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Order isomorphisms on function spaces

by

Denny H. Leung (Singapore) and Lei Li (Tianjin)

Abstract. The classical theorems of Banach and Stone (1932, 1937), Gelfand and
Kolmogorov (1939) and Kaplansky (1947) show that a compact Hausdorff space X is
uniquely determined by the linear isometric structure, the algebraic structure, and the
lattice structure, respectively, of the space C(X). In this paper, it is shown that for rather
general subspaces A(X) and A(Y ) of C(X) and C(Y ), respectively, any linear bijection
T : A(X) → A(Y ) such that f ≥ 0 if and only if Tf ≥ 0 gives rise to a homeomorphism
h : X → Y with which T can be represented as a weighted composition operator. The
three classical results mentioned above can be derived as corollaries. Generalizations to
noncompact spaces and other function spaces such as spaces of Lipschitz functions and
differentiable functions are presented.

1. Introduction. A well established area of research seeks to determine
the relationship between the structure of a set and the properties of certain
function spaces defined on it. A closely related question is to determine the
general form of an operator mapping between various function spaces. In the
case of spaces of continuous functions, a vast literature exists. A good sum-
mary of the classical results is the text of Gillman and Jerison [GJ]. From
the classical period, three results in this area stand out, namely the theorems
of Banach and Stone, Gelfand and Kolmogorov, and Kaplansky (see Corol-
lary 2.8 below). When X and Y are compact Hausdorff spaces, these results
determine the precise forms of the norm isometries, algebra isomorphisms
and vector lattice isomorphisms between C(X) and C(Y ) respectively. In
particular, the existence of any one of these three types of operators leads
to homeomorphism between X and Y . More recent results of Banach–Stone
type are found in [A1, A2, CS2, GaJ1, JV1, JV2], for example.

Kadison [Kad] showed that a linear order isomorphism T between two
C∗-algebras which maps the identity to the identity is a C∗-isomorphism,
i.e., T satisfies T (x2) = (Tx)2 for all x. In the commutative case, it follows
that for any compact Hausdorff spaces X and Y , any linear order isomor-
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phism from C(X) onto C(Y ) that maps the constant function 1 to the
constant function 1 is an algebra isomorphism. The theorem of Gelfand–
Kolmogorov then implies that T is a composition operator. Order isomor-
phisms, even nonlinear ones, have been studied by various authors, see for
instance [CS1, CS2, CS3, GaJ1, GaJ2, JV1, JV2]. These results concern
order isomorphisms between specific function spaces. Moreover, the spaces
considered are all either lattices or algebras of functions. One of the aims of
the present paper is to provide a unified treatment of linear order isomor-
phisms within a general framework. In particular, our results apply to all
unital function lattices that separate points from closed sets and to many
function algebras.

For quite general subspaces A(X) and A(Y ) of C(X) and C(Y ), respec-
tively, where X and Y are compact Hausdorff spaces, Theorem 2.1 in §2
determines the precise form of a linear order isomorphism T : A(X)→ A(Y )
and shows that the existence of such a map leads to homeomorphism of X
and Y . The classical results cited above can all be subsumed under this the-
orem. We also provide an example of a space to which the theorem applies
which is neither a lattice nor an algebra.

In §3, we apply a Stone–Čech like compactification procedure to extend
Theorem 2.1 to noncompact spaces. As a result, existence of a linear order
isomorphism T : A(X) → A(Y ) gives rise to a homeomorphism between
some compactifications of X and Y , respectively. In §4, we show that in
certain circumstances, the homeomorphism obtained restricts to a homeo-
morphism between X and Y .

Because much of the paper is concerned with maps preserving order, we
only consider real vector spaces.

2. Order isomorphisms of spaces of continuous functions on
compact Hausdorff spaces. Let X be a topological space and let A(X)
be a vector subspace of C(X). A(X) is said to separate points from closed
sets if given x ∈ X and a closed set F in X not containing x, there exists
f ∈ A(X) such that f(x) = 1 and f(F ) ⊆ {0}. If, in addition, f can be
chosen to have values in [0, 1], then we say that A(X) precisely separates
points from closed sets. It is clear that any sublattice of C(X) that separates
points from closed sets does so precisely. Let Y be a topological space and
let A(Y ) be a vector subspace of C(Y ). A linear bijection T : A(X)→ A(Y )
is an order isomorphism if f ≥ 0 if and only if Tf ≥ 0. The aim of this
section is to prove the following theorem.

Theorem 2.1. Let X, Y be compact Hausdorff spaces and let A(X) and
A(Y ) be subspaces of C(X) and C(Y ), respectively, that contain the constant
functions and precisely separate points from closed sets. If T : A(X)→A(Y )
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is a linear order isomorphism, then there is a homeomorphism h : X → Y
such that Tf = T1X · f ◦ h−1 for all f ∈ A(X).

The proof is divided into a number of steps listed below (Propositions 2.2
to 2.6). If f ∈ A(X) or A(Y ), let Z(f) = {f = 0}.

Proposition 2.2. For any x0 ∈ X, let

Zx0 = {Z(Tf) : f ∈ A(X), f ≥ 0, f(x0) = 0}.
Then Zx0 has the finite intersection property.

Proof. Suppose that fi ∈ A(X), fi ≥ 0, and fi(x0) = 0, 1 ≤ i ≤ n. Let
f =

∑n
i=1 fi. Then f ∈ A(X), f ≥ 0, and f(x0) = 0. In particular, Tf ≥ 0.

If Z(Tf) = ∅, that is, (Tf)(y) > 0 for all y ∈ Y , then there exists ε > 0
such that Tf − εT1X ≥ 0. Thus f − ε1X ≥ 0, which is manifestly untrue.
Let y0 ∈ Y be such that Tf(y0) = 0. Then

∑n
i=1 Tfi(y0) = 0. Since Tfi ≥ 0,

Tfi(y0) = 0, 1 ≤ i ≤ n. Thus y0 ∈
⋂n
i=1 Z(Tfi).

Define Zy0 similarly for y0 ∈ Y , using the operator T−1 in place of T .
By Proposition 2.2,

⋂
Zx0 and

⋂
Zy0 are nonempty for all x0 ∈ X, y0 ∈ Y .

Proposition 2.3. Let x0 ∈ X and y0 ∈ Y . Then y0 ∈
⋂
Zx0 if and only

if x0 ∈
⋂
Zy0.

Proof. Suppose that y0 ∈
⋂
Zx0 but x0 /∈

⋂
Zy0 . Choose x1 ∈

⋂
Zy0 .

Then x1 6= x0. There exists f ∈ A(X), range f ⊆ [0, 1], such that f(x1) = 1
and f(x0) = 0. Since y0 ∈

⋂
Zx0 , Tf(y0) = 0. As T is an order isomorphism,

Tf ≥ 0. Then x1 ∈
⋂
Zy0 implies that f(x1) = T−1(Tf)(x1) = 0, contrary

to the choice of f . The “if” part of the proposition follows by symmetry.

Proposition 2.4.
⋂
Zx0 contains exactly one point.

Proof. It has already been observed that
⋂
Zx0 is nonempty. Suppose

that there are distinct points y1 and y2 in
⋂
Zx0 . Choose g ∈ A(Y ) such that

range g ⊆ [0, 1], g(y1) = 0 and g(y2) = 1. By Proposition 2.3, x0 ∈
⋂
Zy1 .

Hence T−1g(x0) = 0. Since y2 ∈
⋂
Zx0 , T (T−1g)(y2) = 0. Thus g(y2) = 0,

yielding a contradiction.

Proposition 2.5. T1X(y) > 0 and T−11Y (x) > 0 for all x ∈ X and all
y ∈ Y .

Proof. Suppose that there exists y0 ∈ Y such that T1X(y0) = 0. For
any f ∈ A(X), there exists 0 ≤ c ∈ R such that −c1X ≤ f ≤ c1X . Then
−cT1X(y0) ≤ Tf(y0) ≤ cT1X(y0) for all f ∈ A(X). Hence Tf(y0) = 0 for
all f ∈ A(X). This is a contradiction since T maps onto A(Y ), and A(Y )
contains all constant functions.

Define h : X → Y by h(x0) = y0, where {y0} =
⋂
Zx0 .
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Proposition 2.6. The map h is a homeomorphism from X onto Y so
that Tf = T1X · f ◦ h−1 for all f ∈ A(X) and all y ∈ Y .

Proof. The injectivity of h follows from Proposition 2.3. If y ∈ Y , let
{x} =

⋂
Zy. By Proposition 2.3, y ∈

⋂
Zx. Thus h(x) = y. This shows that

h is surjective.
Suppose that x0 ∈ X and y0 = h(x0). Let f ∈ A(X) and let m =

min{f(x) : x ∈ X}. Given ε > 0, let U be an open neighborhood of x0
so that f(x) > f(x0) − ε for all x ∈ U . There exists g1 ∈ A(X) such that
range g1 ⊆ [0, 1], g1(x0) = 1 and g1(x) = 0 for all x /∈ U . Since 1X − g1 ≥ 0,
(1X − g1)(x0) = 0 and y0 ∈

⋂
Zx0 , we see that T (1X − g1)(y0) = 0. Hence

(Tg1)(y0) = (T1X)(y0). Now

f −m1X − (f(x0)−m− ε)g1 ≥ 0.

Thus
(Tf)(y0) ≥ m(T1X)(y0) + (f(x0)−m− ε)(Tg1)(y0),

that is, (Tf)(y0) ≥ (T1X)(y0)(f(x0) − ε). As ε > 0 is arbitrary, Tf(y0) ≥
(T1X)(y0)f(x0). Applying the argument to −f yields the reverse inequality.
Thus Tf(y0) = (T1X)(y0)f(x0).

It remains to show that h is a homeomorphism. Let x0 ∈ X and y0 =
h(x0). Suppose that V is an open neighborhood of y0 in Y . There exists
g ∈ A(Y ) such that g(y0) = 1, range g ⊆ [0, 1], and g = 0 outside V . Since
g ≥ 0, T−1g ≥ 0. If T−1g(x0) = 0, then y0 ∈ Z(T (T−1g)) = Z(g), contrary
to the choice of g. Thus T−1g(x0) > 0. Therefore, the set U = {T−1g > 0}
is an open neighborhood of x0 ∈ X. Suppose that x ∈ U . By the previous
paragraph,

g(h(x)) = T (T−1g)(h(x)) = (T1X)(h(x))T−1g(x) > 0.

Hence h(x) ∈ V . This proves that h is continuous. Since h is a continuous
bijection between compact Hausdorff spaces, it is a homeomorphism.

Remark. Applying Theorem 2.1 to the map T−1 gives a homeomor-
phism k : Y → X such that T−1g = T−11Y · g ◦ k−1. Because of Proposition
2.3, k must be h−1.

The classical theorems of Banach [B] and Stone [S], Gelfand and Kol-
mogorov [GK] and Kaplansky [K] show that a compact Hausdorff space
X is uniquely determined by the linear isometric structure, the algebraic
structure, and the lattice structure, respectively, of the space C(X). These
results can be subsumed under Theorem 2.1. As usual, C(X) and C(Y ) are
endowed with their respective supremum norms.

Lemma 2.7. Let X and Y be compact Hausdorff spaces. If T : C(X)→
C(Y ) is an onto linear isometry, then |T1X | = 1Y and, for any f ∈ C(X),
f ≥ 0 if and only if Tf · T1X ≥ 0.
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Proof. Since T is an isometry, ‖T1X‖ = 1. Suppose that there exists
y0 ∈ Y such that |T1X(y0)| < 1. There exists a neighborhood V of y0 and
a > 0 such that |T1X(y)| < 1 − a for all y ∈ V . Choose g ∈ C(Y ) such
that g(y0) = 1, range g ⊆ [0, 1] and g = 0 outside V . Then ‖1X + aT−1g‖ =
‖T1X +ag‖ ≤ 1. Thus 1+aT−1g(x) ≤ 1 for all x ∈ X. Therefore, T−1g ≤ 0.
As ‖T−1g‖ = ‖g‖ = 1, there must be some x0 ∈ X where T−1g(x0) = −1.
Then

2 = |(1X − T−1g)(x0)| ≤ ‖1X − T−1g‖ ≤ ‖1X‖+ ‖T−1g‖ = 2.

Hence ‖T1X − g‖ = ‖1X − T−1g‖ = 2. However, if y ∈ V , then

|(T1X − g)(y)| ≤ |T1X(y)|+ ‖g‖ < 1− a+ 1 < 2.

On the other hand, if y /∈ V , then |(T1X − g)(y)| = |T1X(y)| ≤ ‖1X‖ = 1.
This proves that ‖T1X − g‖ < 2, contrary to the above. So, |T1X | = 1Y .

Given f ∈ C(X), f ≥ 0 if and only if
∥∥f − ‖f‖1X∥∥ ≤ ‖f‖. Since T is

an isometry, this is equivalent to
∥∥Tf − ‖Tf‖T1X

∥∥ ≤ ‖Tf‖. By the above,
|T1X | = 1Y . Thus the final inequality holds if and only if Tf · T1X ≥ 0.

A linear bijection T : C(X)→ C(Y ) is

• a lattice isomorphism if |Tf | = T |f | for all f ∈ C(X);
• an algebra isomorphism if T1X = 1Y and T (fg) = Tf · Tg for all
f, g ∈ C(X).

Corollary 2.8. Let X and Y be compact Hausdorff spaces and let
T : C(X)→ C(Y ) be a linear bijection.

(a) (Banach and Stone) If T is an isometry, then there is a homeomor-
phism h : X → Y and a function g ∈ C(Y ), |g| = 1Y , such that
Tf = g · f ◦ h−1 for all f ∈ C(X).

(b) (Kaplansky) If T is a lattice isomorphism, then there is a homeo-
morphism h : X → Y and a function g ∈ C(Y ), g(y) > 0 for all
y ∈ Y , such that Tf = g · f ◦ h−1 for all f ∈ C(X).

(c) (Gelfand and Kolmogorov) If T is an algebra isomorphism, then
there is a homeomorphism h : X → Y such that Tf = f ◦ h−1 for
all f ∈ C(X).

Proof. Let g = T1X . For case (a), it follows from Lemma 2.7 that

|g| = 1Y and that the operator T̃ : C(X)→ C(Y ) given by T̃ (f) = Tf/g is a
linear order isomorphism. By Theorem 2.1, there exists a homeomorphism
h : X → Y such that T̃ f = T̃1X · f ◦ h−1. It follows that Tf = g · f ◦ h−1.
For cases (b) and (c), it is clear that T is a linear order isomorphism. Propo-
sition 2.5 gives g(y) > 0 for all y ∈ Y . Moreover, g = 1Y for case (c). The
representation of T is seen immediately from Theorem 2.1.
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Remark. Lemma 2.7 may be extended to linear isometries T : C(X,C)
→ C(Y,C). As a result, Corollary 2.8(a) for complex isometries may also be
derived in a similar manner.

Example. There is a subspace X of C[0, 1] that contains the constants
and precisely separates points from closed sets, so that X is neither a sub-
lattice nor a subalgebra of C[0, 1].

Define θ : R → R by θ(t) = sin(πt/2) and g : R → R by g(t) = 0,
θ(t), 1 if t ≤ 0, 0 < t < 1, t ≥ 1, respectively. Denote by t the identity
function t 7→ t on [0, 1] or R, as the case may be. If F is a set of real-valued
functions defined on [0, 1] or R, let g ◦ F = {g ◦ f : f ∈ F}. Denote by X1

and Σ1 the span of the functions 1 and t in C[0, 1] and C(R), respectively.
Let Xn+1 = span{Xn ∪ g ◦ Xn} and Σn+1 = span{Σn ∪ θ ◦ Σn}. Then set
X =

⋃
nXn and Σ =

⋃
nΣn. It is easy to see that X is a subspace of C[0, 1]

and that Σ is a subspace of C(R). Moreover, Σ consists of real-analytic
functions on R. We claim that X has the desired properties.

First observe that for any a < b in [0, 1], the linear function f on [0, 1]
such that f(a) = 0 and f(b) = 1 belongs to X1. Hence g ◦ f ∈ X2 ⊆ X .
Furthermore, g ◦ f has the property that g ◦ f(t) = 0 if t ≤ a, g ◦ f(t) = 1
if t ≥ b and 0 < g ◦ f(t) < 1 if a < t < b. Taking differences of two
such functions shows that X separates points from closed sets in [0, 1]. By
construction, g◦f ∈ X for any f ∈ X . Thus X satisfies conditions (a) and (b)
of Definition 3.1 below. Since X consists of bounded functions, condition (c)
is also satisfied. It follows from Lemma 3.3 that X precisely separates points
from closed sets in [0, 1].

Lemma 2.9. If f ∈ Xn and I is a nondegenerate interval in [0, 1], then
there is a nondegenerate interval J ⊆ I and a function u ∈ Σn such that
f = u on J .

Proof. Induct on n. The case n = 1 is trivial. Assume that the result
holds for some n and let f ∈ Xn+1. Then f = f0 +

∑m
i=1 cig ◦ fi, where fi ∈

Xn, 0 ≤ i ≤ m. By the inductive assumption, there exist a nondegenerate
interval I0 ⊆ I and u0 ∈ Σn such that f0 = u0 on I0. If f1(I0) ∩ (0, 1) = ∅,
then g◦f1(I0) ⊆ {0, 1}. By continuity of g◦f1 and connectedness of I0, g◦f1
takes a constant value, say c1 (= 0 or 1) on I0. In this case, let I1 = I0 and
u1 = c1. Then g◦f1 = c1 = θ◦u1 on I1. Otherwise, f1(I0)∩(0, 1) 6= ∅. There is
a nondegenerate interval I ′0 ⊆ I0 such that f1(I

′
0) ⊆ (0, 1). Then g◦f1 = θ◦f1

on I ′0. By the inductive assumption, there exist a nondegenerate interval
I1 ⊆ I ′0 and u1 ∈ Σn such that f1 = u1 on I1. Then g ◦ f1 = θ ◦ f1 = θ ◦ u1
on I1. Continue choosing nondegenerate intervals I0 ⊇ I1 ⊇ · · · ⊇ Im,
u0, . . . , um ∈ Σn such that g ◦ fi = θ ◦ ui on Ii, 1 ≤ i ≤ m, and f0 = u0
on I0. Then f = u0 +

∑m
i=1 ciθ ◦ ui on Im and the latter function belongs

to Σn+1.
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Lemma 2.10. If f is a real-analytic function on R and f|[0,1] ∈ X , then
f ∈ Σ.

Proof. Let f0 = f |[0,1]. By Lemma 2.9, there is a nondegenerate interval
J and u ∈ Σ such that f0 = u on J . Since both f and u are real-analytic
on R, f = u on R.

We can now verify the remaining properties of X stated above, namely
that X is neither a sublattice nor a subalgebra of C[0, 1]. If X is an algebra,
then t2 ∈ X . By Lemma 2.10, t2 (as a function on R) belongs to Σ. We show
that this is impossible by showing that limt→∞ f(t)/t2 = 0 for any f ∈ Σ.
Indeed, the statement holds for any f ∈ Σ1. Inductively, any f ∈ Σn+1 can
be written as f = f0+

∑m
i=1 ciθ◦fi, where fi ∈ Σn, 0 ≤ i ≤ m. By induction,

limt→∞ f0(t)/t
2 = 0. Since 0 ≤ θ ◦ fi ≤ 1, the induction is complete.

Finally, suppose that X is a lattice. Then t ∧ 1/2 ∈ X . Say it belongs
to Xn. It is easy to check via induction that

Xn = X1 + span(g ◦ X1) + · · ·+ span(g ◦ Xn−1).
Then we can write f = f0 + g ◦ f1 + · · ·+ g ◦ fn−1, where f0 ∈ X1, fi ∈ Xi,
1 ≤ i ≤ n − 1. Say f0 = a + bt. By Lemma 2.9, there exist nondegenerate
intervals J1 ⊆ [0, 1/2], J2 ⊆ [1/2, 1] and functions ui, vi ∈ Σ, 1 ≤ i ≤ n− 1,
such that

f =

{
a+ bt+

∑n−1
i=1 θ ◦ ui on J1,

a+ bt+
∑n−1

i=1 θ ◦ vi on J2.

Then t = a+ bt+h1 on J1 and 1/2 = a+ bt+h2 on J2, where h1 and h2 are
bounded real-analytic functions. Thus these equations hold on R. Dividing
both equations by t and taking limits as t→∞ gives 1 = b and 0 = b, which
is absurd.

3. Order isomorphisms on completely regular spaces. In this
section, we employ the method of compactification to extend results in the
previous section to more general function spaces. Let X be a (Hausdorff)
completely regular space and let A(X) be a subspace of C(X) that separates
points from closed sets. Denote by R∞ the interval [−∞,∞] with the order

topology. The map i : X → RA(X)
∞ , i(x)(ϕ) = ϕ(x), is a homeomorphic

embedding. Let AX be the closure of i(X) in RA(X)
∞ . Then AX is a compact

Hausdorff space. Identify X with i(X) and regard X as a subspace of AX.

For each f ∈ A(X), there is a unique continuous extension f̂ : AX → R∞
given by f̂(x) = x(f). When A(X) = C(X), AX coincides with the Stone–
Čech compactification βX. In some versions of this type of compactification,
one embeds R into the one-point compactification R ∪ {∞}. We prefer to
use the compactification [−∞,∞] instead since this space is ordered. Let
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g : R → R be a function. We say that A(X) is g-invariant if g ◦ f ∈ A(X)
for all f ∈ A(X).

Definition 3.1. We will say that a vector subspace A(X) of C(X) is
adequate if:

(a) A(X) separates points from closed sets and contains the constant
functions.

(b) There exists a continuous nondecreasing function g : R → R, with
g(t) = 0 if t ≤ 0 and g(t) = 1 if t ≥ 1, such that A(X) is g-invariant.

(c) The positive cone A(X)+ generates A(X), i.e., every f ∈ A(X) can
be written as f1 − f2, where f1 and f2 are nonnegative functions in
A(X).

Observe that conditions (b) and (c) hold if A(X) is a sublattice of C(X).
Indeed, condition (c) is obvious for a sublattice. Take g(t) to be 0, t or 1 for
t ≤ 0, 0 < t < 1 or t ≥ 1, respectively. Then A(X) is g-invariant if A(X) is
a sublattice of C(X). Also, condition (c) holds if A(X) consists of bounded
functions and contains the constants. Indeed, in this case, any f ∈ A(X)
can be written as c1X − (c1X − f), where c ≥ 0 and c1X ≥ f .

Lemma 3.2. Let X be a completely regular space and let A(X) be an
adequate subspace of C(X). Given x0 ∈ AX, f ∈ A(X), and a neighborhood
U of x0(f) in [−∞,∞], set V = {x ∈ AX : x(f) ∈ U}. Then there exists
h ∈ A(X) with 0 ≤ h ≤ 1X and x0(h) = 0 such that W = {x ∈ AX :
x(h) < 1} ⊆ V .

Proof. Let g be the function given in Definition 3.1. Define g(∞) = 1 and
g(−∞) = 0. Then x(g ◦f) = g(x(f)) for all x ∈ AX and all f ∈ A(X). First
consider the case where x0(f) = a ∈ R. Choose ε > 0 such that (a−ε, a+ε)
⊆ U . Set f1 = ε−1(f − a1X) ∈ A(X). Then x0(f1) = 0. If x ∈ AX and
|x(f1)| < 1, then |x(f) − a| = ε|x(f1)| < ε. Thus W ′ = {x ∈ AX : |x(f1)|
< 1} ⊆ V . Set h = 1X +g ◦f1−g ◦ (f1 +1X) ∈ A(X). Using the observation
above, we see that for any x ∈ AX, x(h) = 1 + g(x(f1)) − g(x(f1) + 1). It
is easy to check that 0 ≤ h ≤ 1X , x0(h) = 0, and W ⊆W ′ ⊆ V .

If x0(f) = +∞ or −∞, the proof is similar. Assume the former. Choose
0 < m ∈ R such that (m,∞] ⊆ U and define h = 1X − g ◦ (f − (m+ 1)1X).
We omit the verification that h satisfies the requirements.

Denote by Cb(X) the subspace of C(X) consisting of the bounded func-

tions. Let Ab(X) = A(X)∩Cb(X) and Âb(X) = {f̂ : f ∈ Ab(X)}. The map

f 7→ f̂ is a bijection from Ab(X) onto the subspace Âb(X) of C(AX). Since
Ab(X) contains the constant functions on X, Âb(X) contains the constant
functions on AX.
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Lemma 3.3. Let X be a completely regular space. If A(X) is an adequate
subspace of C(X), then Âb(X) precisely separates points from closed sets
in AX.

Proof. Let x0 ∈ AX and F be a closed subset of AX not containing x0.
Then V = AX \F is an open neighborhood of x0. Choose f1, . . . , fn ∈ A(X)
and open neighborhoods Ui of x0(fi) in [−∞,∞] such that

⋂n
i=1 Vi ⊆ V ,

where Vi = {x ∈ AX : x(fi) ∈ Ui}. By Lemma 3.2, there exist hi, 1 ≤ i ≤ n,
such that 0 ≤ hi ≤ 1X , x0(hi) = 0, and Wi = {x ∈ AX : x(hi) < 1} ⊆ Vi.

Set h = 1X − g ◦
∑n

i=1 hi ∈ A(X). Then 0 ≤ h ≤ 1X and ĥ(x0) = x0(h) = 1.
If x ∈ AX, x /∈ V , then there exists j such that x /∈ Vj , and hence x /∈ Wj .

Thus x(hj) ≥ 1 and so x(
∑n

i=1 hi) ≥ 1. Therefore, ĥ(x) = x(h) = 0.

Theorem 3.4. Let X and Y be completely regular spaces. Suppose that
A(X) and A(Y ) are adequate subspaces of C(X) and C(Y ) respectively.
If T : A(X) → A(Y ) is a linear order isomorphism such that T (Ab(X))
= Ab(Y ), then there exists a homeomorphism h : AX → AY such that

for all x ∈ X, y ∈ Y , f ∈ A(X) and g ∈ A(Y ), f̂(h−1(y)), ĝ(h(x)) ∈ R,

Tf = T1X · f̂ ◦ h−1|Y and T−1g = T−11Y · ĝ ◦ h|X .

Proof. It is clear that T induces a linear order isomorphism T̂ : Âb(X)→
Âb(Y ) given by T̂ f̂ = (Tf )̂ . The spaces Âb(X) and Âb(Y ) are subspaces of
C(AX) and C(AY ), respectively. By Lemma 3.3, Âb(X) and Âb(Y ) precisely
separate points from closed sets. Therefore, by Theorem 2.1 and the Remark
following Proposition 2.6, there is a homeomorphism h : AX → AY such
that T̂ f̂ = (T1X )̂ · f̂ ◦ h−1 for all f̂ ∈ Âb(X) and T̂−1ĝ = (T−11Y )̂ · ĝ ◦ h
for all ĝ ∈ Âb(Y ). Since T−11Y is bounded, we get in particular

(3.1) 1AY = T̂ (T−11Y )̂ = (T1X )̂ · (T−11Y )̂ ◦ h−1.
Let f ∈ A(X) with f ≥ 0. Suppose that x0 ∈ AX and y0 = h(x0) ∈ Y .

Note that f̂(x0) ≥ 0. If f̂(x0) = 0, then Tf(y0) ≥ (T1X)(y0)f̂(x0). Other-

wise, for all a ∈ R with 0 ≤ a < f̂(x0), there exists an open neighborhood U
of x0 in AX such that f(x) > a for all x ∈ U∩X. By Lemma 3.3, there exists
g ∈ Ab(X) such that range ĝ ⊆ [0, 1], ĝ(x0) = 1 and ĝ = 0 outside U . Note
that (Tg)(y0) = (T1X)(y0)ĝ(x0) = (T1X)(y0) since g ∈ Ab(X) and y0 ∈ Y .
As f − ag ≥ 0, T (f − ag) ≥ 0. Thus (Tf)(y0) ≥ a(Tg)(y0) = a(T1X)(y0).

This shows that (Tf)(y0) ≥ (T1X)(y0)f̂(x0). Since T1X(y0) = (T1X )̂ (y0)

> 0 by Proposition 2.5, we see that, in particular, f̂(x0) ∈ R. In other

words, f̂(h−1(y)) ∈ R and (Tf)(y) ≥ (T1X)(y)f̂(h−1(y)) for all y ∈ Y . By
symmetry and equation (3.1), we also get, for all x ∈ X,

(T1X )̂ (h(x)) · f(x) = (T1X )̂ (h(x)) · (T−1(Tf))(x)

≥ (T1X )̂ (h(x)) · (T−11Y )(x) · (Tf )̂ (h(x)) = (Tf )̂ (h(x)).
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Given y ∈ Y , let (xα) be a net in X so that (h(xα)) converges to y. Applying

the preceding calculation to xα and taking limit gives T1X(y) · f̂(h−1(y)) ≥
(Tf)(y). Thus (Tf)(y) = (T1X)(y)f̂(h−1(y)) for all y ∈ Y .

For a general f ∈ A(X), write f = f1 − f2, where 0 ≤ f1, f2 ∈ A(X). If

y ∈ Y , f̂1(h
−1(y)) and f̂2(h

−1(y)) ∈ R. By the previous paragraph,

Tf(y) = Tf1(y)− Tf2(y) = T1X(y) ·
(
f̂1(h

−1(y))− f̂2(h−1(y))
)

= T1X(y) · f̂(h−1(y)).

The formula for T−1g follows by the same argument.

Remark. If T : A(X)→ A(Y ) is a linear order isomorphism such that
there exists 0 < c < 1 so that c1Y ≤ T1X ≤ c−11Y , then T (Ab(X)) = Ab(Y ).
This holds in particular if T1X = 1Y .

Proof. In fact, if f ∈ Ab(X), then there exists 0 < M < ∞ such that
−M1X ≤ f ≤M1X . Then

−Mc−11Y ≤ −MT1X ≤ Tf ≤MT1X ≤Mc−11Y .

Since the condition c1Y ≤ T1X ≤ c−11Y is equivalent to c1X ≤ T−11Y
≤ c−11X , the other direction follows by symmetry.

Theorem 3.4 applies to all function spaces that are commonly considered
in the context of order isomorphisms. Given a function space A(X), let
Aloc(X) be the space of all real-valued functions f on X such that for every
x0 ∈ X, there are a neighborhood U of x0 and a function g ∈ A(X) such
that, f = g on the set U . The space Aloc

b (X) is the subspace of all bounded
functions in Aloc(X).

Proposition 3.5.

(a) Let X be a completely regular space and let A(X) be a sublattice of
C(X) that separates points from closed sets and contains the constant
functions. Then A(X) is adequate.

(b) If A(X) is adequate, then so are Ab(X), Aloc(X) and Aloc
b (X).

(c) Let X be an open set in a Banach space E and let p ∈ N ∪ {∞}.
Suppose that E supports a Cp bump function, i.e., there exists ϕ ∈
Cp(E) such that ϕ(0) 6= 0 and that ϕ has bounded support. Then
Cp(X) is adequate.

Proof. For part (a), see the remark following Definition 3.1. Part (b) is
clear. For part (c), take g : R→ R to be a nondecreasing C∞ function such
that g(t) = 0 if t ≤ 0 and g(t) = 1 if t ≥ 1. Then Cp(X) and Cpb (X) are
g-invariant.

Let (X, d) be a metric space. The space of Lipschitz functions on X,
Lip(X), consists of all real-valued functions f on X such that
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sup

{
|f(x)− f(y)|

d(x, y)
: x, y ∈ X, x 6= y

}
<∞.

The space lip(X) of little Lipschitz functions consists of all f ∈ Lip(X) such
that

lim
t→0

sup

{
|f(x)− f(y)|

t
: 0 < d(x, y) < t

}
= 0.

The space of uniformly continuous functions on X is denoted by UC(X).
Observe that Lip(X), lip(X) and UC(X) are sublattices of C(X) that con-
tain the constant functions. Lip(X) and UC(X) always separate points from
closed sets and hence are adequate by Proposition 3.5. If lip(X) separates
points from closed sets, then it is also adequate. This occurs in particular if
there exists 0 < α < 1 and a metric D on X so that d = Dα. By Proposi-
tion 3.5(b), the local, bounded, and bounded local versions of these spaces
are also adequate.

An obvious question with regard to Theorem 3.4 is under what circum-
stances would the homeomorphism h map X onto Y . A simple example
shows that this may not always be the case. In fact, for any completely
regular space X, Cb(X) is linearly order isomorphic to C(βX). Thus, if X
and Y are nonhomeomorphic spaces with homeomorphic Stone–Čech com-
pactifications, then Cb(X) is linearly order isomorphic to Cb(Y ) under a
linear isomorphism that preserves bounded functions.

4. Refinements. The purpose of this section is to refine Theorem 3.4
by showing that, in many situations, the homeomorphism h maps X onto Y .
We will also show that in some cases, one may remove the condition that T
preserves bounded functions. First we look at a classical situation. A com-
pletely regular space X is said to be realcompact if, given x ∈ βX \X, there

exists f ∈ C(X) whose extension f̂ takes an infinite value at x.

Theorem 4.1. Let X and Y be realcompact spaces and let T : C(X)→
C(Y ) be a linear order isomorphism. Then there exists a homeomorphism
θ : X → Y such that Tf = T1X · f ◦ θ−1 and T−1g = T−11Y · g ◦ θ for all
f ∈ C(X) and all g ∈ C(Y ).

Proof. Let u = 1X + T−11Y . Observe that u ≥ 1X and Tu ≥ 1Y . Define
S : C(X)→ C(Y ) by Sf = T (uf)/Tu for all f ∈ C(X). It is easy to check
that S is a linear order isomorphism such that S1X = 1Y . Let h : βX → βY
be the homeomorphism obtained by applying Theorem 3.4 to the map S.
Since f̂(h−1(y)) ∈ R for all f ∈ C(X) and y ∈ Y , and X is realcompact, we
find that h−1(y) ∈ X for all y ∈ Y . Similarly, h(x) ∈ Y for all x ∈ X. Let θ
be the restriction of h to X. Then θ is a homeomorphism from X onto Y .
By Theorem 3.4 again, and Sf = f ◦ θ−1for all f ∈ C(X). In particular,
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(1/u) ◦ θ−1 = S(1/u) = T1X/Tu. Hence, for all f ∈ C(X),

Tf = Tu · S
(
f

u

)
= Tu · f

u
◦ θ−1 = Tu · (f ◦ θ−1) ·

(
1

u
◦ θ−1

)
= Tu · (f ◦ θ−1) · T1X

Tu
= T1X · (f ◦ θ−1).

Similarly, T−1g = T−11Y · g ◦ θ for all g ∈ C(Y ).

A representation of nonlinear order isomorphisms between spaces of con-
tinuous functions on compact Hausdorff spaces has been obtained by F. Ca-
bello Sánchez [CS1].

For the remainder of this section, we consider metric spaces X and Y .

Proposition 4.2. Let X and Y be metric spaces and let A(X) and A(Y )
be adequate subspaces of C(X) and C(Y ), respectively. If h : AX → AY is
a homeomorphism and x0 ∈ X, then there is a sequence (yn) in Y that
converges to h(x0) in AY .

Proof. In the first instance, suppose that x0 is an isolated point in X.
Since A(X) separates points from closed sets, the characteristic function
χ{x0} belongs A(X). Let U = {x ∈ AX : x(χ{x0}) > 0}. Then U is an open
neighborhood of x0 in AX. We claim that U contains only x0. To see this,
suppose that x ∈ AX \ {x0}. Choose a net (xα) in X that converges to x.
Since χ{x0}(xα) ∈ {0, 1} and limα χ{x0}(xα) = x(χ{x0}), the latter value is
either 0 or 1. If it is 1, then there exists α0 such that χ{x0}(xα) = 1 for
all α ≥ α0. Then xα = x0 for all α ≥ α0. As a result, x = x0, yielding a
contradiction. Thus x(χ{x0}) = 0, i.e., x /∈ U , as claimed. By the claim, x0
is an isolated point in AX. Hence h(x0) is an isolated point in AY . But
since Y is dense in AY , h(x0) cannot be in AY \ Y . So h(x0) ∈ Y and the
conclusion of the proposition is obvious.

Now suppose that x0 is not an isolated point in X. Fix a pairwise distinct
sequence of points (xn) in X that converges to x0, and a strictly positive
null sequence (εn) in R. Choose fn ∈ A(X) such that fn(xn) = 1 and fn = 0
outside B(xn, εn). Set Un = {x ∈ AX : x(fn) > 0}. Then Un is an open
neighborhood of xn in AX. Thus h(Un) is a nonempty open set in AY and
hence h(Un) ∩ Y 6= ∅. Pick yn ∈ h(Un) ∩ Y and let zn = h−1(yn). Take any
f ∈ A(X). In particular, f is continuous on X. For any ε > 0, there exists
δ > 0 so that |f(x) − f(x0)| < ε if x ∈ B(x0, δ). Observe that Un is open
in AX and hence Un ⊆ Un ∩X. Then zn ∈ Un ⊆ Un ∩X. By continuity
of f̂ , zn(f) = f̂(zn) ∈ f(Un ∩X). There exists n0 such that B(xn, εn) ⊆
B(x0, δ) for all n ≥ n0. Hence Un ∩X ⊆ B(x0, δ) for all n ≥ n0. Therefore,
|zn(f) − f(x0)| ≤ ε for all n ≥ n0. This proves that lim zn(f) = f(x0). As
f ∈ A(X) is arbitrary, zn → x0 in AX. Thus yn = h(zn) → h(x0) in AY ,
as desired.
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A set of points S in a metric space is separated if there exists ε > 0 such
that d(x1, x2) ≥ ε whenever x1 and x2 are distinct points in S.

Corollary 4.3. Let X and Y be metric spaces and let A(X) and A(Y )
be adequate subspaces of C(X) and C(Y ) respectively. Assume that

(a) A(Y ) = Aloc(Y ) or Aloc
b (Y ), or

(b) Y is complete and, for any separated sequence (yn) in Y , there exists
g ∈ A(Y ) such that g(y2n) = 1 and g(y2n−1) = 0 for all n.

If h : AX → AY is a homeomorphism and x0 ∈ X, then h(x0) ∈ Y .

Proof. (a) By Proposition 4.2, there is a sequence (yn) in Y that con-
verges to h(x0). If (yn) has a subsequence that converges in Y , then we are
done. Assume that (yn) has no subsequence that converges in Y . We may
then further assume that there is a strictly positive real sequence (εn) so
that B(ym, 2εm) ∩ B(yn, 2εn) = ∅ if m 6= n. By Lemma 3.3, there exists
gn ∈ A(Y ) so that gn(yn) = 1, gn = 0 outside B(yn, εn), and 0 ≤ gn ≤ 1Y .
Let g be the pointwise sum

∑
g2n. Take y ∈ Y . If y ∈ B(yn, 2εn) for some n,

then there exists ε > 0 such that B(y, ε) does not intersect B(ym, εm) for
any m 6= n. Suppose y /∈ B(yn, 2εn) for any n. If, for all ε > 0, B(y, ε)
intersects B(yn, εn) for at least two n, then for any ε > 0, B(y, ε) intersects
infinitely many B(yn, εn). This implies that (yn) has a convergent subse-
quence, contrary to the choice of (yn). This establishes that there exists
ε > 0 so that B(y, ε) intersects at most one B(yn, εn). Thus g is a bounded
function in Aloc(Y ). By the assumption, g ∈ A(Y ). In particular, (g(yn))
converges to ĝ(h(x0)). However, this is impossible since g(yn) = 1 if n is
even and g(yn) = 0 if n is odd.

(b) By Proposition 4.2, there is a sequence (yn) in Y that converges to
h(x0). If (yn) has a Cauchy subsequence, then we are done. Otherwise, we
may assume that (yn) is separated. By the assumption, there exists g ∈ A(Y )
so that g(y2n) = 1 and g(y2n−1) = 0 for all n. But this is impossible since
(g(yn)) converges to ĝ(h(x0)).

The next theorem unifies many results concerning unital order isomor-
phisms on most types of commonly considered function spaces defined on
metric spaces.

Theorem 4.4. Let X and Y be metric spaces. Assume that A(X) is an
adequate subspace of C(X) and that either

(1) A(X) = Aloc(X) or Aloc
b (X), or

(2) X is complete and, for any separated sequence (xn) in X, there exists
f ∈ A(X) such that f(x2n) = 1 and f(x2n−1) = 0 for all n.

Assume the same for A(Y ). If T : A(X) → A(Y ) is a linear order iso-
morphism such that T (Ab(X)) = Ab(Y ), then there is a homeomorphism
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h : X → Y such that Tf = T1X · f ◦ h−1 and T−1g = T1Y · g ◦ h for all
f ∈ A(X) and g ∈ A(Y ).

Proof. Apply Theorem 3.4 and Corollary 4.3(a) or (b) as the case may
be.

Theorem 4.4 applies if A(X) (and A(Y )) is of one of the following types:

• Lip(X),Lipb(X), UC(X), UCb(X), where X is a complete metric;
• lip(X), lipb(X), where X is a complete metric and lip(X) satisfies con-

dition (2) in Theorem 4.4;
• Liploc(X), Liploc

b (X), UCloc(X), UCloc
b (X), where X is a metric (not

necessarily complete);
• liploc(X), liploc

b (X), where X is metric, not necessarily complete, and
liploc(X) separates points from closed sets;
• Cp(X), Cpb (X), where X is an open set in a Banach space E that

supports a Cp bump function.

Finally, we show that the condition that T preserves bounded functions
may be removed in certain cases. The idea is to use the “division trick” that
has been employed in the proof of Theorem 4.1.

Theorem 4.5. Let X and Y be metric spaces. Assume that either

(1) A(X) is a sublattice of C(X) that separates points from closed sets
and contains the constants, and that either

(a) A(X) = Aloc(X) or Aloc
b (X), or

(b) X is complete and A(X) = Lip(X) or Lipb(X), or
(c) A(X) = lip(X) or lipb(X), where X is complete with metric d

such that d = Dα for some metric D on X and 0 < α < 1; or

(2) A(X) = Cp(X) or Cpb (X), where X is an open set in a Banach space
E that supports a Cp bump function.

Assume the same for A(Y ). If T : A(X) → A(Y ) is a linear order iso-
morphism, then there is a homeomorphism h : X → Y such that Tf =
T1X · f ◦ h−1 and T−1g = T1Y · g ◦ h for all f ∈ A(X) and g ∈ A(Y ).

Proof. Let u = 1X + T−11Y . Then u ∈ A(X) and u ≥ 1X , Tu ≥ 1Y .
Define

F (X) =

{
f

u
: f ∈ A(X)

}
and F (Y ) =

{
g

Tu
: g ∈ A(Y )

}
.

If A(X) is a sublattice of C(X) that separates points from closed sets, then
F (X) is a sublattice of C(X) that contains the constants and separates
points from closed sets. If A(X) = Cp(X), then F (X) = Cp(X). If A(X) =
Cpb (X), then u is bounded and ≥ 1X . Hence F (X) = Cpb (X). Thus, in all
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cases, F (X) is an adequate subspace of C(X). The same considerations
apply to F (Y ). Define a map S : F (X)→ F (Y ) by Sf = T (uf)/Tu for all
f ∈ F (X). It is easy to check that S is a linear isomorphism with S1X = 1Y .
From the remark following Theorem 3.4, we see that S(Fb(X)) = Fb(Y ).
Denote the F (X)- and F (Y )-compactifications of X and Y by FX and FY ,
respectively. By Theorem 3.4, there is a homeomorphism h : FX → FY such
that Sf = f̂ ◦ h−1|Y for all f ∈ F (X). Thus

(4.1) Tf(y) = Tu(y) · (f/u)̂ (h−1(y)) for all f ∈ A(X) and all y ∈ Y .
If h is a homeomorphism from X onto Y , then it follows from (4.1) that
T1X(y) = Tu(y)/u(h−1(y)) and hence Tf(y) = T1X(y) · f(h−1(y)). The
result for T−1g can be obtained similarly. By symmetry, it remains to show
that h(X) ⊆ Y .

If A(Y ) = Aloc(Y ) or Aloc
b (Y ) (including the cases where A(Y ) = Cp(Y )

or Cpb (Y )), then F (Y ) = F loc(Y ) or F loc
b (Y ) (note that in the latter case Tu

is bounded and also bounded away from 0). So by Corollary 4.3, h(X) ⊆ Y .

Finally, we consider case (1)(b) (for case (1)(c), a similar argument works
using the metric D). Suppose that Y is complete and A(Y ) = Lip(Y ) or
Lipb(Y ). Let x0 ∈ X and y0 = h(x0). By Proposition 4.2, there exists
a sequence (yn) in Y that converges to y0 in FY . If (yn) has a Cauchy
subsequence in Y , then y0 ∈ Y . Otherwise, by using a subsequence, we may
assume that (yn) is separated. In the first instance, suppose that (Tu(yn))
has a bounded subsequence. Then we may assume without loss of generality
that (Tu(yn)) converges to a real number a. Applying (4.1) with y = yn
and taking limit, we see that limTf(yn) = a · f(x0)/u(x0) ∈ R for any
Tf ∈ A(Y ). But since (yn) is a separated sequence in Y and Lipb(Y ) ⊆
A(Y ), this is not true. Hence it must be that (Tu(yn)) diverges to ∞. By
choosing a subsequence if necessary, we may assume that Tu(yn) > 4Tu(ym)
if m < n. Note that there is a constant C > 0 such that d(ym, yn) ≥
C|Tu(ym)− Tu(yn)|. Then

d(ym, yn) ≥ C

2
(Tu(ym) + Tu(yn)) if m < n.

Hence the balls B
(
yn,

C
2 Tu(yn)

)
are pairwise disjoint. Furthermore, as Tu is

unbounded, A(Y ) = Lip(Y ). In this case, it is easy to construct a function
g in Lip(Y ) such that g(y2n−1) = C

2 Tu(y2n−1) and g(y2n) = 0. However, it
follows from (4.1) that limTf(yn)/Tu(yn) = f(x0)/u(x0) for any f ∈ A(X).
Taking f = T−1g yields a contradiction.
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