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Continuity versus boundedness
of the spectral factorization mapping

by

Holger Boche (Berlin) and Volker Pohl (Haifa)

Abstract. This paper characterizes the Banach algebras of continuous functions on
which the spectral factorization mapping S is continuous or bounded. It is shown that S

is continuous if and only if the Riesz projection is bounded on the algebra, and that S is
bounded only if the algebra is isomorphic to the algebra of continuous functions. Conse-
quently, S can never be both continuous and bounded, on any algebra under consideration.

1. Introduction. The operation by which a function f on the unit circle
is written as f(ζ) = f+(ζ) f+(ζ) for all ζ ∈ T := {z ∈ C : |z| = 1}, with an
outer function f+, is known as spectral factorization. This operation arises in
many different applications, e.g. in communications [16], estimation [10], or
control theory [6], but it is also of theoretical use in the area of stochastic pro-
cesses [4, 13] and in the theory of singular integral equations [3, 17]. A survey
of methods for calculating the spectral factor f+ can be found in [15].

The continuity and boundedness of the spectral factorization mapping
S : f 7→ f+ is of vital interest in many applications in order to control errors
which arise due to disturbances in the spectral data. Since S is a non-linear
operator, its boundedness does not imply its continuity and vice versa, and
the question whether S is bounded or continuous depends crucially on the
normed space one is using. Recently, there was some interest in the relation
between the boundedness and continuity of other non-linear operators on
various spaces. For example, [11] characterized spaces on which the Hardy–
Littlewood maximal operator is bounded, whereas in [12] the continuity
of the maximal operator was investigated on Sobolev spaces. These works
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show that there exist spaces on which the maximal operator is bounded and
continuous, whereas on other spaces it has only one of these properties.

The spectral factorization mapping shows yet a different behavior. A ma-
jor difficulty is that its domain is unknown in general, and that there may
not exist a closed form representation of S for all elements in its domain.
However, to investigate the boundedness of S, the present paper first con-
siders S on the set of all polynomials, for which the spectral factorization
is given by a theorem of Fejér–Riesz. For the investigation of the continuity
of S, we first assume only that the spectral factorization exists in a neigh-
borhood of the unity of the algebra. Based on the considerations on these
subsets, it is shown that the continuity of the spectral factorization mapping
implies its unboundedness, and conversely its boundedness implies its dis-
continuity on all Banach algebras under consideration. These are algebras
of continuous functions on the unit circle, which are defined by four axioms
(B1)–(B4) in Section 3 and which we name S-algebras. These axioms are
similar to those introduced by Peller and Khrushchev [13] in the context of
best approximation of analytic functions. Algebras satisfying the axioms of
Peller and Khrushchev are called decomposing Banach algebras [3, 9], and
Jacob and Partington [9] studied the spectral factorization mapping on such
algebras in detail. The class of S-algebras, considered in the present paper,
contains the class of decomposing Banach algebras, but S-algebras need not
be decomposing, in the sense that the Riesz projection is not necessarily
bounded on these algebras. It was proved in [9] and [2] respectively that S
is continuous and unbounded on every decomposing Banach algebra. In the
present paper, we will see that the decomposing algebras are precisely those
S-algebras on which S is continuous. On the other hand, if S is bounded
on an S-algebra then the algebra has to be isomorphic to the algebra C(T)
of continuous functions.

2. Spectral factorization. Throughout this paper, D := {z ∈ C :
|z| < 1} and T := {z ∈ C : |z| = 1} stand for the unit disc and unit
circle in the complex plane, respectively. The imaginary unit is denoted by
i =
√
−1 and z is the complex conjugate of z. The set C(T) of all continuous

functions on T is a Banach space under the usual supremum norm ‖f‖∞ =
supζ∈T |f(ζ)|, and P(N) is the set of all trigonometric polynomials of degree
of at most N . The Banach space of p-integrable functions (1 ≤ p < ∞)
on T with the usual norm ‖f‖p := ((2π)−1

	
T |f(ζ)|p dζ)1/p is denoted by

Lp(T), and L∞(T) denotes the set of all measurable and essentially bounded
functions on T. For every f ∈ L1(T), the Fourier coefficients are defined by

(2.1) f̂(k) =
1

2π

π�

−π
f(eiτ )e−ikτ dτ (k = 0,±1,±2, . . . ).
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For a commutative Banach algebra A ⊂ L1(T), we define

A+ := {f ∈ A : f̂(k) = 0 for all k < 0}.(2.2)

In particular [Lp(T)]+, 0 ≤ 1 ≤ ∞, coincides with the Hardy space Hp(D) of
analytic functions in D, and every f ∈ A+ can be identified with a function

f(z) =
∞∑
k=0

f̂(k)zk (z ∈ D),

which is holomorphic for all z ∈ D. For an arbitrary set A of functions on
the unit circle, Apos = {f ∈ A : f(ζ) ≥ 0 for all ζ ∈ T} will denote the set
of all non-negative functions in A.

There exists a natural projection from L2(T) to H2(D), which will be
denoted by

(2.3) P+ :
∞∑

k=−∞
f̂(k)ζk 7→

∞∑
k=0

f̂(k)ζk (ζ ∈ T)

and which is called the Riesz projection. Inserting the Fourier coefficients
(2.1) into (2.3) yields the integral representation

(P+f)(z) =
1

2π

π�

−π
f(eiτ )

eiτ

eiτ − z
dτ (z ∈ D).

Let A ⊂ L1(T) be a commutative Banach algebra. A linear functional
h : A → C is called a homomorphism (a multiplicative linear functional)
on A if h(fg) = h(f)h(g) for all f, g ∈ A. The set of all homomorphisms
on A will be denoted by Γ (A), and G(A) stands for the set of all invertible
elements of A. Thus G(A) is the set of all f ∈ A for which there exists a
function f−1 ∈ A such that ff−1 = 1, where 1 denotes the unity of A.

For every f ∈ A one defines (exp f)(ζ) :=
∑∞

k=0(1/k!)f(ζ)k. Since A
is a Banach algebra, it is clear that ‖exp f‖A ≤ exp(‖f‖A), and therefore
exp f ∈ A, and the common properties of the exponential series imply that
exp f ∈ G(A). Moreover, exp(A) := {f = eg : g ∈ A} is the set all functions
f ∈ A for which log f ∈ A. The logarithm may be defined by the power
series log(1 − f) = −

∑∞
k=1(1/k)fk for all f ∈ A with ‖f‖A < 1. Based on

this power series, one easily verifies

Lemma 2.1. Let A be commutative Banach algebra with unity , let f ∈
exp(A) and h ∈ A with ‖h‖A < 1

2‖f
−1‖−1
A . Then log(f − h) ∈ exp(A) and

‖log(f − h)− log(f)‖A ≤ 2‖f−1‖A‖h‖A.
This lemma implies in particular that exp(A) is an open set.

Definition 2.2. Let A ⊂ L1(T) be a Banach algebra of functions on T.
An element f ∈ A possesses a spectral factorization in A if there exists an
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outer function f+ ∈ A+ such that

f(ζ) = f+(ζ) f+(ζ) for all ζ ∈ T.

The function f+ is called a spectral factor of f and every f ∈ A which
possesses a spectral factorization is called a spectral density. The mapping
S : f 7→ f+ is the spectral factorization mapping. The spectral factor f+ is
unique up to a unitary constant.

Remark 2.3. Note that the above definition, in contrast e.g. to those
in [2, 3, 9], does not require that the spectral factor f+ is invertible in A+.

The sets S(A) and F(A) := {g = Sf : f ∈ S(A)} consist of all spectral
densities and all spectral factors in a Banach algebra A, respectively.

Definition 2.4. A Banach algebra A ⊂ L1(T) on which the Riesz pro-
jection P+ : A → A+ is bounded is said to be decomposing.

Remark 2.5. In [9, 2], S-algebras (see Def. 3.1 below) on which the
Riesz projection is bounded were called “decomposing Banach algebras”.
However in the present paper “decomposing” means only that the Riesz
projection P+ is bounded, as in [3].

Proposition 2.6. Let A ⊂ L1(T) be a Banach algebra which is de-
composing. Then every real-valued function f ∈ exp(A) possesses a spectral
factorization in A, and one spectral factor is given by

f+(z) = (Sf)(z)(2.4)

= exp
(

1
4π

π�

−π
log f(eiτ )

eiτ + z

eiτ − z
dτ

)
(z ∈ D).

Proof. Assume f ∈ exp(A) is an arbitrary real-valued function. Then
there exists a g ∈ A such that f = exp(g) and the spectral factorization
mapping (2.4) becomes

f+(z) =

√√√√exp
(

1
2π

π�

−π
g(eiτ )

eiτ + z

eiτ − z
dτ

)
(z ∈ D).

Since f is integrable, the term under the square root is an outer function [8,
Chapter 5], which shows that f+ is analytic on D and |f+(ζ)|2 = (exp g)(ζ) =
f(ζ) for all ζ ∈ T. The spectral factorization mapping (2.4) can also be
written as

f+(z) = exp
[
−1

2 ĝ(0)
]

exp[(P+g)(z)].

Hence ‖Sf‖A ≤ exp
(
−1

2‖g‖1
)

exp ‖P+g‖A < ∞ since P+ is assumed to
be bounded and ‖exp g‖A ≤ exp ‖g‖A. Consequently, Sf ∈ A for every
f ∈ exp(A).
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A second class of functions for which the solution of the spectral fac-
torization problem is known is the set of all non-negative trigonometric
polynomials on T. In this case, the spectral factorization is equivalent to the
following classical result of L. Fejér and M. Riesz:

Theorem 2.7 (Fejér–Riesz [5]). For every trigonometric polynomial f ∈
P(N) with f(ζ) ≥ 0 for all ζ ∈ T there exists an analytic polynomial f+ ∈
P+(N) with |f+(z)| > 0 for all z ∈ D such that

f(ζ) = |f+(ζ)|2 = f+(ζ) f+(ζ) for all ζ ∈ T.
This f+ ∈ P+(N) is uniquely determined by f up to a unitary factor.

It should be noted that also in the case of trigonometric polynomials,
the spectral factor can be represented in the form (2.4), since every non-
negative trigonometric polynomial f satisfies the so called Szegö condition	π
−π log f(eiτ ) dτ > −∞, so that (2.4) is well defined and has the desired

properties for every f ∈ Ppos(N).

3. Banach algebras of continuous functions. We consider the spec-
tral factorization mapping on Banach algebras B of continuous functions
which are defined by the following four axioms.

Definition 3.1. A commutative Banach algebra B ⊂ L1(T) is called an
S-algebra if

(B1) B is a Banach algebra with respect to pointwise multiplication.
(B2) If f ∈ B, then f ∈ B.
(B3) The set of all trigonometric polynomials is dense in B.
(B4) Every multiplicative functional on B is of the form f 7→ f(ζ) for

some ζ ∈ T.

In the following, the symbol B will always stand for an S-algebra. The
axioms (B1)–(B4) of an S-algebra imply certain properties of its elements.
Some of these properties, which are needed later, are given in the following
propositions.

Proposition 3.2. Let B be an S-algebra. Then every f ∈B with f(ζ) 6=0
for all ζ ∈ T belongs to G(B).

Proof. Let γ ∈ Γ (B) be an arbitrary multiplicative functional on B. By
axiom (B4) there exists a ζ ∈ T such that γ(f) = f(ζ) for all f ∈ B.
Therefore, f(ζ) 6= 0 for all ζ ∈ T implies γ(f) 6= 0 for all γ ∈ Γ (B), and
by the Beurling–Gelfand theorem, f ∈ B is invertible in B if and only if
γ(f) 6= 0 for all γ ∈ Γ (B) [14, §11.5].

Proposition 3.3. Every S-algebra B is continuously embedded in C(T)
with

‖f‖∞ ≤ ‖f‖B for all f ∈ B.
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Proof. By (B1) and (B4), for every ζ ∈ T there exists a γ ∈ Γ (B) such
that γ(f) = f(ζ) for every f ∈ B. Since ‖γ‖ ≤ 1 for each γ ∈ Γ (B) (see e.g.
[14, §10.7]), one has |f(ζ)| = |γ(f)| ≤ ‖f‖B, which implies ‖f‖∞ ≤ ‖f‖B.
By (B3), for every ε > 0 there exists a trigonometric polynomial p such that
‖f − p‖∞ ≤ ‖f − p‖B < ε, which proves that f ∈ C(T).

Proposition 3.4. Every S-algebra B is semisimple and there exists a
constant c1 > 0 such that

‖f‖B ≤ c1‖f‖B for all f ∈ B.
Proof. The operation f 7→ f is an involution on B. By axiom (B4), every

multiplicative functional γζ ∈ Γ (B) is defined by a point ζ ∈ T on the unit
circle, according to γζ(f) := f(ζ). The null space of such a homomorphism is
ker γζ = {f ∈ B : f(ζ) = 0}, and the intersection of all null spaces contains
only the zero function:⋂

γζ∈Γ (B)

ker γζ =
⋂
ζ∈T
{f ∈ B : f(ζ) = 0} = {f ≡ 0}.

This shows that B is a semisimple commutative algebra on which the invo-
lution f 7→ f is always continuous ([14, §11.16]).

4. Continuity of the spectral factorization mapping. This section
characterizes the S-algebras on which the spectral factorization mapping
S is continuous. Since the trigonometric polynomials are dense in every
S-algebra B, we know from the theorem of Fejér–Riesz that the spectral
factorization exists at least for all non-negative trigonometric polynomials
in B and that one spectral factor is given by (2.4). However, since we do
not know whether S is continuous, it is not clear at the outset whether the
spectral factorization exists in B for non-polynomials. For this reason, we will
assume that the spectral factorization exists at least in a neighborhood of
the unity 1 of B. Then it is shown that if the spectral factorization mapping
is continuous at 1, it will exist for all real-valued functions in exp(B) and
will be locally continuous there.

Since 1 ∈ exp(B) and since exp(B) is open, there exists an ε > 0 such
that the neighborhood Uε(1) := {f = eg : g ∈ B, ‖g‖B < ε} of 1 is a subset
of exp(B).

Definition 4.1. Let B be an S-algebra. The spectral factorization map-
ping S is said to be continuous at 1 if there exists an ε > 0 such that for every
sequence {fn}n∈N ⊂ Uε(1) with fn → 1 in B the sequence {Sfn}n∈N of spec-
tral factors exists in B and converges to S1 = 1, i.e. limn→∞ ‖Sfn−1‖B = 0.

Theorem 4.2. Let B be an S-algebra on which the spectral factorization
mapping S is continuous at 1. Then the Riesz projection P+ is a bounded
mapping B → B+.
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Proof. Since S is assumed to be continuous at 1, there exists an ε > 0
such that Sf exists in B for each f = eg with g ∈ B and ‖g‖B < ε.
Let {gn}n∈N ⊂ B be an arbitrary sequence of real-valued functions with
‖gn‖B < ε and limn→∞ ‖gn‖B = 0. Then the continuity of the exponential
function implies that limn→∞ ‖exp gn − 1‖B = 0, and the continuity of S
at 1 implies

lim
n→∞

‖[exp gn]+ − 1‖B = 0.(4.1)

We choose an arbitrary g ∈ B and define gµ := µg with a positive real
number µ with µ < ε. Obviously ‖gµ‖B → 0 as µ → 0. By (4.1) for every
δ > 0 there exists a µ0 > 0 such that

(4.2) ‖[exp gµ]+ − 1‖B < δ

for all µ ≤ µ0. Set fµ := exp gµ and consider

hN :=
N∑
k=1

(−1)k

k
[(fµ)+ − 1]k.

Then for all M > N and all µ ≤ µ0,

‖hM − hN‖B ≤
M∑

k=N+1

1
k
‖(fµ)+ − 1‖kB ≤

1
N + 1

M∑
k=N+1

δk ≤ 1
N + 1

1
1− δ

.

Thus {hN}N∈N is a Cauchy sequence in B which converges to log[(fµ)+] in B.
On the other hand, the spectral factor (fµ)+ is given by (2.4). Moreover,

[log (fµ)+](ζ) =
µ

2
1

2π

π�

−π
g(eiτ )

eiτ + ζ

eiτ − ζ
dτ =:

µ

2
(Rg)(ζ) (ζ ∈ T)

and since log[(fµ)+] ∈ B, this shows that Rg ∈ B for every g ∈ B. The
mapping R : B → B+ can also be written [7, §III.1] as

(4.3) (Rg)(ζ) = g(ζ) + i(Hg)(ζ) (ζ ∈ T)

with the Hilbert transform Hg of g which is given by

(Hg)(ζ) =
∞∑

k=−∞
−i sgn(k)ĝ(k)ζk with sgn(k) =


1, k > 0,
0, k = 0,
−1, k < 0,

or which may be expressed as the principal value integral

(Hg)(eit) = lim
ε→0

1
2π

�

ε<|τ |≤π

g(ei[t+τ ])
tan(τ/2)

dτ.

Since Rg ∈ B for every g ∈ B, (4.3) shows that Hg ∈ B whenever g ∈ B.
Moreover, since HHg = −g for all g ∈ B0 := {g ∈ B : ĝ(0) = 0}, it is
clear that for every h ∈ B0 there exists a g ∈ B0 such that h = Hg. Thus
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H : B0 → B0 is one-to-one and onto, which implies that the graph of H is
closed, and that H : B0 → B0 is continuous by the closed graph theorem. By
(4.3), this implies the continuity of R. The operator R can also be expressed
in terms of the Riesz projection (e.g. [7, §III.1])

(Rg)(ζ) = 2(P+g)(ζ)− ĝ(0) (ζ ∈ T)

with the zeroth Fourier coefficient ĝ(0) of g. Since |ĝ(0)| ≤ ‖g‖∞ ≤ ‖g‖B
and since R is bounded on B0, the Riesz projection P+ is bounded on B.

We already saw that if the Riesz projection P+ is bounded on a Banach
algebra A ⊂ L1(T), then the spectral factorization exists for every f ∈
exp(A). Moreover, the assumed continuity of S at 1 in the previous theorem
can be extended to the continuity of S at every point f ∈ exp(B).

Theorem 4.3. Let B be an S-algebra. If the spectral factorization map-
ping S is continuous at 1 in B, then f+ = Sf exists for every real-valued
f ∈ exp(B). Moreover , S is locally continuous on exp(B), i.e. for every real
f ∈ exp(B) there exist constants C(f) and r(f) such that

‖Sf −Sg‖B ≤ C(f)‖f − g‖B
for all real g ∈ exp(B) with ‖f − g‖B < r(f). In particular , one can take

(4.4) C(f) = (2 + ‖1‖B)‖P+‖ ‖f−1‖B‖Sf‖B and r(f) =
‖Sf‖B
C(f)

.

Proof. By Theorem 4.2, the Riesz projection is bounded on B. There-
fore Proposition 2.6 implies that every real-valued f ∈ exp(B) possesses a
spectral factorization f+ = Sf in B which is given by

(4.5) (Sf)(z) = exp
[
(P+ log f)(z)− 1

2(P+ log f)(0)
]

(z ∈ D).

Choose f1, f2 ∈ exp(B) and denote by q1 and q2 the corresponding ar-
guments of the exponential function in representation (4.5) of the spectral
factor. Then Sf2 − Sf1 = exp(q1)[exp(q2 − q1) − 1] and the continuity of
the exponential function implies

‖Sf2 −Sf1‖B ≤ ‖exp q1‖B‖exp(q2 − q1)− 1‖B(4.6)
≤ 2‖Sf1‖B‖q2 − q1‖B

provided that ‖q2 − q1‖B < 1. Next, we investigate ‖q2 − q1‖B. We have

‖q2 − q1‖B ≤ ‖P+[log f2 − log f1]‖B − 1
2 |P+[log f2 − log f1](0)| ‖1‖B

just by the linearity of P+. To get an upper bound for the second term on the
right hand side, we note that |(P+f)(0)| ≤ ‖P+f‖∞ ≤ ‖P+f‖B for every
f ∈ B using the maximum modulus principle for analytic functions, and
that B is continuously embedded in C(T). Together with the boundedness
of P+, one obtains

(4.7) ‖q2 − q1‖B ≤
(
1 + 1

2‖1‖B
)
‖P+‖ ‖log f2 − log f1‖B
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where ‖P+‖ is the operator norm of P+ : B → B+. The continuity of the
logarithm (Lemma 2.1) shows

‖log f2 − log f1‖B ≤ ‖f−1
1 ‖B‖f2 − f1‖B(4.8)

for all f1, f2 ∈ exp(B) with ‖f2 − f1‖B < ‖f−1
1 ‖

−1
B . Combining (4.6), (4.7),

and (4.8) one obtains the statement of the theorem with the constants
(4.4).

The previous proof implies in particular that the spectral factoriza-
tion mapping is continuous on every S-algebra on which P+ : B → B+

is bounded:

Corollary 4.4. The spectral factorization mapping S is continuous on
an S-algebra B if and only if B is decomposing.

Remark 4.5. The “if” part of this corollary was already proved in [9].

5. Boundedness of the spectral factorization mapping. This sec-
tion investigates the boundedness of the spectral factorization mapping S
on S-algebras. By the theorem of Fejér–Riesz, the spectral factorization ex-
ists on B for all non-negative trigonometric polynomials. Therefore one can
analyze the boundedness of S on the set of all polynomials. To this end, for
every N ∈ N define

(5.1) C(N,B) := sup
f∈Ppos(N), ‖f‖B≤1

‖Sf‖B

the boundedness constant of S on P(N). It is clear that C(N + 1,B) ≥
C(N,B) for all N . Based on these constants, we can say what we mean by
the boundedness of the spectral factorization mapping for all polynomials
on B:

Definition 5.1. Let B be an S-algebra. The spectral factorization map-
ping S is said to be p-bounded on B if

C(B) := sup
N∈N

C(N,B) <∞.(5.2)

Remark 5.2. We only require the boundedness of S for all polynomials.
Since S is not necessarily continuous on B, the p-boundedness does not
imply the boundedness of S on the whole space B, in general. But of course,
p-boundedness is a necessary requirement for the boundedness of S on B.

Obviously, limN→∞C(N,B) = C(B) and

(5.3) ‖f+‖B = ‖Sf‖B ≤ C(N,B)

for all f ∈ Ppos(N) with ‖f‖B ≤ 1. Let f ∈ Ppos(N), set g := f/‖f‖B, and
apply (5.3) to g. This shows that

(5.4) ‖f+‖2B ≤ C(N,B)2 ‖f+f+‖B
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for all spectral factors f+ ∈ F [P(N)]. Next, for N ∈ N define the constants

D+(N,B) := inf
f+∈F [P(N)]
‖f+‖B=1

‖f+f+‖B and D+(B) := lim
N→∞

D+(N,B).

By this definition, it is clear that the sequence D+(N,B) is decreasing in N
and in view of (5.4) one sees that

C(N,B) =
1√

D+(N,B)
and C(B) =

1√
D+(B)

.

Now, the boundedness condition (5.2) can also be stated in terms of D+(B).

Lemma 5.3. The spectral factorization mapping S is p-bounded on B if
and only if D+(B) > 0.

The problem in the definition of D+(N,B) is that the infimum is taken
over the set F [P(N)] of all functions f+ ∈ P+(N) which are obtained by
a spectral factorization from a polynomial f ∈ Ppos(N), but this set is
unknown in general. However, we will show next that the p-boundedness
condition remains unchanged even if one takes the infimum over all ana-
lytic polynomials f ∈ P+(N) instead of F [P(N)]. Therefore, we define the
constants

(5.5) D(N,B) := inf
f∈P+(N)
‖f‖B=1

‖ff‖B and D(B) := inf
f∈B+

‖f‖B=1

‖ff‖B.

It is immediately clear that D(N,B) ≤ D+(N,B) and D(B) ≤ D+(B).
Moreover, D(B) = limN→∞D(N,B).

Now, we are able to give necessary and sufficient conditions for the p-
boundedness of the spectral factorization mapping S on S-algebras:

Proposition 5.4. Let B be an S-algebra. Then the spectral factorization
mapping S is p-bounded on B if and only if

(5.6) D(B) = inf
g∈B+, ‖g‖B=1

‖gg‖B > 0.

Proof. If (5.6) is satisfied, then D+(B) ≥ D(B) > 0 and Lemma 5.3
implies the p-boundedness of S.

The necessity of (5.6) is shown by contradiction. Suppose that S is
p-bounded but D(B) = 0. Fix N ∈ N and let D(N,B) be defined by (5.5).
Then for every δ > 0 there exists a g ∈ P+(N) with ‖g‖B = 1 and

(5.7) ‖gg‖B ≤ D(N,B) + δ.

Moreover, since |g(ζ) g(ζ)| = |g(ζ)|2 for all ζ ∈ T, Proposition 3.3 implies
that ‖g‖2∞ = ‖gg‖∞ ≤ ‖gg‖B. Together with (5.7) this gives

(5.8) ‖g‖∞ ≤
√
D(N,B) + δ.
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Let µ > 0 and define

gµ :=
g + ‖g‖∞ + µ

‖g + ‖g‖∞ + µ‖B
.

It is clear that gµ ∈ P+(N), ‖gµ‖B = 1, and |gµ(z)| > 0 for all z ∈ D.
Therefore gµ ∈ F [P(N)] is a spectral factor. It satisfies

‖gµgµ‖B =
‖gg + (‖g‖∞ + µ)(g + g) + (‖g‖∞ + µ)2‖B

‖g + ‖g‖∞ + µ‖2B
,

and since D+(N,B) ≤ ‖gµgµ‖B, one gets

(5.9) D+(N,B) ≤ ‖gg‖B + (‖g‖∞ + µ)(1 + c1)‖g‖B + (‖g‖∞ + µ)2‖1‖B
‖g + (‖g‖∞ + µ)‖2B

for every µ > 0. Moreover, since

1 = ‖g‖B = ‖g + ‖g‖∞ − ‖g‖∞‖B ≤ ‖g + ‖g‖∞‖B + ‖g‖∞‖1‖B
one obtains, together with (5.8),

(5.10) ‖g + ‖g‖∞‖B ≥ 1− ‖g‖∞‖1‖B ≥ 1− ‖1‖B
√
D(N,B) + δ.

Letting µ → 0 in (5.9), using ‖g‖B = 1, and applying the bounds (5.7),
(5.8), and (5.10) one deduces from (5.9) that

(5.11) D+(N,B) ≤
(1 + ‖1‖B)[D(N,B) + δ] + (1 + c1)

√
D(N,B) + δ

1− ‖1‖B
√
D(N,B) + δ

for all δ > 0. Since D(B) = 0 and limN→∞D(N,B) = D(B), the right hand
side of (5.11) converges to zero, which shows that

D+(B) = lim
N→∞

D+(N,B) = 0.

This contradicts the assumption that S is bounded since by Lemma 5.3 the
boundedness implies that D+(B) > 0.

Let B be an S-algebra on which the spectral factorization mapping is p-
bounded, let f ∈ B+, and define g := f/‖f‖B. Then g ∈ B+, ‖g‖B = 1, and
since S is p-bounded, Proposition 5.4 implies that ‖g g‖B = ‖f‖−2

B ‖ff‖B ≥
D(B) > 0. This shows that

(5.12) D(B)‖f‖2B ≤ ‖ff‖B for all f ∈ B+.

Recall that an inner function is a ϕ ∈ [L∞(T)]+ such that |ϕ(ζ)| = 1 for
almost all ζ ∈ T [7, 8]. Assume that ϕ ∈ B is an inner function. Then ϕ ∈ B+

and ϕϕ = 1. Since S is assumed to be p-bounded on B, (5.12) implies that
there exists a universal upper bound on the norm of every inner function
in B,

‖ϕ‖B ≤
√
‖1‖B/D(B) =: c2,
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which depends only on the algebra B. For n = 0, 1, 2, . . . define the functions
sn(z) := zn. It is clear that sn ∈ B+ for all n ∈ N, and each sn is an inner
function. Moreover, the functions s−n := sn, n ∈ N, belong to B and from
Proposition 3.4 one obtains a uniform upper bound

‖sn‖B ≤ c1c2 for all n ∈ Z.(5.13)

Based on these considerations the following lemma will show that on every
S-algebra B on which S is p-bounded, the expression (5.6) is bounded away
from zero even if the infimum is taken over all f ∈ B.

Lemma 5.5. Let B be an S-algebra on which S is p-bounded. Then there
exists a constant c3 > 0 such that

(5.14) c3‖f‖2B ≤ ‖ff‖B for all f ∈ B
or equivalently that

inf
f∈B, ‖f‖B=1

‖ff‖B ≥ c3 > 0.

Proof. Let f ∈ B. Since the trigonometric polynomials are dense in B,
there exists a sequence {pn}∞n=1 of polynomials with pn ∈ P(n) such that
limn→∞ ‖f − pn‖B = 0. Consequently, for every ε > 0 there exists an N0

such that

(5.15) ‖f‖B − ε ≤ ‖pn‖B ≤ ‖f‖B + ε for all n ≥ N0.

Let sn(z) = zn and define gn := snpn. Then gn ∈ P+(2n) ⊂ B+ and

(5.16) ‖pn‖B = ‖snsnpn‖B ≤ ‖sn‖B‖gn‖B ≤ c1c2‖gn‖B.
Since gn ∈ B+ and S is p-bounded, Proposition 5.4 implies

(5.17) D(B)‖gn‖2B ≤ ‖gngn‖B = ‖sngn · sngn‖B = ‖pnpn‖B.
Next we consider the expression ff − pnpn. By the triangle inequality to-
gether with Proposition 3.4 and (5.15), one obtains

‖ff − pnpn‖B ≤ ‖f‖B‖f − pn‖B + ‖pn‖B‖f − pn‖B
≤ c1(‖f‖B + ‖pn‖B)‖f − gn‖B
≤ c1(2‖f‖B + ε)‖f − gn‖B.

The right hand side of the last inequality converges to 0 as n→∞. There-
fore, for every ε > 0 there exists an N1 ≥ N0 such that

(5.18) ‖pn pn‖B ≤ ‖ff‖B + ε for all n ≥ N1.

Putting together all the previous steps, one obtains, for all n ≥ N1,

(‖f‖B − ε)2
(5.15)

≤ ‖pn‖2B
(5.16)

≤ (c1c2)2‖gn‖2B
(5.17)

≤ (c1c2)2

D(B)
‖pnpn‖B

(5.18)

≤ (c1c2)2

D(B)
(‖ff‖B + ε).
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Since ε was arbitrary this shows that
D(B)

(c1c2)2
‖f‖2B ≤ ‖ff‖B for all f ∈ B,

which is equivalent to the statement of the lemma with c3 = D(B)/(c1c2)2

> 0.

The following theorem shows that C(T) is essentially the only S-algebra
on which the spectral factorization mapping S is bounded.

Theorem 5.6. Let B be an S-algebra. If the spectral factorization map-
ping S is p-bounded on B then B is (bijectively) isomorphic to C(T), i.e.
there exists a constant c4 such that

(5.19) ‖f‖∞ ≤ ‖f‖B ≤ c4‖f‖∞ for all f ∈ B.
Proof. Proposition 3.3 shows that B is continuously embedded in C(T),

and it remains to prove the opposite inclusion. To this end, let h ∈ B be
a real-valued function. Then Lemma 5.5 implies c3‖h‖2B ≤ ‖hh‖B = ‖h2‖B.
Since hh ∈ B, Lemma 5.5 can be applied to h2, which gives c3 ‖h2‖2B ≤
‖h4‖B. Together with the previous inequality, one gets c3c23‖h‖4B ≤ ‖h4‖B.
Applying this upper bound repeatedly, one obtains

‖h‖B ≤ c5(n)‖h2n‖1/2
n

B with c5(n) =
(n−1∏
k=0

c2
k

3

)−1/2n

= c
−(2n−1)/2n

3 .

The spectral radius of h is given by rσ(h) = limn→∞ ‖hn‖1/nB , and property
(B4) of an S-algebra implies that ‖h‖∞ = rσ(h). Consequently, for n→∞,
one obtains

(5.20) ‖h‖B ≤
1
c3
‖h‖∞

for every real-valued h ∈ B. Now let f = f1 + if2 be a complex function in
B with real functions f1, f2 ∈ B. Then it follows from (5.20) that

‖f‖B ≤
1
c3

(‖f1‖∞ + ‖f2‖∞) ≤ 2
c3
‖f‖∞,

which is the upper bound in (5.19). Since the trigonometric polynomials are
dense in C(T), for every ε > 0 there exists a trigonometric polynomial p
such that

1
c4
‖f − p‖B ≤ ‖f − p‖∞ < ε.

Together with axiom (B3) this shows that f ∈ B.

It is known that the Riesz projection is unbounded on C(T) (e.g. [8,
§9]). Therefore Theorem 5.6 implies at once that the Riesz projection P+ is
unbounded on every S-algebra.
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Corollary 5.7. Let B be an S-algebra. If the spectral factorization
mapping S is p-bounded on B then the Riesz projection P+ is unbounded
on B.

Corollary 5.8. The spectral factorization mapping S is not p-bounded
on every decomposing S-algebra.

Proof. Let B be an S-algebra and suppose that S is p-bounded on B.
Then Corollary 5.7 implies that P+ is unbounded on B which contradicts
the decomposing assumption on B.

Remark 5.9. Note that “p-bounded” may be replaced by “bounded” in
the previous two corollaries, since p-boundedness is a necessary condition
for the boundedness of S on an S-algebra.

6. Conclusions. In conclusion, the spectral factorization mapping S
can never be bounded and continuous on an S-algebra B. Indeed, in order
that S is bounded on B, it is necessary that the Riesz projection P+ is
unbounded on B. But on the other hand, the boundedness of P+ is necessary
and sufficient for the continuity of the spectral factorization mapping. This
conclusion may be stated as follows.

Corollary 6.1. Let B be an S-algebra and let S be the spectral factor-
ization mapping on B. Then

• If S is continuous on B, then S is unbounded.
• If S is bounded on B, then S is discontinuous.

Thus boundedness and continuity are mutually exclusive for the spectral
factorization mapping on every S-algebra.

In applications, one is often interested in the concrete value of the con-
stant (5.1) and its dependence on N since it characterizes the influence of
errors in the data on the determined spectral factor. For the Wiener algebra
a lower and upper bound for the constant C(N,W) were recently presented
in [1]. It would certainly be of interest to know such bounds, if they exist,
for general S-algebras.
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[4] J. L. Doob, Stochastic Processes, Wiley, New York, 1953.



Spectral factorization mapping 145
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