Erratum to
"Stability of the index of a linear relation
under compact perturbations"
(Studia Math. 180 (2007), 95–102)
by
DANA GHEORGHE (Pitești)

Abstract. We give a corrected version of the main result from the paper cited in
the title. We obtain necessary and sufficient conditions for the stability of the topological
index of an open linear relation under compact perturbations.

Proposition 1 and Theorem 1 in [4] fail to hold for general Fredholm
relations between normed spaces having closed range. The argument given
in [4] relies on the unproven result $R(T')^⊥ = N(T)$ from Lemma 2(i). That
result does not hold unless additional conditions are imposed on the bounded
operator T (see [3, Proposition III.1.4(a), Proposition III.4.6(b)] in the more
general context of linear relations).

The main result of this note is a replacement of Theorem 1 in [4] but its
proof does not depend on results from [4]. It also completes recent results of
Alvarez [1]. We would like to mention that our method from [4] remains valid.

Our notation is the same as in [4]. A linear relation T is said to be open if
whenever U is a neighbourhood in $D(T)$, the image $T(U) := \bigcup_{x \in U} T(x)$ is a
neighbourhood in $R(T)$. Note that T is open iff there exists $\rho > 0$ such that
$\rho B_Y \cap R(T) \subset T(B_X \cap D(T))$, where B_X and B_Y denote the closed unit balls
of X and Y respectively (see Propositions II.2.4 and II.3.2 (b) in [3]). Assume
that the linear relation T satisfies $\dim(N(T)) < \infty$ or $\text{codim}(R(T)) < \infty$.
Then the quantity $\text{ind}(T) = \dim(N(T)) - \text{codim}(\overline{R(T)})$ is called the topological
index of T. We shall denote by $G(T)$ the graph of the linear relation T.

THEOREM 1. Let X, Y be normed spaces such that Y is complete and let
$T \in LR(X,Y)$ be an open linear relation satisfying

\begin{equation}
\dim(N(T)) < \infty \quad \text{and} \quad \text{codim}(R(T)) < \infty.
\end{equation}

2000 Mathematics Subject Classification: Primary 47A06; Secondary 47A53.
Key words and phrases: linear relation, Banach space complexes, topological index.
If $K \in \mathcal{K}(X, Y)$ then
\begin{equation}
\dim(N(T + K)) < \infty, \quad \text{codim}(R(T + K)) < \infty,
\end{equation}
\begin{equation}
\overline{\text{ind}}(T + K) \leq \overline{\text{ind}}(T).
\end{equation}
Moreover, $\overline{\text{ind}}(T + K) = \overline{\text{ind}}(T)$ iff $T + K$ is open.

Proof. I. Consider the sequence
\begin{equation}
0 \to T(0) \xrightarrow{i_T} G(T) \times T(0) \xrightarrow{j_{T,K}} Y \to 0
\end{equation}
with
\begin{align*}
i_T(y_0) &= ((0, y_0), y_0), \quad \forall y_0 \in T(0), \\
j_{T,K}((x, y), y_0) &= y + Kx - y_0, \quad \forall ((x, y), y_0) \in G(T) \times T(0).
\end{align*}
The operators i_T and $j_{T,K}$ are bounded. A simple calculation shows that
\begin{equation}
\dim(N(j_{T,K})/R(i_T)) = \dim(N(T + K)).
\end{equation}
On the other hand,
\begin{equation}
N(i_T) = \{0\}, \quad R(j_{T,K}) = R(T + K).
\end{equation}
One can prove that $R(i_T)$ is closed in $G(T) \times T(0)$ and
\begin{equation}
T + K \text{ open } \iff \text{$j_{T,K}$ open.}
\end{equation}
Indeed, assume that $T + K$ is open. Consider $y \in R(j_{T,K}) = R(T + K)$ such that $y \neq 0$. It follows that $\bar{y}\|y\|^{-1}y \in \bar{y}B_Y \cap R(T + K)$, so there exists $x \in B_X \cap D(T)$ such that $\bar{y}\|y\|^{-1}y \in (T + K)(x)$, hence $y - K(\|y\|\bar{y}^{-1}x) \in T(\|y\|\bar{y}^{-1}x)$. Therefore $((\|y\|\bar{y}^{-1}x, y - K(\|y\|\bar{y}^{-1}x)), 0) \in G(T) \times M(T)$ and $\|(\|y\|\bar{y}^{-1}x, y - K(\|y\|\bar{y}^{-1}x)), 0)\| < k\|y\|$, where $k = \bar{y}^{-1}(\|K\| + 1) + 1$. Note that $j_{T,K}((\|y\|\bar{y}^{-1}x, y - K(\|y\|\bar{y}^{-1}x)), 0) = y$. Hence, if $\|y\| \leq k^{-1}$ then $\|(\|y\|\bar{y}^{-1}x, y - K(\|y\|\bar{y}^{-1}x)), 0)\| \leq 1$. Consequently, $j_{T,K}$ is open.

Conversely, assume that $j_{T,K}$ is open and let $y \in \bar{y}B_Y \cap R(T + K)$. It follows that there exists $(x, y_1), y_0) \in B_{G(T) \times T(0)}$ (in particular $x \in B_X$) such that $j_{T,K}((x, y_1), y_0) = y_1 + Kx - y_0 = y$. We have $(x, y_1) \in G(T)$ and $(0, y_0) \in G(T)$, hence $(x, y_1 - y_0) \in G(T)$ and $y \in (T + K)(x)$. Consequently, the relation $T + K$ is open.

II. Consider the sequence
\begin{equation}
0 \to Y' \xrightarrow{j'_{T,K}} G(T)' \times T(0)' \xrightarrow{i_T'} T(0)' \to 0.
\end{equation}
We know that $R(i_T) \subset N(j_{T,K})$, which implies that $N(j_{T,K})^{\perp} \subset R(i_T)^{\perp}$, which together with
\begin{equation}
R(i_T)^{\perp} = N(i_T'), \quad R(j'_{T,K}) \subset N(j_{T,K})^{\perp}
\end{equation}
implies that $R(j'_{T,K}) \subset N(i_T')$, that is, (8) is a Banach space complex. Note that i_T' is surjective. On the other hand, from $R(j'_{T,K})^{\perp} = N(j'_{T,K})$ it follows
that
\[\text{codim}(R(j_{T,K})) = \dim(N(j_{T,K})). \]

Using (9) and the fact that \(R(i_{T}) \) is closed in \(G(T) \times T(0) \) we deduce that
\[\dim(N(j_{T,K})/R(i_{T})) = \dim(R(i_{T})/\text{codim}(R(j_{T,K}))). \]

Note that \(N(i_{T})/N(j_{T,K}) \approx (N(i_{T})/R(j_{T,K}))/N(j_{T,K})/R(j_{T,K}) \), so
\[\dim(N(i_{T})/N(j_{T,K})) + \dim(N(j_{T,K})/R(j_{T,K})) = \dim(N(i_{T})/R(j_{T,K})). \]

From (11) and (12) we deduce that
\[\dim(N(j_{T,K})/R(i_{T})) \leq \dim(N(i_{T})/R(j_{T,K})). \]

III. If \(T + K \) is open, then using (7) it follows that \(j_{T,K} \) is open, hence
\[R(j_{T,K}) = N(j_{T,K}), \]
which together with (11) implies
\[\dim(N(i_{T})/R(j_{T,K})). \]

Assume that \(\dim(N(i_{T})/R(j_{T,K})) \) is finite and (14) holds. This together with (11) and (12) implies that \(\dim(N(j_{T,K})/R(j_{T,K})) = 0 \), hence \(R(j_{T,K}) = N(j_{T,K}) \), which implies that \(j_{T,K} \) is open, so by (7) one has \(T + K \) open.

IV. Consider \(\tilde{K} : G(T) \times T(0) \rightarrow Y \) defined by \(\tilde{K}((x,y),y_{0}) = Kx \).
It is clear that \(\tilde{K} \) is compact and \(j_{T,K} = j_{T,0} + \tilde{K} \), which implies that \(j_{T,K} = j_{T,0} + \tilde{K}' \). Note that the completeness of \(Y \) and the compactness of \(\tilde{K} \) imply that \(\tilde{K}' \) is compact (see [3, Theorem V.14.5]). Now, consider the sequences
\[0 \rightarrow Y' \xrightarrow{j_{T,0}} G(T)' \times T(0)' \xrightarrow{i_{T}'} T(0)' \rightarrow 0, \]
\[0 \rightarrow Y' \xrightarrow{j_{T,0} + \tilde{K}'} G(T)' \times T(0)' \xrightarrow{i_{T}'} T(0)' \rightarrow 0. \]
From II we know that (15) and (16) are Banach space complexes. Using the fact that \(T \) is open and (1), we deduce from (14), (5) and (10) (in the case \(K = 0 \)) that
\[\dim(N(i_{T}')/R(j_{T,0}')) = \dim(N(T)) < \infty, \]
\[\dim(N(j_{T,0}')) = \text{codim}(R(T)) < \infty. \]

It follows that the complex (15) is Fredholm and
\[-\text{ind}(T) = \text{ind}(15). \]
Hence, using the main result in [2] it follows that
\begin{equation}
\dim(N(j'_{T,K})) < \infty, \quad \dim(N(i'_T)/R(j'_{T,K})) < \infty,
\end{equation}
\begin{equation}
\text{ind}(15) = \text{ind}(16).
\end{equation}
From (5), (10), (13), (18), (19) and (20) we deduce that (2) and (3) hold.
Now, assume that \(\overline{\text{ind}}(T + K) = \overline{\text{ind}}(T)\). This together with (5), (10), (13), (18) and (20) implies that
\[
\overline{\text{ind}}(T) = \dim(N(T + K)) - \text{codim}(R(T + K)) \\
= \dim(N(j_{T,K})/R(i_T)) - \dim(N(j'_{T,K})) \\
\leq \dim(N(i'_T)/R(j'_{T,K})) - \dim(N(j'_{T,K})) \\
= -\text{ind}(16) = -\text{ind}(15) = \overline{\text{ind}}(T).
\]
It follows that \(\dim(N(j_{T,K})/R(i_T)) = \dim(N(i'_T)/R(j'_{T,K})) < \infty\) and III implies that \(T + K\) is open. To prove that the openness of \(T + K\) implies \(\overline{\text{ind}}(T + K) = \overline{\text{ind}}(T)\) we proceed in the same way.

References

Department of Mathematics
University of Piteşti
110040 Piteşti, Romania
E-mail: gheorghedana@yahoo.com

Received May 20, 2008
Revised version June 28, 2008 (6357)