − u2.



Geometric characterization of L1-spaces 101

Proof. Put
u1 = u ∧ e, u2 = (−u) ∧ e.

Let us prove that

u1 ♦ u2, u = u1 − u2.
Let x1 ∈ Fu1 and x2 ∈ Fu2 . Then

x1, x2 ∈ Fe, x1,−x2 ∈ Fu,
and therefore

x1 + x2
2

∈ Fe,
x1 − x2

2
∈ Fu.

Thus ∥∥∥∥x1 + x2
2

∥∥∥∥ = 1,

∥∥∥∥x1 − x22

∥∥∥∥ = 1,

and
‖x1 + x2‖ = ‖x1 − x2‖ = 2 = ‖x1‖+ ‖x2‖.

Hence x1 ♦ x2, and therefore u1 ♦ u2.
Now suppose that v = u − u1 + u2 6= 0. By Lemma 3.3 we know that

Fv ∩ Fe 6= ∅ or F−v ∩ Fe 6= ∅. Without loss of generality it can be assumed
that Fv ∩ Fe 6= ∅. Thus there exists an element x ∈ Z1 such that

〈v, x〉 = 〈e, x〉 = 1.

Since v ≤ u, we have 〈u, x〉 = 1. Thus x ∈ Fu∩Fe, i.e. x ∈ Fu1 or 〈u1, x〉 = 1.
Since u1 ♦ u2, we have 〈u2, x〉 = 0. Hence

〈v, x〉 = 〈u, x〉 − 〈u1, x〉+ 〈u2, x〉 = 0,

a contradiction.

Lemma 3.5. Let u,w be orthogonal geometric tripotents. Then u+w is
maximal if and only if u− w is maximal.

Proof. Let u+w be maximal. Suppose that u−w is not maximal. Then
there exists a maximal geometric tripotent e such that e > u − w. Set
w1 = e− u+ w. Then w1 ♦ u and w1 ♦ w. Therefore u+ w < u+ w + w1.
This contradicts the maximality of u+ w.

Recall that a face F of a convex set K is called a split face if there
exists a face G, called complementary to F, such that F ∩ G = ∅ and K
is the direct convex sum F ⊕c G, i.e. any element x ∈ K can be uniquely
represented in the form x = ty+ (1− t)z, where t ∈ [0, 1], y ∈ F, z ∈ G (see
e.g. [1, p. 420], [2]).

Lemma 3.6. Let u,w be orthogonal geometric tripotents. If u + w is
maximal then

Fu+w = Fu ⊕c Fw.(3.2)
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Proof. First we shall show that

Fu+w = co{Fu ∪ Fw}.

It suffices to show that

Fu+w ⊆ co{Fu ∪ Fw}.

By Lemma 3.5 the geometric tripotent u−w is maximal. Therefore the face
Fu−w satisfies equality (3.1), i.e.

Z1 = co{Fu−w ∪ Fw−u}.

Thus every element x ∈ Fu+w has the form

x = ty + (1− t)z

for some y,−z ∈ Fu−w and 0 ≤ t ≤ 1.

Consider the following three cases.

Case 1. If t = 0 then x ∈ Fu+w ∩ Fw−u = Fw.

Case 2. If t = 1 then x ∈ Fu+w ∩ Fu−w = Fu.

Case 3. If 0 < t < 1, then applying the geometric tripotent u + w to
the equality x = ty + (1− t)z we obtain

tu(y) + tw(y) + (1− t)u(z) + (1− t)w(z) = 1.(3.3)

Since y ∈ Fu−w and z ∈ Fw−u we see that

u(y)− w(y) = 1, w(z)− u(z) = 1.

Thus

tu(y)− tw(y)− (1− t)u(z) + (1− t)w(z) = 1.(3.4)

Summing (3.3) and (3.4) we get

tu(y) + (1− t)w(z) = 1.

Since |u(y)| ≤ 1 and |w(z)| ≤ 1 the last equality implies that

u(y) = w(z) = 1.

This means that y ∈ Fu and z ∈ Fw. Therefore

x = ty + (1− t)z ∈ co{Fu ∪ Fw}.

Consequently, Fu+w = co{Fu ∪ Fw}. Taking into account that Fu ♦ Fw we
get Fu+w = Fu ⊕c Fw.

Let u be an arbitrary geometric tripotent and let e be a maximal geo-
metric tripotent such that u ≤ e. First we shall show that

Z = spFu ⊕ spFw,
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where w = e− u. Using equalities (3.1) and (3.2) we obtain

Z = spZ1 = sp{co{Fe ∪ F−e}}
= spFe = sp{Fu ⊕c Fw} = spFu ⊕ spFw.

From spFu ♦ spFw it follows that spFu ♦ spFw, and therefore

Z = spFu ⊕ spFw.

This implies that
P2(u) + P2(w) = I.

Since P1(u)P0(u) = 0 and P2(w) = P0(u)P2(w) (see [5, Corollary 3.4]) we
obtain P1(u)P2(w) = 0. Therefore

P1(u) = P1(u)I = P1(u)[P2(u) + P2(w)] = 0.

So we have

Lemma 3.7. For every u ∈ GT the projection P1(u) is zero.

For orthogonal geometric tripotents v1, v2 we have

P2(v1 + v2) = P2(v1) + P2(v2).(3.5)

Indeed, by [5, Lemma 1.8] we have

P0(v1 + v2) = P0(v1)P0(v2).

Using the last equality and taking into account the equalities P1(v1) =
P1(v2) = P1(v1 + v2) = 0, together with Corollary 3.4 of [5], we get

P2(v1 + v2) = I − P0(v1 + v2) = I2 − P0(v1 + v2)

= (P2(v1) + P0(v1))(P2(v2) + P0(v2))− P0(v1)P0(v2)

= P2(v1) + P2(v2) + P0(v1)P0(v2)− P0(v1)P0(v2)

= P2(v1) + P2(v2).

Now we fix a unitary e ∈ GT .
On the space Z we define an order (depending on e) by the following

rule:

x ≥ y ⇔ x− y ∈ R+Fe.(3.6)

Lemma 3.8. Z is a partially ordered linear space, i.e.

(i) x ≤ x;
(ii) x ≤ y, y ≤ z ⇒ x ≤ z;
(iii) x ≤ y, y ≤ x⇒ x = y;
(iv) x ≤ y ⇒ x+ z ≤ y + z;
(v) x ≥ 0, λ ≥ 0⇒ λx ≥ 0.

Proof. The properties (i), (iv) and (v) are trivial.
To prove (ii), let x ≤ y and y ≤ z. Then y − x, z − y ∈ R+Fe. Thus

z − x ∈ R+Fe, i.e. x ≤ z.
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For (iii), let x ≤ y, y ≤ x. Then y − x = αa and x − y = βb for some
α, β ≥ 0 and a, b ∈ Fe. Therefore αa+βb = 0. Applying to this equality the
geometric tripotent e we obtain α+ β = 0. Thus α = β = 0, i.e. x = y.

Remark 3.9. Note that if v ≤ e then [12, Lemma 2.4] implies that

Pk(v)(Fe) ⊆ Fe, k = 0, 2.(3.7)

Lemma 3.10. Let a, b, x, y ≥ 0 with a ♦ b. If a− b = x− y then

x− a = y − b ≥ 0;

if in addition x ♦ y, then x = a and y = b.

Proof. Let va be the smallest geometric tripotent such that va(a) = ‖a‖
(polar decomposition). Since a ≥ 0 it follows that va ≤ e. Applying the
projection P2(va) to the equality a− b = x− y we obtain

P2(va)(x)− P2(va)(y) = P2(va)(a− b) = P2(va)(a) = a.

Using (3.7) we get

P2(va)(x)− a = P2(va)(y) ∈ R+Fe,

and therefore

x− a = P2(va)(x) + P0(va)(x)− a
= [P2(va)(x)− a] + P0(va)(x) ∈ R+Fe,

i.e. x ≥ a.
Now suppose that x ♦ y. Then as shown above, x ≥ a and a ≥ x. Thus

x = a and y = b.

Lemma 3.11. For x ∈ Z the following conditions are equivalent:

(i) x ≥ 0;
(ii) ‖x‖ = 〈e, x〉.
Proof. Take x ≥ 0, i.e. x = αy for some α ≥ 0 and y ∈ Fe. Then

‖x‖ = ‖αy‖ = α‖y‖ = α = α〈e, y〉 = 〈e, x〉.
Conversely, if ‖x‖ = 〈e, x〉, x 6= 0, then x/‖x‖ ∈ Fe, i.e. x ≥ 0.

Lemma 3.12. Every element x ∈ Z can be uniquely represented as

x = x+ − x−,
where x+, x− ≥ 0 and x+ ♦ x−.

Proof. Take the smallest geometric tripotent vx ∈ GT such that vx(x) =
‖x‖. By Lemma 3.4 there exist mutually orthogonal geometric tripotents
v1, v2 ≤ e such that vx = v1 − v2. Put

x+ = P2(v1)(x), x− = −P2(v2)(x).
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By the proof of [5, Theorem 4.3(d)] we get 〈v1, x〉 = ‖P2(v1)(x)‖, and there-
fore

〈e, x+〉 = 〈e, P2(v1)(x)〉 = 〈P ∗2 (v1)e, x〉
= 〈v1, x〉 = ‖P2(v1)(x)‖ = ‖x+‖.

This means that x+ ≥ 0. Similarly x− ≥ 0. Further using equality (3.5) we
find that x = x+−x− and x+ ♦ x−. Uniqueness follows from Lemma 3.10.

Lemma 3.13. Z is a lattice, i.e. for any x, y ∈ Z there exist

x ∨ y, x ∧ y ∈ Z.
Proof. By Lemma 3.12 there exist mutually orthogonal elements a, b ≥ 0

such that x− y = a− b. Then

x ∨ y =
x+ y + a+ b

2
,(3.8)

x ∧ y =
x+ y − a− b

2
.(3.9)

Indeed,

x ∨ y − x =
x+ y + a+ b

2
− x =

y − x+ a+ b

2
= b ≥ 0

and

x ∨ y − y =
x+ y + a+ b

2
− y =

x− y + a+ b

2
= a ≥ 0.

Now let x, y ≤ z, where z ∈ Z. Denote

x1 = z − x ≥ 0, y1 = z − y ≥ 0.

Thus x− y = y1 − x1. Therefore y1 − x1 = a− b. Lemma 3.10 implies that

y1 − a = x1 − b ≥ 0.

Further

z − x ∨ y =
x+ y + x1 + y1

2
− x+ y + a+ b

2

=
x1 + y1 − a− b

2
= y1 − a ≥ 0.

This means that

x ∨ y =
x+ y + a+ b

2
.

In the same way we can prove equality (3.9).

A Banach lattice X is said to be an abstract L-space if

‖x+ y‖ = ‖x‖+ ‖y‖
for all x, y ∈ X with x ∧ y = 0 (see [11, p. 14] and [10]).
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Lemma 3.14. Z is an abstract L-space.

Proof. First we show that

• 0 ≤ x ≤ y ⇒ ‖x‖ ≤ ‖y‖;
• ‖x‖ = ‖ |x| ‖,

where |x| = x+ + x− is the absolute value of x.
Let 0 ≤ x ≤ y. Then

‖x‖ = 〈e, x〉 ≤ 〈e, y〉 = ‖y‖.
Further

‖ |x| ‖ = ‖x+ + x−‖ = [x+ ♦ x−] = ‖x+ − x−‖ = ‖x‖.
Hence Z is a Banach lattice.

For x, y ≥ 0, using Lemma 3.11 we obtain

‖x+ y‖ = 〈e, x+ y〉 = 〈e, x〉+ 〈e, y〉 = ‖x‖+ ‖y‖.
This means that Z is an abstract L-space.

Now Theorem 3.2 follows from Lemma 3.14 and [11, Theorem 1.b.2].

Remark 3.15. The following observations were kindly suggested by the
referee, to whom the authors are deeply indebted.

Theorem 3.2 fails for complex spaces. Indeed, by [6, Theorem 2.11] for
any finite von Neumann algebra its predual is a neutral strongly facially
symmetric space in which every maximal geometric tripotent is unitary.
However, that predual is not isometric to an L1-space, for example for the al-
gebra B(H) of all bounded linear operators on the finite-dimensional Hilbert
space H of dimension at least 2.

The predual of a real JBW ∗-triple is a neutral weakly facially symmetric
space (see [3, Theorem 5.5] and [6, Theorem 3.1]) which is not strongly
facially symmetric. The strong facial symmetry of the predual of a complex
von Neumann algebra depends on the field being complex (see the proof
of Corollary 2.9 in [6]). Indeed, if the predual of a non-commutative real
von Neumann algebra were a strongly facially symmetric space, this would
contradict Theorem 3.2 above.

Acknowledgments. The authors would like to thank the referee for
valuable comments and suggestions.
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