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A Littlewood–Paley–Stein estimate on graphs and groups

by

Nick Dungey (Sydney)

Abstract. We establish the boundedness in Lq spaces, 1 < q ≤ 2, of a “vertical”
Littlewood–Paley–Stein operator associated with a reversible random walk on a graph.
This result extends to certain non-reversible random walks, including centered random
walks on any finitely generated discrete group.

1. Introduction and statement of results. The main result of this
paper is a Littlewood–Paley–Stein estimate in Lq, 1 < q ≤ 2, for a random
walk on a graph. This estimate is the analogue for graphs of a Littlewood–
Paley–Stein estimate on manifolds which we now recall. Consider a complete
Riemannian manifold M with Riemannian measure dx, and the correspond-
ing (positive) Laplace operator ∆, heat semigroup (e−t∆)t≥0 and gradient
operator ∇. The “vertical” Littlewood–Paley operator H∆ is defined for
functions f ∈ C∞0 (M) by

(H∆f)(x) :=
(∞�

0

dt |(∇e−t∆f)(x)|2
)1/2

for x ∈M . ThenH∆ extends to a bounded (sublinear) operator in Lq(M ; dx)
for q ∈ (1, 2], that is, one has the Littlewood–Paley–Stein estimate

(1) ‖H∆f‖q ≤ cq‖f‖q
for all f ∈ C∞0 (M), with cq > 0 a constant depending on q ∈ (1, 2]. This
result is proved in [6, Theorem 1.2], by an argument essentially due to Stein
[15]. Inequality (1) does not necessarily hold when q ∈ (2,∞). On the other
hand, the “horizontal” Littlewood–Paley operator, whose definition involves
a time derivative instead of the gradient, is bounded in Lq for all q ∈ (1,∞)
in the context of any symmetric submarkovian semigroup (see [15, Chapter
IV]). See [6, 15, 11, 12], and their references, for expositions of further topics
in Littlewood–Paley theory.
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Stein’s argument for (1) relies on the identity

(2) ∆(f q) = qf q−1(∆f)− q(q − 1)f q−2|∇f |2

valid for q > 1 and non-negative smooth functions f on M . Identity (2)
depends on the fact that ∆ is locally a second-order differential operator.

The basic problem on graphs is that identities such as (2) are not valid
for the discrete Laplace operator on a graph. Thus it is not obvious how to
extend Stein’s argument to the case of graphs.

To overcome this difficulty, in the present paper we introduce a “pseudo-
gradient” Γq, for 1 < q ≤ 2, in such a way that Stein’s argument yields
a Littlewood–Paley type estimate involving Γq in Lq. Under a weak local
uniformity assumption on the graph, we are then able to compare Γq with
the gradient to deduce a Littlewood–Paley estimate involving the gradient.
Our estimate appears to be new and interesting on graphs, and might be
of future use in related problems such as the boundedness of the Riesz
transforms on graphs.

Although most of this paper deals with reversible random walks, in Sec-
tion 5 we observe an extension to certain non-reversible random walks.
In particular, we obtain there a Littlewood–Paley–Stein estimate in Lq,
q ∈ (1, 2], for non-reversible, centered random walks on any finitely gen-
erated discrete group. It is remarkable that no assumptions on the group
structure are needed for this estimate.

Let us describe our setting of a reversible random walk (for further back-
ground, see for example [17]). Let V be a countable set and p : V ×V → [0, 1]
a transition probability over V , that is, p(x, y) ≥ 0 and

∑
y∈V p(x, y) = 1

for all x ∈ V . Define pk, for k ∈ N = {1, 2, 3, . . .}, inductively by p1 := p and

pk+1(x, y) :=
∑
z∈V

pk(x, z)p(z, y), x, y ∈ V.

We assume that p is irreducible, that is, for any x, y ∈ V there exists a
k = k(x, y) ∈ N with pk(x, y) > 0.

Next, suppose that m : V → (0,∞) is a strictly positive function (mea-
sure) which is reversible with respect to p, meaning that

(3) m(x)p(x, y) = m(y)p(y, x)

for all x, y ∈ V . For subsets A ⊆ V set m(A) :=
∑

x∈Am(x). Consider the
spaces Lq := Lq(V ;m), q ∈ [1,∞], with respect to the measure m. We use
the notation ‖ · ‖q1→q2 for the norm of a bounded linear operator from Lq1

to Lq2 . Define the Markov operator P associated with p by

(4) (Pf)(x) =
∑
y

p(x, y)f(y)

for x ∈ V and suitable functions f : V → C (here and below, summations are
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taken over all elements y ∈ V unless otherwise indicated). It is a consequence
of the reversibility assumption that P is a self-adjoint contraction operator in
L2, and is a contraction in Lq for all q ∈ [1,∞]. The “discrete Laplacian” H,
defined by

H := I − P,
generates a symmetric submarkovian semigroup (e−tH)t≥0 in the Lq spaces.
Note that

(5) e−tH = e−tetP = e−t
∑
k≥0

(k!)−1tkP k

for t > 0. For suitable real-valued functions f on V , define the gradient |∇f |
by

|∇f |(x) =
(∑

y

p(x, y)(f(x)− f(y))2
)1/2

and the “vertical” Littlewood–Paley function Hf by

(Hf)(x) =
(∞�

0

dt |∇e−tHf |2(x)
)1/2

for x ∈ V . We say that H is bounded in Lq if there exists c > 0 with

‖Hf‖q ≤ c‖f‖q
for all f ∈ L1 ∩ L∞.

To state our main result aboutH we need to consider the graph structure
on V associated with p, as follows. For x, y ∈ V , if p(x, y) > 0 then we say
that x, y are connected by an edge, and write x ∼ y. By reversibility, x ∼ y
if and only if y ∼ x. A path of length k (k ≥ 0) joining x to y (x, y ∈ V ) is a
sequence x0, x1, . . . , xk of elements of V with x0 = x, xk = y and xj ∼ xj+1

for j ∈ {0, 1, . . . , k − 1}. Irreducibility implies that any two points of V can
be joined by a path; and the distance d(x, y) is defined to be the minimal
length of a path from x to y. For x ∈ V and r ≥ 0, define the closed ball
B(x, r) := {y ∈ V : d(x, y) ≤ r}.

We say that the triple (V, p,m) satisfies property (LD) if for some con-
stant c0 > 1,

(6) m(B(x, 1)) ≤ c0m(x)

for all x ∈ V . (“LD” stands for “local doubling”, since m(x) = m(B(x, 1/2))
so that (6) is a type of local volume doubling property for graphs.) It is an
easy remark made in [7, p. 571] that property (LD) is equivalent to the
conjunction of the following two properties:

(i) there exists c1 ≥ 1 such that m(y) ≤ c1m(x) for all x, y ∈ V satisfy-
ing x ∼ y;
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(ii) the graph is uniformly locally finite, in other words supx∈V Nx <∞,
where Nx := #{y ∈ V : x ∼ y} is the number of neighbors of x.

We can now state our main theorem.

Theorem 1.1. Let (V, p,m) satisfy property (LD). Then H is bounded
in Lq for q ∈ (1, 2]. Moreover , for each q ∈ (1, 2] there exists a cq > 0 such
that

(7) ‖ |∇e−tHf | ‖q ≤ cqt−1/2‖f‖q
for all f ∈ Lq and t > 0.

For q ∈ (2,∞), H is not necessarily bounded in Lq and (7) might not
hold, depending on (V, p,m). A basic counterexample is a standard random
walk on a graph formed of two copies of ZD joined by a single edge; although
we omit the details, it is possible to show that (7) fails when D ≥ 3 and
q > D. Analogous negative results, for a manifold formed of two copies of
RD, were given in [4].

From Theorem 1.1, in fact merely from (7), we shall obtain the following.
Let σLq(A) denote the spectrum of an operator A acting in Lq.

Corollary 1.2. Let (V, p,m) satisfy (LD), and let q ∈ (1, 2]. There
exists cq > 0 such that

(8) ‖ |∇f | ‖q ≤ cq‖Hf‖1/2q ‖f‖1/2q

for all f ∈ Lq. If , in addition, −1 /∈ σL2(P ), then there exists c′q > 0 such
that

(9) ‖ |∇P kf | ‖q ≤ c′qk−1/2‖f‖q
for all f ∈ Lq and k ∈ N.

The analogue of inequality (8) on Riemannian manifolds was established
in [5, Theorem 4.1].

Inequality (9) may fail even for q = 2, if −1 ∈ σL2(P ). The simplest
example where it fails is the standard random walk on V = Z given by
p(x, x ± 1) = 1/2 and m(x) = 1 for x ∈ Z. On the other hand, a simple
sufficient condition for −1 /∈ σL2(P ) is that infx∈V p(x, x) > 0 (see, for
example, [10, Lemma 1.3]).

Essential to our proof of Theorem 1.1 is the following notion of “pseudo-
gradient”. For q ∈ (1, 2] and suitable non-negative functions f ≥ 0, set

(10) Γq(f) := qf(Hf)− f2−qH(f q) = (q − 1)f2 − qf(Pf) + f2−qP (f q).

The Markovian nature of P implies that Γq(f) is a non-negative function
and is dominated pointwise by a constant multiple of |∇f |2: see inequalities
(11) below. In general, however, Γq(f) does not dominate |∇f |2. It is clear
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that Γq is “homogeneous of degree two” in the sense that Γq(λf) = λ2Γq(f)
when λ ∈ [0,∞).

The following result is proved essentially by Stein’s argument, and does
not assume property (LD).

Theorem 1.3. Let q ∈ (1, 2]. Define Hqf by

(Hqf)(x) =
(∞�

0

dt Γq(e−tHf)(x)
)1/2

for x ∈ V and 0 ≤ f ∈ L1 ∩ L∞. Then there exists cq > 0 such that

‖Hqf‖q ≤ cq‖f‖q and ‖Γ 1/2
q (e−tHf)‖q ≤ cqt−1/2‖f‖q

for all t > 0 and 0 ≤ f ∈ L1 ∩ L∞.

We will deduce Theorem 1.1 from Theorem 1.3 together with a result
showing that, under property (LD), |∇f |2 is dominated by a local average of
Γq(f). This domination relies on an interesting explicit expression for Γq(f)
found in Lemma 3.2 below.

Let us record some basic remarks on pseudo-gradients and their relation
to the gradient |∇f |.

(a) The definition of Γq(f) is motivated by identity (2) on manifolds.
Indeed, if one replaces H by the Riemannian Laplace operator ∆ in (10),
then, by (2), the resulting expression is just a constant multiple of |∇f |2 on
a manifold.

To see that Γq(f) and |∇f |2 are not the same on graphs when q < 2,
consider for example a function f : V → [0,∞) satisfying f(x) = 0 and
f(y) > 0 for some points x, y ∈ V with x ∼ y. Then |∇f |2(x) > 0 but
Γq(f)(x) = 0 for q ∈ (1, 2). Note that, in contrast, a non-negative smooth
function f on a Riemannian manifold M must have vanishing gradient at
any point where f(x) = 0.

(b) For suitable non-negative functions f (for example, if 0 ≤ f ∈ L∞)
the calculation

(f2 − 2f(Pf) + P (f2))(x) =
∑
y

p(x, y)(f(x)2 − 2f(x)f(y) + f(y)2)

=
∑
y

p(x, y)(f(x)− f(y))2

shows that Γ2(f) = |∇f |2.
(c) Let us show that

(11) 0 ≤ Γq(f) ≤ (q/2)|∇f |2

for q ∈ (1, 2) and suitable non-negative functions f . (An improved version
of this inequality will follow from Lemma 3.2 below.) Since p is a transition
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probability, ∑
y

p(x, y)f(y) ≤
(∑

y

p(x, y)f(y)q
)1/q

for any x ∈ V , which means that Pf ≤ (P (f q))1/q pointwise. By the elemen-
tary inequality st ≤ sq′/q′+tq/q valid for all s, t ≥ 0, where q−1+(q′)−1 = 1,
we see that

f q−1(Pf) ≤ f q−1(P (f q))1/q ≤ 1
q′
f q

′(q−1) +
1
q
P (f q) =

q − 1
q

f q +
1
q
P (f q).

Multiplying this inequality by qf2−q shows that the last expression in (10)
is non-negative, proving that Γq(f) ≥ 0.

To get the other inequality in (11), note that P (f q) ≤ (P (f2))q/2 and
apply an elementary inequality to get

f2−qP (f q) ≤ f2−q(P (f2))q/2 ≤ 2− q
2

f2 +
q

2
P (f2);

inserting this in the definition of Γq(f) yields

Γq(f) ≤ (q/2)f2 − qf(Pf) + (q/2)P (f2) = (q/2)|∇f |2

as desired.

2. Proof of Theorem 1.3. The proof is based on Stein’s argument in
[15, Chapter II]; see also the proof of [6, Theorem 1.2].

For f ∈ L1 +L∞, define the semigroup maximal function f∗ by f∗(x) :=
supt>0 |(e−tHf)(x)| for x ∈ V . Since (e−tH)t≥0 is a symmetric submarkovian
semigroup, the following lemma is contained in [15, Section III.3].

Lemma 2.1. For each q ∈ (1,∞], there exists cq > 0 such that

‖f∗‖q ≤ cq‖f‖q
for all f ∈ Lq.

To prove Theorem 1.3, let q ∈ (1, 2] and consider a function 0 ≤ f ∈
L1 ∩ L∞. Set ut := e−tHf for all t > 0. We may assume that f 6= 0; it then
follows by irreducibility, recalling (5), that ut(x) > 0 for all t > 0 and x ∈ V .
In what follows, ∂t denotes differentiation with respect to t, and cq and c′q
are positive constants which may depend on q but are independent of f .

By definition of Γq and since ∂t(u
q
t ) = quq−1

t (∂tut), we have

uq−2
t Γq(ut) = quq−1

t (Hut)−H(uqt ) = quq−1
t (∂t +H)ut − (∂t +H)(uqt );

since (∂t +H)ut = 0, it follows that

(12) Γq(ut) = −u2−q
t (∂t +H)(uqt )
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for t > 0. Then

(H2
qf)(x)=

∞�

0

dt Γq(ut)(x)=−
∞�

0

dt ut(x)2−q(∂t +H)(uqt )(x)≤f∗(x)2−qJ(x),

where f∗ is as in Lemma 2.1 and we have set

J(x) := −
∞�

0

dt (∂t +H)(uqt )(x) ≥ 0.

Therefore,∑
x

m(x)(Hqqf)(x) ≤
∑
x

m(x)f∗(x)q(2−q)/2J(x)q/2(13)

≤
[∑

x

m(x)f∗(x)q
](2−q)/2[∑

x

m(x)J(x)
]q/2

where the last step results from Hölder’s inequality with exponents r =
2/(2− q) and r′ = 2/q. Lemma 2.1 yields∑

x

m(x)f∗(x)q ≤ c′q‖f‖qq.

Because
∑

xm(x)(Hg)(x) = 0 for any g ∈ L1, we find that∑
x

m(x)J(x) = −
∞�

0

dt
(∑

x

m(x)∂t(u
q
t )(x)

)
= −

∞�

0

dt ∂t

(∑
x

m(x)(uqt )(x)
)

≤
∑
x

m(x)f(x)q = ‖f‖qq.

Substituting these results in (13) yields an estimate of type∑
x

m(x)(Hqqf)(x) ≤ cq‖f‖qq,

which proves the first statement of Theorem 1.3.
The proof of the second statement is a variation of the above argument

which does not require Lemma 2.1. In fact, setting

Jt(x) := −(∂t +H)(uqt )(x)

and using (12), one gets

‖Γ 1/2
q (e−tHf)‖qq =

∑
x

m(x)Γ q/2q (ut)(x)(14)

=
∑
x

m(x)ut(x)q(2−q)/2Jt(x)q/2

≤
[∑

x

m(x)ut(x)q
](2−q)/2[∑

x

m(x)Jt(x)
]q/2
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with the last step again by Hölder’s inequality. For the expression in the
first square brackets, we have

∑
xm(x)ut(x)q = ‖e−tHf‖qq ≤ ‖f‖qq. Next,∑

x

m(x)Jt(x) = −
∑
x

m(x)∂t(u
q
t )(x) = −q

∑
x

m(x)uq−1
t (x)∂tut(x)

≤ q‖ut‖q/q
′

q ‖∂tut‖q
by Hölder’s inequality with exponents q′ and q, where q−1 + (q′)−1 = 1.
Here ‖ut‖q ≤ ‖f‖q, while ‖∂tut‖q = ‖He−tHf‖q ≤ cqt

−1‖f‖q by analyticity
of the semigroup (e−sH)s≥0 in Lq. Thus∑

x

m(x)Jt(x) ≤ cqt−1‖f‖qq.

Substitution of the estimates in (14) gives a bound of form ‖Γ 1/2
q (e−tHf)‖q ≤

cqt
−1/2‖f‖q, and the proof of Theorem 1.3 is complete.

3. Proof of Theorem 1.1. Theorem 1.1 will follow from Theorem 1.3
via the following result. Define an averaging operator A by setting

(Af)(x) =
∑

y∈B(x,1)

f(y)

for x ∈ V and suitable functions f : V → R.

Proposition 3.1. Suppose that (V, p,m) satisfies property (LD), and let
q ∈ (1, 2]. There exists a cq > 0 such that

|∇f |2(x) ≤ cq(A(Γqf))(x)

for all x ∈ V and 0 ≤ f ∈ L∞. Moreover , there exists a c′q > 0 such that

(15) ‖AF‖q/2 ≤ c′q‖F‖q/2
for any non-negative function F on V .

Note that q/2 ≤ 1 in (15), and that we are using the notation ‖F‖r :=
(
∑

xm(x)|F (x)|r)1/r for r ∈ (0, 1].
Proposition 3.1 yields pointwise estimates

|∇e−tHf |2 ≤ cA(Γq(e−tHf))

and

(Hf)2 =
∞�

0

dt |∇e−tHf |2

≤ c
∞�

0

dtA(Γq(e−tHf))

= cA
(∞�

0

dt Γq(e−tHf)
)

= cA((Hqf)2)
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whenever 0 ≤ f ∈ L1 ∩ L∞, so that Theorem 1.1 follows from Theorem 1.3
and from (15).

It remains to prove Proposition 3.1, and the rest of this section is devoted
to this. We need two lemmas, in which we do not assume property (LD).
The first lemma provides some explicit formulae for Γq(f).

Lemma 3.2. For q ∈ (1, 2] and 0 ≤ f ∈ L∞ one has
Γq(f)(x)

=
∑
y

p(x, y)[qf(x)(f(x)− f(y))− f(x)2−q(f(x)q − f(y)q)]

= q(q − 1)
∑

y : f(y)6=f(x)

p(x, y)(f(x)− f(y))2
1�

0

du
(1− u)f(x)2−q

((1− u)f(x) + uf(y))2−q

for all x ∈ V .

Proof. Let 0 ≤ f ∈ L∞. The first expression for Γq(f)(x) is a conse-
quence of (10) and the equations

(Hf)(x) = f(x)−
∑
y

p(x, y)f(y) =
∑
y

p(x, y)[f(x)− f(y)],

(H(f q))(x) =
∑
y

p(x, y)[f(x)q − f(y)q].

To derive the second expression for Γq(f)(x), note that a Taylor expansion
of the function t 7→ tq gives

tq − sq = qsq−1(t− s) + q(q − 1)
t�

s

dτ τ q−2(t− τ)(16)

= qsq−1(t− s) + q(q − 1)(t− s)2
1�

0

du
1− u

((1− u)s+ ut)2−q

for any s, t ≥ 0 with s 6= t, where the second step follows by a change
of variable τ = (1 − u)s + ut. Remark that, in case s = 0, the condition
q > 1 ensures that the integrals exist, and that we have excluded the case
s = t = 0, for which the second integral does not make sense.

If f(y) 6= f(x), then setting s = f(x), t = f(y) in (16) we find that

qf(x)(f(x)− f(y))− f(x)2−q(f(x)q − f(y)q)

= f(x)2−q[f(y)q − f(x)q − qf(x)q−1(f(y)− f(x))]

= f(x)2−qq(q − 1)(f(y)− f(x))2
1�

0

du
1− u

((1− u)f(x) + uf(y))2−q

= q(q − 1)(f(x)− f(y))2
1�

0

du
(1− u)f(x)2−q

((1− u)f(x) + uf(y))2−q
.

Thus the second expression for Γq(f)(x) follows from the first.
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Remark. From the last expression of Lemma 3.2 and by observing that
(1− u)2−qf(x)2−q ≤ ((1− u)f(x) + uf(y))2−q, we see that

0 ≤ Γq(f)(x) ≤ q(q − 1)
∑

y : f(y)6=f(x)

p(x, y)(f(x)− f(y))2
1�

0

du (1− u)q−1

= (q − 1)|∇f |2(x),

which establishes a sharper form of inequalities (11).

Lemma 3.3. Suppose that there exists c ≥ 1 with

m(y) ≤ cm(x)

for all x, y ∈ V satisfying x ∼ y. Then for each q ∈ (1, 2], there exists cq > 0,
depending on c and q, such that

|∇f |2(x) ≤ cq
∑

y∈B(x,1)

(Γqf)(y)

for all x ∈ V and 0 ≤ f ∈ L∞.

Proof. Let us write

|∇f |2(x) =
∑

y : y∼x, f(y)<f(x)

p(x, y)(f(x)− f(y))2

+
∑

y : y∼x, f(y)>f(x)

p(x, y)(f(x)− f(y))2

= E1 + E2.

To estimate E1, observe that for f(y) < f(x) one has (1−u)f(x) +uf(y) ≤
f(x), hence

1�

0

du
(1− u)f(x)2−q

((1− u)f(x) + uf(y))2−q
≥

1�

0

du (1− u) = 1/2.

Therefore

E1 ≤ 2
∑
y : y∼x

p(x, y)(f(x)− f(y))2
1�

0

du
(1− u)f(x)2−q

((1− u)f(x) + uf(y))2−q

=
2

q(q − 1)
Γq(x)

by Lemma 3.2. To estimate E2, observe from (3) and the hypothesis of the
lemma that

p(x, y) =
p(y, x)m(y)

m(x)
≤ cp(y, x)
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whenever y ∼ x. Using this and the inequality (1 − u)f(y) + uf(x) ≤ f(y)
for f(y) > f(x), we obtain

E2 ≤ 2c
∑
y : y∼x

p(y, x)(f(y)− f(x))2
1�

0

du
(1− u)f(y)2−q

((1− u)f(y) + uf(x))2−q

≤ 2c
q(q − 1)

∑
y : y∼x

(Γqf)(y).

Since B(x, 1) = {x} ∪ {y : y ∼ x}, the lemma follows.

Proof of Proposition 3.1. The first statement of the proposition is imme-
diate from Lemma 3.3. To see (15), observe that for a non-negative function
F and r ∈ (0, 1],

‖AF‖rr =
∑
x

m(x)
( ∑
y∈B(x,1)

F (y)
)r
≤
∑
x

m(x)
( ∑
y∈B(x,1)

F (y)r
)

=
∑
y

F (y)r
∑

x∈B(y,1)

m(x) =
∑
y

F (y)rm(B(y, 1))

≤ c0
∑
y

m(y)F (y)r = c0‖F‖rr

where the last line used (6).

Remarks. Property (LD) holds if and only if

‖AF‖r ≤ c‖F‖r
for some constants r ∈ (0, 1], c > 0, and all functions F : V → R. (The “if”
statement is easily seen by taking F to be the characteristic function of a
single point.) We also remark that property (LD) implies boundedness of
the operator A in Ls for all s ∈ (1,∞].

4. Proof of Corollary 1.2. Let q ∈ (1, 2]. From (7) and the identity

(I + tH)−1f =
∞�

0

ds e−se−stHf,

it is easy to deduce an estimate of type

‖ |∇(I + tH)−1f | ‖q ≤ ct−1/2‖f‖q
for all f ∈ Lq and t > 0. Replacing f with (I + tH)f yields

‖ |∇f | ‖q ≤ ct−1/2‖(I + tH)f‖q ≤ ct−1/2‖f‖q + ct1/2‖Hf‖q
for all t > 0; and (8) follows after optimizing with respect to t.
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Next, in case −1 /∈ σL2(P ), the spectral theorem for the self-adjoint
contraction operator P shows easily that

sup
k∈N

k‖HP k‖2→2 = sup
k∈N

k‖(I − P )P k‖2→2 <∞.

An interpolation theorem of Blunck [3, Theorem 1.1] then shows that
supk∈N k‖HP k‖q→q < ∞ for any q ∈ (1,∞). Given q ∈ (1, 2], using this
fact and (8) gives an estimate

‖ |∇P kf | ‖q ≤ c‖HP kf‖1/2q ‖P kf‖1/2q ≤ c′k−1/2‖f‖q
for all k ∈ N. Corollary 1.2 is proved.

Remarks. In general, for fixed q ∈ (1,∞), inequality (8) is equivalent
to (7). To derive (7) from (8), replace f by e−tHf in (8).

Moreover, in case −1 /∈ σL2(P ), for fixed q all of the inequalities (7), (8)
and (9) are equivalent. (Note that (9) implies (7) via the identity (5).)

5. Non-reversible case and random walks on groups. In this
section we first generalize Theorem 1.3 to non-reversible random walks
satisfying an L2 sectorial estimate. We then study the particular case of
non-reversible “centered” random walks on a discrete group, and obtain a
Littlewood–Paley estimate in that case.

Let p : V × V → [0, 1] be an irreducible transition probability over a
countable set V , and suppose that a function (measure) m : V → (0,∞) is
invariant for p in the sense that

(17)
∑
x

m(x)p(x, y) = m(y)

for all y ∈ V . Assumption (17) is weaker than the reversibility condition (3).
The Markov operator P defined by (4) is a contraction in Lq := Lq(V ;m),
q ∈ [1,∞], but is generally not self-adjoint in L2. The adjoint operator
P ∗ is a Markov operator, however, corresponding to the transition prob-
ability p∗(x, y) := m(y)p(y, x)/m(x). As before, we set H := I − P , and
define Γq(f) by (10) for q ∈ (1, 2] and 0 ≤ f ∈ L∞. The inequalities
0 ≤ Γq(f) ≤ (q/2)Γ2(f) and the formulae of Lemma 3.2 remain valid.
Theorem 1.3 generalizes as follows.

Theorem 5.1. Let (V, p,m) be as above, and suppose that for some
c > 0,

(18) |(Hf, f)| ≤ cRe(Hf, f)

for all complex-valued functions f ∈ L2. Then for each q ∈ (1, 2], the con-
clusions of Theorem 1.3 hold.

Proof. The sectorial estimate (18) implies that (e−tH)t≥0 is a bounded
analytic semigroup in L2, and that the operator H has a bounded sectorial



A Littlewood–Paley–Stein estimate 125

holomorphic functional calculus on L2; for details see, for example, [1]. A
standard interpolation argument shows that (e−tH) is a bounded analytic
semigroup in Lq for each q ∈ (1,∞).

For each N ∈ N, define a “horizontal” Littlewood–Paley function gN (f)
corresponding to a function f by

gN (f)(x) :=
[∞�

0

dt

t
|tN ((∂t)Ne−tHf)(x)|2

]1/2

=
[∞�

0

dt

t
|((tH)Ne−tHf)(x)|2

]1/2

.

The “quadratic estimates” associated with the L2 holomorphic functional
calculus imply that gN is a bounded sublinear operator in L2; see [1].
Then the arguments of [15, Chapter III], which use boundedness of gN
in L2, yield the conclusion of Lemma 2.1 for the maximal function f∗(x) :=
supt>0 |(e−tHf)(x)|. After these remarks, the proof of Theorem 5.1 is the
same as the proof of Theorem 1.3.

We mention two closely related cases where Theorem 5.1 applies.

Example 1 (Centeredness in Mathieu’s sense). If (V, p,m) is centered
in the sense of Mathieu [14], then an estimate (18) holds, and hence Theo-
rem 5.1 applies. See [14, Definition 2.1] for Mathieu’s notion of centeredness,
which involves a decomposition of p into a sum of cycles.

In fact, if (V, p,m) is centered, one proves in [14, Lemma 2.12] an estimate
of type

(19) |(Hf1, f2)|2 ≤ c′(Hf1, f1)(Hf2, f2)

for all real-valued functions f1, f2 ∈ L2. But (19) is known to be equivalent
to the sectorial estimate (18): see [13, Proposition I.2.17].

Under additional hypotheses on (V, p,m), one can no doubt prove a
comparison result analogous to Proposition 3.1, and then deduce a gradient
Littlewood–Paley–Stein estimate analogous to Theorem 1.1. We shall not,
however, pursue the details in this case.

Example 2 (Homomorphism-centered random walks on a discrete
group). Let V be a finitely generated discrete group with identity element e,
and p̂ : V → [0, 1] a probability on V , that is,

∑
x∈V p̂(x) = 1. One can define

a transition probability p : V × V → [0, 1] by

p(x, y) := p̂(xy−1), x, y ∈ V,

and the counting measure m, with m(x) := 1 for all x ∈ V , is invariant
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for p. The associated Markov operator P acts by convolution with p̂:

(Pf)(x) =
∑
y∈V

p̂(xy−1)f(y) = (p̂ ∗ f)(x)

for x ∈ V . Let S := {x ∈ V : p̂(x) > 0} be the support of p̂. Let us assume
that:

(i) S is finite;
(ii)

⋃∞
n=1 S

n = V , where Sn := {x1 · · ·xn : xj ∈ S} denotes the set of
all n-fold products of elements of S;

(iii) p̂ is homomorphism-centered, in the sense that

(20)
∑
x

p̂(x)η(x) = 0

for every group homomorphism η : V → R.

It is easy to see that assumption (ii) is equivalent to irreducibility of p
on V .

Under assumptions (i)–(iii), the estimate (18) for H = I − P is con-
tained in [8] or [9]: see, for example, Propositions 3.2 and 3.3 of [8]. Hence
Theorem 5.1 applies to (V, p,m).

Remarks.

• On finitely generated groups which have polynomial volume growth,
Alexopoulos made a very detailed analysis of homomorphism-centered
random walks in [2]. In comparison, results of [9, 8] for homomorphism-
centered walks are less detailed, but apply to arbitrary finitely gener-
ated groups.
• For a probability on a finitely generated group, the relationship be-

tween homomorphism-centeredness and centeredness in Mathieu’s
sense is apparently not simple. Some results on this are developed
in [14]. It seems from [14, Proposition 3.3], for example, that homomor-
phism-centeredness implies Mathieu-centeredness on some classes of
groups (for example, nilpotent groups) but not on others (such as free
groups).

The rest of this section is devoted to a Littlewood–Paley estimate in
the situation of Example 2. For this situation it is convenient to use the
following notion of gradient (cf. [16, Chapter VI]). Set U := S∪S−1, so that
U is a finite set which generates the group G (by assumption (ii)) and is
symmetric (U = U−1). For f : V → R put

∇Uf(x) :=
(∑
u∈U

(f(ux)− f(x))2
)1/2

, x ∈ V.
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Define a distance d on V by setting d(x, x) = 0 and d(x, y) = inf{n ∈ N :
xy−1 ∈ Un} for x 6= y, and let B(x, r) = {y ∈ V : d(x, y) ≤ r} for r ≥ 0.

Theorem 5.2. Let the probability p̂ satisfy assumptions (i)–(iii) on the
finitely generated group V , and let p(x, y) := p̂(xy−1), P , H = I−P , U and
∇U be as above. Then the operator HU defined by

(HUf)(x) =
(∞�

0

dt |∇Ue−tHf |2(x)
)1/2

, x ∈ V,

is bounded in Lq, q ∈ (1, 2]. For q ∈ (1, 2] one also has an estimate

‖∇Ue−tHf‖q ≤ cqt−1/2‖f‖q
for all t > 0 and f ∈ Lq. If , in addition, σL2(P ) ⊆ {z ∈ C : |z| < 1} ∪ {1},
then for q ∈ (1, 2] one has an estimate

(21) ‖∇UP kf‖q ≤ c′qk−1/2‖f‖q
for all k ∈ N and f ∈ Lq.

To prove Theorem 5.2 we need the following analogue of Proposition 3.1.

Lemma 5.3. Let q ∈ (1, 2]. There exist constants cq > 0 and N ∈ N such
that

|∇Uf |2(x) ≤ cq
∑

y∈B(x,N)

Γq(f)(y)

for all x ∈ V and f : V → [0,∞).

Proof. By assumptions (i) and (ii), we can choose an N ∈ N such that

U = S ∪ S−1 ⊆
N⋃
j=1

Sj .

Put β := inf{p̂(x) : x ∈ S} > 0. Take f : V → [0,∞), x ∈ V , u ∈ U , and set
y = ux. To estimate (f(y)− f(x))2 we consider two cases.

Case 1: f(y) < f(x). By definition of N , there exist k ∈ {1, . . . , N} and
v1, . . . , vk ∈ S such that u−1 = v1 · · · vk. Set x0 := x and xj := v−1

j · · · v
−1
1 x.

The sequence x0, x1, . . . , xk satisfies x0 = x, xk = y and

p(xj , xj+1) = p̂(vj+1) ≥ β

for j ∈ {0, 1, . . . , k − 1}. Let J be the set of those j ∈ {0, 1, . . . , k − 1} for
which f(xj+1) ≤ f(xj), and observe that

|f(y)− f(x)| = f(x)− f(y) ≤
∑
j∈J

(f(xj)− f(xj+1)).
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For j ∈ J , since (1− u)f(xj) + uf(xj+1) ≤ f(xj) for u ∈ (0, 1), we see from
the last expression of Lemma 3.2 that

(f(xj)−f(xj+1))2 ≤ 2(f(xj)−f(xj+1))2
1�

0

du
(1− u)f(xj)2−q

((1− u)f(xj) + uf(xj+1))2−q

≤ 2β−1

q(q − 1)
Γq(f)(xj).

These estimates imply that there is a constant c > 0, depending only on q,
β and N , such that

(f(y)− f(x))2 ≤ c sup
j∈J

Γq(f)(xj).

Now d(xj , x) ≤ N − 1 for all j ∈ J , so that

(f(y)− f(x))2 ≤ c
∑

z∈B(x,N−1)

Γq(f)(z).

Case 2: f(y) > f(x). Since x = u−1y with u−1 ∈ U , we may apply
Case 1 with the roles of x and y reversed, to obtain

(f(y)− f(x))2 ≤ c
∑

z∈B(y,N−1)

Γq(f)(z) ≤ c
∑

z∈B(x,N)

Γq(f)(z).

Lemma 5.3 follows from Cases 1 and 2.

Proof of Theorem 5.2. The first two statements of the theorem are
straightforward deductions from Theorem 5.1 and Lemma 5.3; we leave de-
tails to the reader (cf. the proof of Theorem 1.1).

To get (21), we use the fact (see for example [8, Corollary 1.5]) that
under the additional assumption on σL2(P ) one has

sup
k∈N

k‖HP k‖q→q <∞

for each q ∈ (1,∞). Then (21) follows by the same argument as Corol-
lary 1.2.
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