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Non-autonomous stochastic Cauchy problems

in Banach spaces

by

Mark Veraar (Delft) and Jan Zimmerschied (Karlsruhe)

Abstract. We study the non-autonomous stochastic Cauchy problem on a real Ba-
nach space E,

dU(t) = A(t)U(t) dt + B(t) dWH(t), t ∈ [0, T ],

U(0) = u0.

Here, WH is a cylindrical Brownian motion on a real separable Hilbert space H, (B(t))t∈[0,T ]

are closed and densely defined operators from a constant domain D(B) ⊂ H into E,
(A(t))t∈[0,T ] denotes the generator of an evolution family on E, and u0 ∈ E. In the first
part, we study existence of weak and mild solutions by methods of van Neerven and
Weis. Then we use a well-known factorisation method in the setting of evolution families
to obtain time regularity of the solution. In the second part, we consider the parabolic
case in the setting of Acquistapace and Terreni. By means of a factorisation method in
the spirit of Da Prato, Kwapień, and Zabczyk we obtain space-time regularity results for
parabolic evolution families on Banach spaces. We apply this theory to several examples.
In the last part, relying on recent results of Dettweiler, van Neerven, and Weis, we prove
a maximal regularity result where the A(t) are as in the setting of Kato and Tanabe.

1. Introduction. Let E be a real Banach space, H a separable real
Hilbert space, and T > 0 some finite time. Let (Ω,F , P ) be a complete
probability space with a filtration (Ft)t∈[0,T ] which satisfies the usual con-
ditions and on which we can define a cylindrical Brownian motion.

We study the non-autonomous stochastic Cauchy problem

(1.1)
dU(t) = A(t)U(t) dt + B(t) dWH(t), t ∈ [0, T ],

U(0) = u0,

where (A(t),D(A(t)))t∈[0,T ] is the generator of a strongly continuous evolu-
tion family on E, (B(t))t∈[0,T ] are closed operators from a constant domain
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D(B) ⊂ H into E, WH is a cylindrical Brownian motion on a real sepa-
rable Hilbert space H, and u0 ∈ E. Note that B may be unbounded, but
D(B(t)) = D(B) is constant in time.

For the case of (A(t))t∈[0,T ] independent of t this equation has been
studied in many papers (cf. [8, 9, 13, 14, 19, 33] and references therein). The
case where (A(t))t∈[0,T ] depends on time has been studied for instance in [12]
by Da Prato, Iannelli and Tubaro, in [41] by Seidler, and in [24] by Krylov.
Working in a Hilbert space setting and with constant domains D(A(t)), in
[12] time regularity of solutions is considered, whereas in [41] questions of
space-time regularity are addressed in a special parabolic setting. In [24] the
space regularity in Lp for p ∈ [2,∞) of the solution has been investigated in
the situation where each A(t) is a second order elliptic operator on R

n.

This paper is organised as follows. In Section 2 we recall some results
on evolution families. In the parabolic case, some existence and regularity
results in the setting of Acquistapace and Terreni [2] and the setting of Kato
and Tanabe [42, Section 5.3] are presented. In the second part of Section 2,
we briefly recall some results on γ-radonifying operators, γ-boundedness,
and stochastic integration in Banach spaces.

In Section 3 the existence of mild and weak solutions of (1.1) is charac-
terised and a factorisation method from Da Prato, Kwapień and Zabczyk
[13], Millet and Smoleński [29], and [41] is extended to obtain sufficient
conditions for path continuity of solutions.

In Section 4 we study the parabolic case of (1.1). There we mainly work
under the assumptions of Acquistapace and Terreni [2]. The factorisation
method for parabolic evolution families of [41] is extended to our setting.
Under suitable conditions on E, A(t), and B(t) we show that the mild
solution U satisfies t 7→ (w − A(t))δU(t) ∈ Cλ([0, T ]; E) for certain λ > 0
and δ ≥ 0. The choices of λ and δ are related to the constants in [2]. This
extends results for autonomous equations in [13, 14, 19]. For completeness
we note that under additional conditions on the Banach space E (see [32])
one can extend the results of Sections 3 and 4 to the case where B also
depends on Ω in a suitable way.

In Section 5 the results are illustrated with two examples from [1, 40, 47].
At the end of Section 5 an example is given where B is a fixed unbounded
operator. This arises naturally in the context of spatio-temporal white noise
problems. Consider the following stochastic partial differential equation:

(1.2)

∂u

∂t
(t, x) = L(t, x)u(t, x) +

∂w

∂t
(t, x), x ∈ [0, 1], t ∈ [0, T ],

u(0, x) = 0, x ∈ [0, 1],

u(t, 0) = u(t, 1) = 0,
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where

L(t, x, D) = a2(t, x)D2 + a1(t, x)D + a0(t, x)

and the coefficients satisfy certain continuity properties. To model this equa-
tion one could take H = L2(0, 1), E = Lp(0, 1), and B to be the identity
mapping. Usually p ∈ [1,∞) is large and in that case B is unbounded. We
combine the results of Section 4 with ideas of Dettweiler, van Neerven, and
Weis [19] to obtain a space-time regularity result for (1.2). In particular, we
show that the solution u is in the space Cλ([0, T ]× [0, 1]) for all λ ∈ (0, 1/4).

In Section 6 we study maximal regularity for the solution of (1.1). This
is done for the case where B : H → E is a fixed bounded operator which
is γ-radonifying. In [19] it is shown that whenever A admits a γ-bounded
H∞-calculus, there exists a mild solution U : [0, T ] × Ω → E such that
t 7→ (−A)1/2U(t) ∈ C([0, T ]; Lp(Ω; E)) for all p ∈ [1,∞). In the case where
E is a Hilbert space, a similar result was obtained in [14]. With regard
to applications, maximal regularity can be used to study equations with
additive noise and non-linear unbounded drift. Building on the results in [19],
we will show that there exists a mild solution U : [0, T ] × Ω → E such
that t 7→ (−A(t))1/2U(t) ∈ B([0, T ]; Lp(Ω; E)) for all p ∈ [1,∞), where
B([0, T ]; F ) stands for the bounded and measurable functions from [0, T ]
to F . This result is proved under the assumption that the A(t) are as in [42,
Section 5.3] and admit a γ-bounded H∞-calculus uniformly in t ∈ [0, T ].

2. Preliminaries

2.1. Evolution families. Let (A(t),D(A(t)))t∈[0,T ] be a family of closed
and densely defined operators. Consider the non-autonomous Cauchy prob-
lem

(2.1)

du

dt
(t) = A(t)u(t), t ∈ [s, T ],

u(s) = x.

We say that u is a classical solution of (2.1) if u ∈ C1((s, T ], E), u(t) ∈
D(A(t)) for all t ∈ (s, T ], u(s) = x, and du

dt (t) = A(t)u(t) for all t ∈ (s, T ].
We call u a strict solution of (2.1) if u ∈ C1([s, T ], E), u(t) ∈ D(A(t)) for
all t ∈ [s, T ], u(s) = x, and du

dt (t) = A(t)u(t) for all t ∈ [s, T ].

A family (P (t, s))0≤s≤t≤T of bounded operators on E is referred to as a
strongly continuous evolution family if

(1) P (s, s) = I for all s ∈ [0, T ].
(2) P (t, s) = P (t, r)P (r, s) for all 0 ≤ s ≤ r ≤ t ≤ T .
(3) The mapping {(τ, σ) ∈ [0, T ]2 : σ ≤ τ} ∋ (t, s) 7→ P (t, s) is strongly

continuous.
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We say that such a family (P (t, s))0≤s≤t≤T solves (2.1) (on (Ys)s∈[0,T ]) if
(Ys)s∈[0,T ] are dense subspaces of E and for all 0 ≤ s ≤ t ≤ T we have
P (t, s)Ys ⊂ Yt ⊂ D(A(t)) and the function t 7→ P (t, s)x is a strict solution
of (2.1) for every x ∈ Ys.

In [36, 37], G. Nickel shows that well-posedness (i.e. existence, unique-
ness, and continuous dependence on (Ys)s∈[0,T ]) of (2.1) is equivalent to the
existence and uniqueness of a strongly continuous evolution semigroup that
solves (2.1) on (Ys)s∈[0,T ].

Throughout this paper (A(t))t∈[0,T ] generates a unique evolution family
(P (t, s))0≤s≤t≤T that solves (2.1). In the literature many sufficient conditions
for this can be found (cf. the monographs [2, 4, 27, 38, 42, 43]). In the next
subsection we recall some results for the parabolic case of (2.1).

2.2. Parabolic evolution families. As before, let (A(t),D(A(t)))t∈[0,T ] be
a family of closed and densely defined operators on a Banach space E. We
will briefly discuss the setting of Acquistapace and Terreni (cf. [2]) and of
Kato and Tanabe (cf. [42, Section 5.3]). Note that most of the results below
have versions for non-densely defined A(t) as well.

2.2.1. The (AT) hypotheses. We start with the theory of Acquistapace
and Terreni. In fact they study a slightly more general setting. If E is a real
Banach space the assumptions below should be understood to concern the
complexification of the objects under consideration. Condition (AT) consists
of the following two conditions:

(AT1) A(t) are linear operators on a Banach space E and there are con-
stants w ∈ R, K ≥ 0, and φ ∈ (π/2, π) such that Σ(φ, w) ⊂ ̺(A(t))
and for all λ ∈ Σ(φ, w) and t ∈ [0, T ],

‖R(λ, A(t))‖ ≤
K

1 + |λ − w|
.

(AT2) There are constants L ≥ 0 and µ, ν ∈ (0, 1] with µ + ν > 1 such
that for all λ ∈ Σ(φ, w) and s, t ∈ [0, T ],

‖Aw(t)R(λ, Aw(t))(Aw(t)−1 − Aw(s)−1)‖ ≤ L|t − s|µ(|λ| + 1)−ν .

Here Σ(φ, w) = {w}∪{λ ∈ C\{w} : |arg(λ−w)| ≤ φ} and Aw(t) = A(t)−w.
Below it will be convenient to define κµ,ν = µ + ν − 1 ∈ (0, 1].

These conditions have been extensively studied in the literature, where
also many examples can be found. The first condition may be seen as ana-
lyticity uniformly in t ∈ [0, T ].

If (AT1) holds and the domains are constant: D(A(0)) = D(A(t)), t ∈
[0, T ], and (A(t))t∈[0,T ] is Hölder continuous from D(A(0)) to E with expo-
nent η, then (AT2) holds with µ = η and ν = 1 (see [2, Section 7]). The
conditions in that case reduce to the conditions in the theory of Sobolevskĭı
and Tanabe for constant domains (cf. [27, 38, 42]).
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Under assumptions (AT1) and (AT2) the following result holds (see [2,
Theorems 6.1–6.4] and [47, Theorem 2.1]).

Theorem 2.1. If condition (AT) holds, then there exists a unique strongly
continuous evolution family (P (t, s))0≤s≤t≤T that solves (2.1) on D(A(s))
and for all x ∈ E, P (t, s)x is a classical solution of (2.1). Moreover ,
(P (t, s))0≤s≤t≤T is continuous on 0 ≤ s < t ≤ T and there exists a con-
stant C > 0 such that for every 0 ≤ s < t ≤ T ,

‖(w − A(t))θP (t, s)‖ ≤ C(t − s)−θ for 0 ≤ θ ≤ 1,(2.2)

‖P (t, s) − e(t−s)A(s)‖ ≤ C(t − s)κµ,ν .(2.3)

We also note that by [47, Theorem 2.3] there exists a constant C > 0
such that for all 0 ≤ s ≤ t ≤ T ,

(2.4) ‖(w − A(t))αP (t, s)(w − A(s))−α − e(t−s)A(s)‖ ≤ C(t − s)κµ,ν

for α ∈ (0, 1]. If α = 0, one recovers (2.3). Finally, we recall from [47,
Theorem 2.1] that there is a constant C > 0 such that for all θ ∈ (0, µ) and
all x ∈ D((w − A(t))θ),

(2.5) ‖P (t, s)(w − A(s))θx‖ ≤ C(µ − θ)−1(t − s)−θ‖x‖.

Below, we need estimates of the operator (∂P (t, s)/∂s)A(s). Such es-
timates are studied in [3, Section 6] by considering the adjoint operators
(A(t)∗)t∈[0,T ], whose existence is guaranteed by the density of each D(A(t)).
Note that D(A(t)∗) is not norm dense in general, but only σ(E∗, E)-dense.
However, if E is reflexive, Kato’s result says that a sectorial operator always
has norm dense domain (cf. [48, Section VIII.4]).

The assumptions in [3, Section 6] are:

(AT1)∗ A(t) are linear operators on a Banach space E and there are
constants w ∈ R, K ≥ 0 and φ ∈ (π/2, π) such that Σ(φ, w) ⊂
̺(A(t)∗) and for all λ ∈ Σ(φ, w) and t ∈ [0, T ],

‖R(λ, A(t)∗)‖ ≤
K

1 + |λ − w|
.

(AT2)∗ There are constants L ≥ 0 and µ, ν ∈ (0, 1] with µ + ν > 1 such
that for all λ ∈ Σ(φ, w) and s, t ∈ [0, T ],

‖Aw(t)∗R(λ,Aw(t)∗)((Aw(t)∗)−1−(Aw(s)∗)−1)‖≤L|t−s|µ(|λ|+1)−ν.

Clearly, assumption (AT1) implies (AT1)∗.

The following result is contained in [3, Theorem 6.4]. For two Banach
spaces E and F , we denote the space of bounded linear operators from E
to F by B(E, F ).
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Theorem 2.2. Under assumptions (AT) and (AT2)∗ there exists a fam-
ily (Q(t, s))0≤s≤t≤T of operators in B(E) such that for all 0 ≤ s < t ≤ T ,

dP (t, s)

ds
= Q(t, s) and Q(t, s)x = −P (t, s)A(s)x for all x ∈ D(A(s)).

Moreover , there is a constant C > 0 such that for all 0 ≤ s < t ≤ T ,

‖Q(t, s)‖ ≤ C(t − s)−1.

2.2.2. The (KT) hypotheses. Next we will briefly recall some results of
Kato and Tanabe (cf. [42, Section 5.3]). We say that (A(t))t∈[0,T ] satisfies
(KT) if it satisfies (AT1) and the following conditions:

(KT1) The function t 7→ (−Aw(t))−1 is continuously differentiable in
B(E).

(KT2) There are constants K > 0 and η ∈ (0, 1) such that for all s, t ∈
[0, T ],

∥∥∥∥
d

dt
(−Aw(t))−1 −

d

ds
(−Aw(s))−1

∥∥∥∥ ≤ K|t − s|η.

(KT3) There are constants L > 0 and ρ ∈ (0, 1) such that for every
λ ∈ Σ(φ, w) and t ∈ [0, T ],

∥∥∥
d

dt
R(λ, A(t))

∥∥∥ ≤
L

1 + |λ|ρ
.

The following theorem follows from [42, Theorem 5.3.3] and [43, Theorem
6.1].

Theorem 2.3. Assume that (KT) holds. Then there exists a unique
strongly continuous evolution family (P (t, s))0≤s≤t≤T that solves (2.1) on
D(A(s)) and for all x ∈ E, P (t, s)x is a classical solution of (2.1). More-
over , for all 0 ≤ s < t ≤ T the function ∂P (t, s)/∂s has a bounded extension
Q(t, s) and there is a constant C such that for all 0 ≤ s < t ≤ T ,

‖Q(t, s)‖ ≤ C(t − s)−1.

In [42] the following representation formula for P is used:

(2.6) P (t, s) = e(t−s)A(t) +

t\
s

e(t−τ)A(t)R(τ, s) dτ,

where (R(t, s))0≤s<t≤T ⊂ B(E) can be estimated by

(2.7) ‖R(t, s)‖ ≤ C(t − s)ρ−1, 0 ≤ s < t ≤ T.

Remark 2.4. As can be seen from [2, Section 7], conditions (AT2) and
(KT) without (AT1) are logically independent.
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2.3. γ-radonifying operators. Let (gk)k≥1 be an independent sequence of
N (0, 1)-random variables and H a separable Hilbert space with orthonormal
basis (hk)k≥1. An operator R ∈ B(H, E) is called γ-radonifying if the series∑

k gkRhk converges in L2(Ω; E). The subspace of γ-radonifying operators
will be denoted by γ(H, E). It becomes a Banach space by taking

‖R‖γ(H,E) :=
(
E

∥∥∥
∑

k

gkRhk

∥∥∥
2)1/2

as norm. This defines an operator ideal in L(H, E). Moreover, an operator
R ∈ B(H, E) is γ-radonifying if and only if RR∗ ∈ B(E∗, E) is the covariance
operator of a centred Radon Gaussian measure µ on (E, B(E)) and in that
case ‖R‖2

γ(H,E) =
T
E ‖x‖2 dµ(x).

In the case H = L2(0, T ) or L2(0, T ; H), the above operator-theoretic
notion is applied via representability which we will explain now.

A function Φ : [0, T ] → B(H, E) is said to belong scalarly to L2(0, T ; H)
if for every x∗ ∈ E∗ the function t 7→ Φ(t)∗x∗ belongs to L2(0, T ; H). We
say that Φ is H-strongly measurable if the mapping t 7→ Φ(t)h is strongly
measurable for all h ∈ H. We define γ(0, T ; H, E) to be the space of H-
strongly measurable functions Φ : (0, T ) → B(H, E) that are scalarly in
L2(0, T ; H) and induce an operator RΦ ∈ γ(L2(0, T ; H), E) by

RΦ(f) :=

T\
0

Φ(t)f(t) dt,

where the integral is defined as a Pettis integral (cf. [33]). In that case we
let

‖Φ‖γ(0,T ;H,E) := ‖RΦ‖γ(L2(0,T ;H),E).

If E has type 2 then we know from [34, Lemma 6.1] that L2(0, T ; γ(H, E))
injects canonically into γ(L2(0, T ; H), E) with norm estimate ‖Φ‖γ(0,T ;H,E)

≤ C2‖Φ‖L2(0,T ;γ(H,E)), where C2 is the type 2 constant of E and the function

Φ is in L2(0, T ; γ(H, E)).

If E is arbitrary but Φ has the special form Φ = fB for f ∈ L2(0, T ) and
B ∈ γ(H, E) it is known that (cf. [19, Lemma 2.1])

(2.8) ‖Φ‖γ(0,T ;H,E) = ‖f‖L2(0,T )‖B‖γ(H,E).

For more information on this topic we refer to [6, 22, 44].

2.4. γ-boundedness. A set T ⊂ B(E) is said to be γ-bounded if there
exists a constant M ≥ 0 such that

(
E

∥∥∥
N∑

n=1

γnTnxn

∥∥∥
2)1/2

≤ M
(
E

∥∥∥
N∑

n=1

γnxn

∥∥∥
2)1/2
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for all N ≥ 1 and all sequences (Tn)N
n=1 ⊂ T and (xn)N

n=1 ⊂ E. The least
constant M for which this estimate holds is called the γ-bound of T , and
denoted γ(T ). By the Kahane–Khinchin inequalities (see [26, Corollary 3.2]),
the exponent 2 may be replaced by any exponent p ∈ (0,∞).

Replacing the Gaussian sequence by a Rademacher sequence we obtain
the related notion of R-boundedness. In that case the R-bound will be de-
noted by R(T ). By a standard randomisation argument one can show that
every R-bounded collection is γ-bounded. If E has finite cotype, then both
notions of boundedness coincide (see [20, Proposition 12.11 and Theorem
12.27]).

The concept of R-boundedness was introduced by Berkson and Gillespie
in [5], but had already been used in the work of Bourgain [7]. R-boundedness
was then thoroughly studied in [10] by Clément, de Pagter, Sukochev, and
Witvliet. In [45] Weis proved a relation between R-boundedness and max-
imal Lp-regularity of Cauchy problems. For an extensive overview on the
subject we refer to [17, 25].

The next important result is due to Kalton and Weis [22, Proposition
4.11] (also see [35]).

Proposition 2.5. Assume dim(H) ≥ 1. For a strongly continuous op-
erator family N : (0, T ) → B(E) the following assertions are equivalent :

(1) The collection {N(t) : t ∈ (0, T )} is γ-bounded with constant C.
(2) For all Φ ∈ γ(0, T ; H, E) we have NΦ ∈ γ(0, T ; H, E) with

‖NΦ‖γ(0,T ;H,E) ≤ C‖Φ‖γ(0,T ;H,E).

2.5. Stochastic integration. We briefly recall some results from [33]. Let
the family (WH(t))t≥0 in B(H, L2(Ω,F , P )) be a cylindrical Brownian mo-
tion, that is,

(1) for each h ∈ H \{0}, (‖h‖−1WH(t)h)t≥0 is a standard real Brownian
motion,

(2) for every t1, t2 ∈ [0, T ] and h1, h2 ∈ H we have

E(WH(t1)h1 · WH(t2)h2) = min(t1, t2)[h1, h2]H .

We will assume that all real Brownian motions (WH(t)h)t≥0 are (Ft)t≥0-
adapted. Starting with step functions we can then define a stochastic integral
with respect to WH for H-valued L2-functions by standard methods. For a
function Φ : [0, T ] → B(H, E) that is scalarly in L2(0, T ; H) we say that Φ
is stochastically integrable (on [0, T ] with respect to WH) if there exists a
Y ∈ L2(Ω; E) such that for each x∗ ∈ E∗,

〈Y, x∗〉 =

T\
0

Φ(t)∗x∗ dWH(t) P -almost surely.
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The random variable Y is called the stochastic integral of Φ, written

Y =

T\
0

Φ(t) dWH(t).

This definition entails the following basic characterisation due to van
Neerven and Weis [33, Theorem 4.2]. It extends the results in [9, 39].

Proposition 2.6. For an H-strongly measurable Φ : [0, T ] → B(H, E)
that is scalarly in L2(0, T ; H), the following assertions are equivalent :

(1) Φ ∈ γ(0, T ; H, E).
(2) Φ is stochastically integrable on [0, T ].

Moreover , the following isometry holds:

E

∥∥∥
T\
0

Φ(t) dWH(t)
∥∥∥

2
= ‖Φ‖2

γ(0,T ;H,E).

In Section 3 we want to study regularity properties of the process (t, ω) 7→

(
Tt
0 P (t, s)B dWH(s))(ω) and other processes of this form. We need such

processes to be strongly measurable. The following lemma establishes their
strong progressive measurability.

Lemma 2.7. Assume that Φ : [0, T ]2 → B(H, E) is H-strongly measur-
able and for all t ∈ [0, T ], Φ(t, ·) is scalarly in L2(0, T ; H). If for all t ∈ [0, T ],
s 7→ Φ(t, s) is stochastically integrable, then the process ζ : [0, T ] × Ω → E
defined by

ζ(t) =

t\
0

Φ(t, s) dWH(s)

has a strongly progressive modification.

The technical proof is omitted; it is based on techniques of [15, Section
IV.30].

3. General existence and regularity results. Let E, A(t), H, B(t),
WH , and u0 be as in (1.1). The precise definition of the cylindrical Brownian
motion WH can be found in Section 2.5. Recall that B(t) is not necessarily
bounded and D(B(t)) = D(B) is constant in time.

An E-valued process {U(t)}t∈[0,T ] is called a mild solution of the problem
(1.1) if for all 0 ≤ s < t ≤ T the operator P (t, s)B(s) : D(B) → E has a
continuous extension to a bounded operator PB(t, s) : H → E and for all t ∈
[0, T ] the B(H, E)-valued process s 7→ PB(t, s) is stochastically integrable
on (0, t) and

U(t) = P (t, 0)u0 +

t\
0

PB(t, s) dWH(s)
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almost surely. When no confusion can arise we will write

t\
0

P (t, s)B(s) dWH(s) :=

t\
0

PB(t, s) dWH(s).

The uniqueness of a mild solution of (1.1) follows directly from the
uniqueness of the evolution family. It is not true in general that (1.1) has a
mild solution, even in the autonomous case and for one-dimensional time-
independent bounded operators B. In [18, 33] the authors constructed simple
counterexamples on C(K) and Lp with 1 ≤ p < 2 for which no mild solution
exists.

The following obvious characterisation of the existence of mild solutions
follows from Proposition 2.6.

Proposition 3.1. The following assertions are equivalent :

(1) The problem (1.1) has a mild solution.
(2) For all t ∈ [0, T ] the function s 7→ P (t, s)B(s) is in γ(0, t; H, E).

In [14, 33] the authors consider weak solutions of (1.1) for A = A(t) and
B = B(t) independent of t and B ∈ B(H, E).

An E-valued process U is called a weak solution of (1.1) if the paths
t 7→ U(t) are almost surely integrable and for all x∗ ∈ D(A∗) and t ∈ [0, T ]
we have almost surely

〈U(t), x∗〉 − 〈u0, x
∗〉 =

t\
0

〈U(s), A∗x∗〉 ds + WH(t)B∗x∗.

It is shown there that the concepts of weak solutions and mild solutions
are equivalent. If A(t) is time-dependent the definition of a weak solution
does not make sense in general since

⋂
t∈[0,T ] D(A(t)∗) may be empty. Below

we give a definition of a weak solution where “the functionals depend on t”
as well. This is a well-known technique for equations like (2.1). It is easily
seen that the definition coincides with the above definition in the case A
does not depend on time.

To motivate our definition of a weak solution we make a formal calcula-
tion. We rewrite (1.1) as

(3.1)
U ′(s) = A(s)U(s) +

B(s)dWH(s)

ds
, s ∈ [0, T ],

U(0) = u0.

Let t ∈ [0, T ] be arbitrary and let ϕ ∈ C1([0, t]; E∗) be such that for all
s ∈ [0, t] we have ϕ(s) ∈ D(A(s)∗), and s 7→ A(s)∗ϕ(s) is in C([0, t]; E∗). If
we apply ϕ(s) on both sides of (3.1) and integrate over [0, t] it follows that
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almost surely,

t\
0

〈U ′(s), ϕ(s)〉 ds =

t\
0

〈U(s), A(s)∗ϕ(s)〉 ds +

t\
0

B(s)∗ϕ(s) dWH(s).

We may integrate by parts to conclude that almost surely,

(3.2) 〈U(t), ϕ(t)〉 − 〈u0, ϕ(0)〉 −
t\
0

〈U(s), ϕ′(s)〉 ds

=

t\
0

〈U(s), A(s)∗ϕ(s)〉 ds +

t\
0

B(s)∗ϕ(s) dWH(s).

Motivated by this, we introduce the following definition for B : [0, T ] →
B(H, E) such that for all h ∈ H, s 7→ B(s)h is strongly measurable andTT
0 ‖B(s)‖2 ds < ∞. Weak solutions for unbounded B(t) are defined and

characterised in Section 4. For t ∈ [0, T ], let

Gt := {ϕ ∈ C1([0, t]; E∗) | ∀s ∈ [0, t], ϕ(s) ∈ D(A(s)∗)

and s 7→ A(s)∗ϕ(s) ∈ C([0, t]; E∗)}.

We call a process (U(t))t∈[0,T ] a weak solution of (1.1) if almost surely t 7→

U(t) is in L1(0, T ; E) and for all t ∈ [0, T ] and all ϕ ∈ Gt the equation (3.2)
holds almost surely.

To relate weak and mild solutions we need a large class of functions ϕ
as above. For this we introduce the following condition:

(C) For all t ∈ [0, T ], there is a σ(E∗, E)-sequentially dense subspace Ft

of E∗ such that for all x∗ ∈ Ft the function ϕ(s) := P (t, s)∗x∗ is in
C1([0, t]; E∗) and ϕ(s) ∈ D(A(s)∗) for all s ∈ [0, t] and

(3.3)
d

ds
ϕ(s) = −A(s)∗ϕ(s).

If (AT) and (AT2)∗ hold, then (C) holds with Ft = D((A(t)∗)2). This
follows from [2, Theorem 6.1]) and [3, p. 1176]. If E is reflexive, by Kato’s
result, one may take Ft = D(A(t)∗). If (KT) holds, then it holds as well for
(A(t)∗)t∈[0,T ], and as in the previous case, one can check that in the reflexive
case (C) is satisfied with Ft = D(A(t)∗) (cf. [43, Theorem 6.3]). For non-
reflexive spaces we do not know if (C) holds under condition (KT). However,
by [42, Theorem 5.3.2] a weak solution is always unique. If A = A(s) is
independent of s and generates a strongly continuous semigroup, then (C)
holds with F = Ft = D(A⊙), where A⊙ denotes the sun dual of A (cf. [30]).

The following proposition gives the relation between a weak and a mild
solution of (1.1).
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Proposition 3.2. Let B : [0, T ] → B(H, E) be such that for all h ∈ H,

t 7→ B(t)h is strongly measurable and
TT
0 ‖B(t)‖2 dt < ∞. Assume (C) holds.

For a process U : [0, T ] × Ω → E the following assertions are equivalent :

(1) U is a mild solution of (1.1) and almost surely U ∈ L1(0, T ; E).
(2) U is a weak solution of (1.1).

In particular , a weak solution is unique.

Condition (C) is only needed in (2)⇒(1). The result may be proved
similarly to [14, Theorem 5.4] and [33, Theorem 7.1].

The following result extends [13, Theorem 1], [29, Theorem 2.2], and
[41, Theorem 1.2] in the special case of additive noise. The short proof given
below is an obvious adaption of the arguments in [13].

Theorem 3.3. If

sup
t∈[0,T ]

‖s 7→ (t − s)−αP (t, s)B(s)‖γ(0,t;H,E) < ∞

for some α ∈ (0, 1/2), then for every t ∈ [0, T ], the mapping [0, t] ∋ s 7→
P (t, s)B(s) is stochastically integrable and

[0, T ] ∋ t 7→
t\
0

P (t, s)B(s) dWH(s)

has a modification with continuous paths. In particular , there is a mild so-
lution of (1.1) and it has a continuous version.

Proof. It follows from the assumption and Proposition 2.6 that s 7→
(t − s)−αP (t, s)B(s) is stochastically integrable on [0, t] for every t ∈ [0, T ].
Hence, we may define ζ1 : [0, T ] × Ω → E as

ζ1(t) =

t\
0

(t − s)−αP (t, s)B(s) dWH(s).

By Proposition 2.6 and the Kahane–Khinchin inequalities we find that for
every 1 ≤ p < ∞ and t ∈ [0, T ],

E‖ζ1(t)‖
p ≃ ‖s 7→ (t − s)−αP (t, s)B(s)‖p

γ(0,t;H,E)

≤ sup
t∈[0,T ]

‖s 7→ (t − s)−αP (t, s)B(s)‖p
γ(0,t;H,E) < ∞.

Since ζ1 is measurable by Lemma 2.7, we may integrate over [0, T ] to obtain
ζ1 ∈ Lp(0, T ; Lp(Ω; E)) for every 1 ≤ p < ∞. Now, Fubini’s theorem implies
that for all p ∈ [1,∞) and almost all ω ∈ Ω, ζ1(·, ω) ∈ Lp(0, T ; E). Let us fix
a version of ζ1, a number p such that αp > 1, and a set Ω0 with P (Ω0) = 1
such that ζ1(·, ω) ∈ Lp(0, T ; E) for all ω ∈ Ω0.
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The stochastic integrability assertion follows from [33, Corollary 4.4].
Hence, we may define ζ2 : [0, T ] × Ω → E as

ζ2(t) =

t\
0

P (t, s)B(s) dWH(s).

Lemma 2.7 shows that ζ2 is progressively measurable.
Next, we check that there exists a continuous version of ζ2. It is well

known (cf. [13, Lemma 1] and [41, Lemma 2.1(i)]) that for α ∈ (0, 1) and p∈
(1,∞) such that pα > 1 and f ∈ Lp(0, T ; E), the function Rαf : [0, T ]→E
defined by

Rαf(t) =

t\
0

(t − s)α−1P (t, s)f(s) ds

is continuous and satisfies

‖Rαf‖C([0,T ];E) ≤ C‖f‖Lp(0,T ;E)

for some constant C > 0. Therefore, it is sufficient to show that for all
t ∈ [0, T ] and almost all ω ∈ Ω0 we have

(3.4) ζ2(t, ω) =
sin(πα)

π
(Rαζ1(·, ω))(t).

To check (3.4), fix t ∈ [0, T ]. Strong measurability of both sides in (3.4) and
the Hahn–Banach theorem show that it is sufficient to check that for all
x∗ ∈ E∗, almost surely we have

〈ζ2(t), x
∗〉 =

sin(πα)

π

t\
0

〈(t − s)α−1P (t, s)ζ1(s), x
∗〉 ds.

This follows from a standard argument via the stochastic Fubini theorem
(see [13]).

Next we will illustrate how Theorem 3.3 may be used if the noise is an
E-valued Brownian motion. Consider

(3.5)
dU(t) = A(t)U(t) dt + dW (t), t ∈ [0, T ],

U(0) = u0,

where (A(t),D(A(t)))t∈[0,T ] is as before, W is an E-valued Brownian motion,
and u0 ∈ E.

First we rewrite (3.5) in the form (1.1). Let H be the reproducing kernel
Hilbert space for the E-valued Gaussian random variable W (1), and let
B : H → E be the canonical inclusion operator. Then B ∈ γ(H, E) and
W = BWH (see [9, 33]).

We can extend [13, Theorem 2] to the non-autonomous setting. Without
much effort the proof works for type 2 spaces as well, and we will present it
in this setting.
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Corollary 3.4. Let E be a type 2 Banach space and let W = BWH be
a Brownian motion. Then there is a mild solution of problem (3.5) and it
has a continuous modification.

Proof. The type 2 assumption and (2.8) imply that for all α ∈ (0, 1/2)
and t ∈ [0, T ],

‖s 7→ (t−s)−αP (t, s)B‖2
γ(0,t;H,E) ≤ C2

2‖s 7→ (t − s)−αP (t, s)B‖2
L2(0,t;γ(H,E))

≤ C2
2C2‖s 7→ (t − s)−αB‖2

L2(0,t;γ(H,E))

= C2
2 C̃2t−2α+1‖B‖2

γ(H,E)

≤ C2
2 C̃2T−2α+1‖B‖2

γ(H,E).

The result now follows from Theorem 3.3.

Going beyond type 2 spaces requires some extra regularity of the evolu-
tion family.

Corollary 3.5. Let W = BWH be a Brownian motion. Assume that
for all 0 ≤ s < t ≤ T , ∂P (t, s)/∂s has a bounded extension Q(t, s) and that
there exists a constant C > 0 such that for all 0 ≤ s < t ≤ T ,

(3.6) ‖Q(t, s)‖ ≤ C(t − s)−1.

Then there is a mild solution of problem (3.5) and it has a continuous mod-
ification.

Note that condition (3.6) is satisfied in many situations under conditions
(AT1), (AT2) and (AT2)∗, and also under (KT) (cf. Theorems 2.2 and 2.3).
Another condition for this may be found in [46, Theorem 1 and Remark].

Proof. Let H and B ∈ γ(H, E) be as in the section preceding Corollary
3.4. Let α ∈ (0, 1/2) be arbitrary. Fix β ∈ (α, 1/2). Let C be such that for
all s, t ∈ [0, T ], ‖P (t, s)‖ ≤ C and (3.6) holds. It follows from [25, Example
2.18] that for all t ∈ [0, T ] the set P(t) := {(t − s)−α+βP (t, s) : s ∈ [0, t]} is
R-bounded with

R(P(t)) ≤ ‖t−α+βP (t, 0)‖

+

t\
0

[(β − α)(t − s)−α+β−1‖P (t, s)‖ + (t − s)−α+β‖Q(t, s)‖] ds

≤ ((β − α) + 1)C

t\
0

(t − s)−α+β−1 ds + Ct−α+β

≤ C(1 + (β − α)−1)T−α+β + CT−α+β =: C1 < ∞.
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By Proposition 2.5 and (2.8) we have, for all α ∈ (0, 1/2),

‖s 7→ (t − s)−αP (t, s)B‖2
γ(0,t;H,E) ≤ C2

1‖s 7→ (t − s)−βB‖2
γ(0,t;H,E)

= C2
1 (−2β + 1)−1t−2β+1‖B‖2

γ(H,E)

≤ C2
1 (−2β + 1)−1T−2β+1‖B‖2

γ(H,E)

and the result follows from Theorem 3.3.

Finally, we discuss an example where the A(t) are bounded.

Example 3.6. Let W = BWH be a Brownian motion. Assume that
A(t) ∈ B(E) for every t ∈ [0, T ] and t 7→ A(t) is continuous. Then there is
a mild solution of problem (3.5) and it has a continuous modification.

Proof. By classical results (see [38, Section 5.1]), (A(t))t∈[0,T ] generates
a unique evolution family (P (t, s))0≤s≤t≤T that solves (2.1) on E. Moreover,

Q(t, s) :=
∂P (t, s)

∂s
= −P (t, s)A(s), 0 ≤ s ≤ t ≤ T,

and hence ∂P (t, s)/∂s is uniformly continuous on {(t, s) ∈ [0, T ] : s ≤ t}.
Now the result follows from Corollary 3.5.

Remark 3.7. In Corollaries 3.4 and 3.5 one could also consider time-
dependent B : [0, T ] → L(H, E). It is obvious from the proofs that it is
sufficient to know that for some β ∈ (0, 1/2),

sup
t∈[0,T ]

‖s 7→ (t − s)−βB(s)‖γ(0,t;H,E) < ∞.

Moreover, if E has type 2, then by Hölder’s inequality it is enough to assume
that B ∈ Lp(0, T ; γ(H, E)) for some p > 2.

4. Existence and regularity in the parabolic case. In this sec-
tion we will study space and time regularity results in the parabolic case.
Throughout this section we assume that (AT) from Section 2.2 holds for
(A(t))t∈[0,T ] with parameters µ and ν. Recall that κµ,ν = µ + ν − 1 ∈ (0, 1].
It will be convenient to take the initial value to be 0, so in this section we
consider

(4.1)
dU(t) = A(t)U(t) dt + B(t) dWH(t), t ∈ [0, T ],

U(0) = 0,

where E, A(t), H, B(t), and WH are as in Section 3.

We prove a version of [13, Lemma 2] and [41, Lemma 2.1(ii)] for arbitrary
Banach spaces under the (AT) condition. A comparison with both results is
made in Remark 4.2. Since the proof is different from that of [13, Lemma 2],
and as it is the cornerstone of the results to follow, we include the full proof.
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Lemma 4.1. Let α ∈ (0, 1), δ ∈ [0, 1], and p ∈ [1,∞) be such that
α−1/p−δ > 0. For f ∈ Lp(0, T ; E) define the function Rαf : [0, T ] → E as

(4.2) (Rαf)(t) =

t\
0

(t − s)α−1P (t, s)f(s) ds.

Then for every f ∈ Lp(0, T ; E) we have (Rαf)(t) ∈ D((w − A(t))δ) for
all t ∈ [0, T ]. Moreover , the mapping t 7→ (w − A(t))δ(Rαf)(t) is λ-Hölder
continuous and there is a constant C > 0 such that for all f ∈ Lp(0, T ; E),

‖t 7→ (w − A(t))δ(Rαf)(t)‖Cλ([0,T ];E) ≤ C‖f‖Lp(0,T ;E)

for any λ > 0 satisfying

(1) λ < α − 1/p − δ if α − 1/p − δ ≤ κµ,ν ,
(2) λ ≤ κµ,ν if α − 1/p − δ > κµ,ν.

Proof. We already saw in the proof of Theorem 3.3 that the integral
in (4.2) is well defined and that Rαf ∈C([0, T ]; E). Moreover,

(w − A(0))δ(Rαf)(0) = 0.

So to prove the lemma it is sufficient to show that
there is a constant C ′ such that for all f ∈ Lp(0, T ; E) and for all 0 ≤
s < t ≤ T ,

(4.3) ‖(w − A(t))δ(Rαf)(t) − (w − A(s))δ(Rαf)(s)‖E

≤ C ′|t − s|λ‖f‖Lp(0,T ;E).

We claim that for all t ∈ [0, T ] the mapping

r 7→ (t − r)α−1(w − A(t))δP (t, r)f(r)

is integrable on [0, t] and

(4.4) (w − A(t))δ(Rαf)(t) =

t\
0

(t − r)α−1(w − A(t))δP (t, r)f(r) dr.

To show this, note that for all t ∈ (r, T ] we have P (t, r)f(r) ∈ D(A(t)) and
r 7→ (w −A(t))δP (t, r)f(r) is strongly measurable, so we only have to show
that

(4.5)

t\
0

(t − r)α−1‖(w − A(t))δP (t, r)f(r)‖ dr < ∞.

We will show something more general below. From (2.2) and Hölder’s in-
equality we deduce that for every s ∈ [0, t),
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(4.6)

t\
s

(t − r)α−1‖(w − A(t))δP (t, r)f(r)‖ dr

≤ C

t\
s

(t − r)α−1−δ‖f(r)‖ dr ≤ C
( t\

s

(t − r)(α−1−δ)p′ dr
)1/p′

‖f‖Lp(0,T ;E)

= C
1

((α − 1 − δ)p′ + 1)1/p′
(t − s)α−1/p−δ‖f‖Lp(0,T ;E).

In particular, (4.5) and hence (4.4) hold.

For the proof of (4.3) we use (4.4) and split the integral into three parts,

‖(w − A(t))δ(Rαf)(t) − (w − A(s))δ(Rαf)(s)‖

≤
∥∥∥

t\
s

(t − r)α−1(w − A(t))δP (t, r)f(r) dr
∥∥∥

+
∥∥∥

s\
0

[(t − r)α−1 − (s − r)α−1](w − A(t))δP (t, r)f(r) dr
∥∥∥

+
∥∥∥

s\
0

(s − r)α−1((w − A(t))δP (t, r) − (w − A(s))δP (s, r))f(r) dr
∥∥∥

=: I1 + I2 + I3.

We estimate I1, I2, and I3 separately. In particular, we show that each of
the integrals exists absolutely. We already showed in (4.6) that

I1 ≤ C
1

((α − 1 − δ)p′ + 1)1/p′
(t − s)α−1/p−δ‖f‖Lp(0,T ;E).

For I2, note that by (2.2) for all x ∈ E and r ∈ [0, s) we have

((s − r)α−1 − (t − r)α−1)‖(w − A(t))δP (t, r)x‖

≤ C((s − r)α−1 − (t − r)α−1)(t − r)−δ‖x‖

≤ C((s − r)α−1−δ − (t − r)α−1−δ)‖x‖.

It follows from this and Hölder’s inequality that

I2 ≤ C

s\
0

((s − r)α−1−δ − (t − r)α−1−δ)‖f(r)‖ dr

≤ C
( s\

0

((s − r)α−1−δ − (t − r)α−1−δ)p′ dr
)1/p′

‖f‖Lp(0,T ;E).
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Using the estimate (a − b)q ≤ aq − bq for q ≥ 1 and a ≥ b ≥ 0 we obtain

I2 ≤ C‖f‖Lp(0,T ;E)

( s\
0

(s − r)(α−1−δ)p′ − (t − r)(α−1−δ)p′ dr
)1/p′

=
C‖f‖Lp(0,T ;E)

((α − 1 − δ)p′ + 1)1/p′
(sα−1−δ+1/p′ + (t − s)α−1−δ+1/p′ − tα−1−δ+1/p′)

≤
C‖f‖Lp(0,T ;E)

((α − 1 − δ)p′ + 1)1/p′
(t − s)α−1/p−δ.

In order to estimate I3 fix some η ∈ (0, α − 1/p − δ). For x ∈ E we have

‖(w − A(t))δP (t, r) − (w − A(s))δP (s, r))x‖

= ‖[(w − A(t))δP (t, s) − (w − A(s))δ]P (s, r)x‖

≤ ‖[(w − A(t))δP (t, s) − (w − A(s))δe(t−s)A(s)]P (s, r)x‖

+ ‖[(w − A(s))δe(t−s)A(s) − (w − A(s))δ]P (s, r)x‖

(i)

≤ C(t − s)κµ,ν‖(w − A(s))δP (s, r)x‖

+ C(t − s)α−1/p−δ−η‖(w − A(s))α−1/p−ηP (s, r)x‖

(ii)

≤ C(t − s)κµ,ν (s − r)−δ‖x‖

+ C(t − s)α−1/p−δ−η(s − r)−α+1/p+η‖x‖,

where for (i) we used (2.4) and the uniform analyticity (AT1), and for (ii)
we used (2.2). It follows from Hölder’s inequality that

I3 ≤ C(t − s)κµ,ν

s\
0

(s − r)α−1−δ‖f(r)‖ dr

+ C(t − s)α−1/p−δ−η
s\
0

(s − r)−1/p′+η‖f(r)‖ dr

≤ C(t − s)κµ,ν
1

((α − 1 − δ)p′ + 1)1/p′
T (α−1−δ)p′+1‖f‖Lp(0,T ;E)

+ C(t − s)α−1/p−δ−η 1

(p′η)1/p′
T η‖f‖Lp(0,T ;E).

Putting all the previous estimates together we get

‖(w − A(t))δ(Rαf)(t) − (w − A(s))δ(Rαf)(s)‖

≤ (C1(t − s)α−1/p−δ + C2[(t − s)κµ,ν + (t − s)α−1/p−δ−η])‖f‖Lp(0,T ;E),

where the constants depend on η, C, T, α, p, δ and on the constants in (AT1)
and (AT2). Now the statement can easily be verified.
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Remark 4.2. In [13, Lemma 2], for time-independent A(t), also func-
tions f ∈ Lp(0, T, E) with (w − A)γf ∈ Lp(0, T ; E) for some γ ∈ [0, 1] are
considered. Using such functions, Da Prato, Kwapień and Zabczyk obtain a
result with the extra parameter γ. The statement in Lemma 4.1 also has a
version with such a γ. This may be proved using [40, Equation (2.13)].

In [41, Lemma 2.1(ii)] a similar result is proved for D(A(t)) constant
in time and A(t) satisfying the condition of Tanabe [42, Section 5.2]. In
[41, Lemma 2.1(ii)] the choice of λ is only restricted by α, p, and δ and
not by the parameter appearing in the assumption on A(t). This is due to
condition (P4) in [41], which states that for all τ ∈ (0, 1) the fractional do-
main spaces coincide, i.e. D((w−A(0))τ ) = D((w−A(t))τ ), with equivalent
norm uniformly in t ∈ [0, T ]. In Lemma 4.1 we do not need such an assump-
tion. However, under the same set of assumptions as in [41, Lemma 2.1(ii)]
with the same proofs the assertion of Lemma 2.1(ii) is true in arbitrary
Banach spaces.

We can now prove the following space-time regularity result.

Theorem 4.3. Let α ∈ (0, 1/2) and assume

sup
t∈[0,T ]

‖s 7→ (t − s)−αP (t, s)B(s)‖γ(0,t;H,E) < ∞.

Then there is a mild solution U of (4.1) and it has a modification with paths
that satisfy t 7→ (w − A(t))δU(t) ∈ Cλ([0, T ]; E) for any λ > 0 and δ ≥ 0
such that

α − δ ≤ κµ,ν and λ + δ < α,(4.7)

or
α − δ > κµ,ν and λ ≤ κµ,ν .(4.8)

The condition (4.8) is more limiting than (4.7). If κµ,ν ≥ 1/2 the condi-
tion α − δ ≤ κµ,ν in (4.7) is always satisfied. Recall that the operator B(t)
is not necessarily bounded.

Proof. We may define ζ1 : [0, T ] × Ω → E by

ζ1(t) =

t\
0

(t − s)−αP (t, s)B(s) dWH(s).

It follows from Proposition 2.6 and the Kahane–Khinchin inequalities that
for all 1 ≤ p < ∞ and all t ∈ [0, T ],

E‖ζ1(t)‖
p ≃ ‖s 7→ (t − s)−αP (t, s)B(s)‖p

γ(0,t;H,E)

≤ sup
r∈[0,T ]

‖s 7→ (r − s)−αP (r, s)B(s)‖p
γ(0,r;H,E) < ∞.

From Lemma 2.7 we deduce that ζ1 is measurable, and we may integrate
over [0, T ] to find that ζ1 ∈ Lp(0, T ; Lp(Ω; E)) for all 1 ≤ p < ∞. By the
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Fubini theorem it follows that ζ1(·, ω) ∈ Lp(0, T ; E) for all p ∈ [1,∞) and
almost all ω ∈ Ω.

Choose δ ≥ 0 and λ > 0 according to (4.7). Let p ∈ [1,∞) be so large that
λ < α− 1/p− δ. Let Ω0 with P (Ω0) = 1 be such that ζ1(·, ω) ∈ Lp(0, T ; E)
for all ω ∈ Ω0. We may apply the first part of Lemma 4.1 to deduce that
t 7→ π

sin(πα)(w − A(t))δRαζ1(t, ω) is λ-Hölder continuous for each ω ∈ Ω0.

In the same way as in Theorem 3.3 one can see that [0, t] ∋ s 7→
P (t, s)B(s) is stochastically integrable. We define ζ2 : [0, T ] × Ω → E as

ζ2(t) =

t\
0

P (t, s)B(s) dWH(s).

As in the proof of Theorem 3.3 we may conclude that ζ2 has a modification
such that t 7→ (w − A(t))δζ2(t) has paths in Cλ

0 ([0, T ]; E).

Next, choose δ ≥ 0 and λ > 0 according to (4.8). Let p ∈ [1,∞) be so
large that α− δ− 1/p > κµ,ν . We can repeat the above arguments using the
second part of Lemma 4.1.

This enables us to extend [13, Proposition 2] to the non-autonomous case
in type 2 spaces.

Corollary 4.4. Let E be a type 2 space and B ∈ Lp(0, T ; γ(H, E))
for some p > 2. Then there exists a mild solution U of (4.1) and it has a
modification such that the paths satisfy t 7→ (w −A(t))δU(t) ∈ Cλ([0, T ]; E)
for every choice of λ > 0 and δ ≥ 0 with

(1) λ + δ < 1/2 − 1/p if κµ,ν ≥ 1/2 − 1/p,
(2) δ < 1/2 − 1/p − κµ,ν and λ ≤ κµ,ν if κµ,ν < 1/2 − 1/p.

Notice that in (2) the space regularity 0 < δ < 1/2 can be as close to
1/2 − 1/p as we wish, since (AT1) and (AT2) hold for smaller µ and ν as
well. The time regularity is however also limited by the values of µ and ν.

Proof. As in Corollary 3.4 and Remark 3.7 one can show that

(4.9) sup
t∈[0,T ]

‖s 7→ (t − s)−αP (t, s)B(s)‖γ(0,t;H,E) < ∞

for every 0 < α < 1/2 − 1/p. Now (1) and (2) follow from Theorem 4.3.

For general Banach spaces we need again an additional assumption to
obtain a space-time regularity result.

Corollary 4.5. Assume that (3.6) holds and let B : [0, T ] → L(H, E)
be such that supt∈[0,T ] ‖(t − ·)−αB(·)‖γ(0,t;H,E) < ∞ for some α ∈ (0, 1/2).
Then there exists a mild solution U of (4.1) and it has a modification such
that the paths satisfy t 7→ (w − A(t))δU(t) ∈ Cλ([0, T ]; E) for every choice
of λ > 0 and δ ≥ 0 with
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(1) λ + δ < α if κµ,ν ≥ α,
(2) δ < α − κµ,ν and λ ≤ κµ,ν if κµ,ν < α.

By Proposition 3.2, the solution U is the unique weak solution of (4.1)
as well.

Proof. As in Corollary 3.5 and Remark 3.7 one can show that (4.9) holds
for all α′ < α, so the result follows from Theorem 4.3.

Remark 4.6. The results in Theorem 4.3 and Corollary 4.4 may be
proved under conditions different than (AT) as well. Indeed, for each theory
of evolution families for which the assertions of Theorem 2.1 and (2.4) hold
for a certain κµ,ν = µ + ν − 1 > 0, one can prove Lemma 4.1. This lemma
is the main ingredient in the proofs.

In a theory of evolution families where some of the estimates (2.2), (2.3)
or (2.4) are missing, it is still possible to prove space or time regularity via
a version of Lemma 4.1.

As explained in Remark 4.2, Theorem 4.3 and Corollaries 4.4 and 4.5
also have versions under condition (P) from [41].

To end this section we extend the definition of a weak solution to the
case where each B(t) : D(B) ⊂ H → E is a densely defined closed operator
such that for all h ∈ D(B), t 7→ B(t)h is strongly measurable. We note that
although D(B(t)) is assumed to be constant in time, D(B(t)∗) may vary.
For t ∈ [0, T ] let

Gt,B := {ϕ ∈ Gt | ∀s ∈ [0, t), ϕ(s) ∈ D(B(s)∗)

and s 7→ B(s)∗ϕ(s) ∈ L2(0, t; H)}.

A process (U(t))t∈[0,T ] is said to be a weak solution of (1.1) if almost surely

t 7→ U(t) is in L1(0, T ; E) and, for all t ∈ [0, T ] and all ϕ ∈ Gt,B, the equality

(3.2) holds almost surely. If each B(s) is bounded and
TT
0 ‖B(s)‖2 ds < ∞,

then Gt,B = Gt for all t ∈ [0, T ] and hence the definition coincides with that
in Section 3.

Under condition (AT) and an extra assumption, again weak and mild
solutions coincide.

Proposition 4.7. Assume (C) and (AT) hold , and there are constants
w ∈ R, C > 0, and δ < 1/2 such that for all t ∈ [0, T ] and h ∈ D(B),

(4.10) ‖(w − A(t))−δB(t)h‖ ≤ C‖h‖.

Assume that for all h ∈ D(B), t 7→ B(t)h is strongly measurable. Then for
a process U : [0, T ] × Ω → E the following assertions are equivalent :

(1) U is a mild solution of (1.1) and U ∈ L1(0, T ; E) almost surely.
(2) U is a weak solution of (1.1).

In particular , a weak solution is unique.
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Condition (C) is only needed in (2)⇒(1). The proof is left to the reader.
Notice that (4.10) ensures D(A(t)∗) ⊂ D(((w −A(t))δ)∗) ⊂ D(B(t)∗) for all
t ∈ [0, T ]. Indeed, for each t ∈ [0, T ] there is a constant C(t) such that for
all x∗ ∈ D(((w − A(t))δ)∗) and h ∈ D(B),

|〈B(t)h, x∗〉| = |〈(w − A(t))−δB(t)h, ((w − A(t))δ)∗x∗〉| ≤ C(t)‖h‖ ‖x∗‖.

Whenever A(t) and B(t) are independent of t, this shows that under con-
dition (4.10) one can define a weak solution by (3.1) also for unbounded
operators B (cf. [19]).

5. Examples. In this section some applications of the results of Sec-
tion 4 to stochastic partial differential equations are discussed.

As explained in Section 2.2, there are many examples of operator families
(A(t),D(A(t)))t∈[0,T ] on Banach spaces that satisfy the conditions of Corol-
laries 4.4 and 4.5. The first two examples below are taken from [1, 40, 47] and
are applications of Corollaries 4.4 and 4.5, respectively. The last example is
an application of Theorem 2.1 and illustrates how unbounded operators B
may be used in spatio-temporal white noise problems.

Example 5.1. Consider

(5.1)

du(t, x) = A(t, x, D)u(t, x) dt + dw(x, t), t∈ (0, T ], x∈ S,

C(t, x, D)u(t, x) = 0, t ∈ (0, T ], x ∈ ∂S,

u(0, x) = 0, x ∈ S.

Here S is a bounded domain in R
n with boundary of class C2 and outer unit

normal vector n(x). Let ∂S be the disjoint union of two closed (possibly
empty) subsets Γ0, Γ1 and

A(t, x, D) =

n∑

i,j=1

aij(t, x)DiDj +

n∑

i=1

ai(t, x)Di + a0(t, x),

C(t, x, D) =
n∑

i=1

ci(t, x)Di + c0(t, x).

We assume that the coefficients are real and satisfy

aij , ai, a0 ∈ Cµ([0, T ]; C(S)), ci, c0 ∈ Cµ([0, T ]; C1(S))

for i, j = 1, . . . , n and a constant 1/2 < µ ≤ 1. Furthermore, let (aij) be
symmetric and uniformly elliptic, i.e. there is a constant κ > 0 such that

(5.2)
n∑

i,j=1

aij(t, x)ξiξj ≥ κ|ξ|2, x ∈ S, t ∈ [0, T ], ξ ∈ R
n.

Finally, c0 = 1 and ci = 0 on Γ0 for all i = 1, . . . , n and there is a β > 0
such that for all x ∈ Γ1 and t ∈ [0, T ],

∑n
i=1 ck(t, x)nk(x) ≥ β.
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The noise term is given by

(5.3) w(t, x) =
∑

k≥1

bk(t, x)wk(t),

where bk : [0, T ] × S → R for k ≥ 1 are measurable functions and it is
assumed that

(5.4)

T\
0

(\
S

( ∑

k≥1

b2
k(t, x)

)q/2
dx

)r/q
dt < ∞,

where q ∈ [2,∞) and r ∈ (2,∞) are fixed.

We model the problem (5.1) on Ep = Lp(S) for 2 ≤ p ≤ q as a problem of
the form (3.5). Here Ap(t) is the realisation on Ep of A(t, x, D) with domain

(5.5) D(Ap(t)) = {f ∈ W 2,p(S) |C(t, ·, D)f = 0 on ∂S}.

Then as explained in [1, 40, 47], (Ap(t),D(Ap(t))) satisfies (AT) with con-
stants µ as above and ν = 1/2. Take H = l2 with standard basis (ek)k≥1

and let B : [0, T ] → B(H, Ep) be defined as B(t)h =
∑

k≥1[h, ek]bk(t). This
is well defined, and it follows from the Kahane–Khinchin inequalities and
(5.4) that B ∈ Lr(0, T ; γ(H, Ep)).

We are now in the situation of Corollary 4.4(2) and infer that (5.1) has
a mild solution U such that t 7→ (w − A(·))δU(t) ∈ Cλ([0, T ]; Ep) for every
choice of λ > 0 and δ ≥ 0 with

λ + δ < 1/2 − 1/r if µ ≥ 1 − 1/r,

δ < 1 − 1/r − µ and λ ≤ µ − 1/2 if µ < 1 − 1/r.

By Proposition 3.2, U is a weak solution as well.

Moreover, if each bk is constant in time, one may let r tend to infinity
to obtain regularity for all δ < 1/2− η and λ ≤ η, where 0 < η < µ− 1/2 is
arbitrary.

In case Γ1 = ∅ one may take µ ∈ (0, 1] and ν = 1. If µ ∈ (0, 1/2), one
may use Corollary 4.4(2) to obtain a solution

(5.6) U ∈ Cλ([0, T ];D((w − A(0))δ))

for any choice λ > 0 and δ ≥ 0 with

λ + δ < 1/2 − 1/r if µ ≥ 1/2 − 1/r,

δ < 1/2 − 1/r − µ and λ ≤ µ if µ < 1/2 − 1/r.

Again if the bk are time-independent one may let r → ∞.

If one chooses p and q large enough, then it follows via Sobolev imbedding
that U = 0 on ∂S×(0, T ] and U ∈ Cλ([0, T ]; C2δ(S)) with λ and δ as before.

Next we consider an application of Corollary 4.5.
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Example 5.2. Consider

(5.7)

du(t, x) = A(t, x, D)u(t, x) dt + dw(t, x), t∈ (0, T ], x∈ S,

C(t, x, D)u(t, x) = 0, t ∈ (0, T ], x ∈ ∂S,

u(0, x) = 0, x ∈ S.

Here S is a bounded domain in R
n with boundary of class C2 and outer

unit normal vector n(x), and

A(t, x, D) =
n∑

i,j=1

Di(aij(t, x)Dj) + a0(t, x),

C(t, x, D) =

n∑

i,j=1

aij(t, x)ni(x)Dj.

We assume that the coefficients are real and satisfy

aij ∈ Cµ([0, T ]; C(S)), aij(t, ·) ∈ C1(S), Dkaij ∈ C([0, T ] × S),

a0 ∈ Cµ([0, T ], Ln(S)) ∩ C([0, T ]; C(S))

for i, j, k = 1, . . . , n, t ∈ [0, T ], and a constant µ ∈ (1/2, 1]. Furthermore, let
(aij) be symmetric and let (5.2) hold. The noise term is as in (5.3), where
bk : [0, T ] × S → R for k ≥ 1 are measurable and it is assumed that

(5.8) sup
t∈[0,T ]

\
S

( T\
0

∑

k≥1

(t − s)−2αb2
k(s, x) ds

)q/2
dx < ∞,

where q ∈ [2,∞) and α ∈ (0, 1/2) are fixed.
We model the problem (5.7) on E = Lp(S) for 1 < p ≤ q as in Ex-

ample 5.1 (see (5.5)). Then as explained in [1, 40, 47], (Ap(t),D(Ap(t)))
satisfies (AT) and (AT2)∗ with constants µ as above and ν ∈ (1 − µ, 1/2)
arbitrary. The function B is defined as in Example 5.1. It follows from [31,
Proposition 6.1] that supt∈[0,T ] ‖(t − ·)−αB(·)‖γ(0,t;H,E) < ∞.

Since (AT2)∗ holds, we may now apply Corollary 4.5(2) to conclude that
(5.7) has a mild solution U such that t 7→ (w − A(t))δU(t) ∈ Cλ([0, T ]; E)
for every choice of λ > 0 and δ ≥ 0 with

λ + δ < α if kµ,ν ≥ α,

δ < α − kµ,ν and λ ≤ kµ,ν if kµ,ν < α.

By Proposition 3.2, U is the unique weak solution as well.
Moreover, if each bk is time-independent one may let α ↑ 1/2. This gives

regularity for all δ < 1/2− η and λ ≤ η, where 0 < η < µ− 1/2 is arbitrary.

Remark 5.3. An example similar to Example 5.2 with Dirichlet bound-
ary condition works a well. In that case µ ∈ (0, 1] and ν = 1 and via Sobolev
imbedding one may obtain Hölder space-time regularity results.
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Next, we give an example with spatio-temporal white noise. This was
our motivation to include results in Sections 3 and 4 for unbounded B as
well. We study a time-dependent version of examples in [14, Theorem 5.20]
and [19, Section 5]. In [14, Theorem 5.20] the authors use eigenfunctions
and eigenvalues in case A is a self-adjoint operator. The method of [19,
Section 5] works also for operators that are not necessarily self-adjoint. The
main problem is to find, for given B, H, and E, a space F such that the
operator B defined on H takes its values in F and is γ-radonifying. In [19,
Section 5] this is solved by replacing E by an extrapolation space F of E
such that B maps H into F and B ∈ γ(H, F ) as well.

We do not know if the above method can be extended to non-constant
A(t). However, it is possible to consider B : D(B) ⊂ H → E as an un-
bounded operator. The following example is the time-dependent case of an
example in [19].

Example 5.4. Consider the following equation driven by spatio-temporal
white noise:

(5.9)

∂u

∂t
(t, x) = L(t, x)u(t, x) +

∂w

∂t
(t, x), x ∈ [0, 1], t ∈ [0, T ],

u(0, x) = 0, x ∈ [0, 1],

u(t, 0) = u(t, 1) = 0,

where

L(t, x, D) = a2(t, x)D2 + a1(t, x)D + a0(t, x).

Here the coefficients are real and satisfy a2, a1, a0 ∈ Cµ([0, T ]; C([0, 1])) for
some µ ∈ (1/4, 1]. Furthermore, there is a κ > 0 such that a2 ≥ κ and we
assume that a2 ∈ Cε([0, 1]; C([0, T ])) for some ε > 0.

This equation is modelled as (1.1) with unbounded B on E = Lp(0, 1)

with p ∈ [2,∞), Ap(t) = L(t, ·), D(A(t)) = W 2,p(0, 1) ∩ W 1,p
0 (0, 1), H =

L2(0, 1), D(B) = Lp(0, 1), and Bf = f . As in Example 5.1 for w sufficiently
large (Ap(t) − w)t∈[0,T ] satisfies (AT1) and the Tanabe conditions (see [42,
Section 5.2]) with parameter µ and in particular (AT2) with µ and ν = 1
(see [2, Section 7]).

Next we check the conditions of Theorem 4.3. Let 0 ≤ s < t ≤ T and η ∈
(0, µ) be fixed. It follows from (2.5) that P (t, s)(w−A(s))η may be extended
to a bounded operator Pη(t, s) with ‖Pη(t, s)‖ ≤ C(µ − η)−1(t − s)−η.

For an invertible and sectorial operator C and η ∈ R we denote by
EC

η the fractional domain space. As in [19, Section 5] one can show that

B ∈ γ(H, E∆
−η) for all η > 1/4. Let B1 : W 2,2(0, 1) → D((−∆)1−η) be the

identity. It is shown in [19] that (−∆)1−ηB1 ∈ γ(W 2,2(0, 1), E).
Since A(t) satisfies the assumptions of the Tanabe theory it follows from

[42, Section 5.2] that {(w − A(t))(w − A(s))−1 : s, t ∈ [0, T ]} is uniformly
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bounded in B(E) and B(H). In particular, this implies that D(A(t)) =
D(A(0)) with equivalent norms uniformly in t ∈ [0, T ]. Since D(A(0)) =
D(∆) with equivalent norms we conclude that D(A(t)) = D(∆) with equiv-
alent norms uniformly in t ∈ [0, T ].

By the ε-Hölder continuity assumption it follows from [16] that each
w −A(t) has bounded imaginary powers and there exist constants C, γ > 0
such that for all t ∈ [0, T ] we have ‖(w − A(t))τi‖ ≤ Ceγ|τ |. Of course −∆
has bounded imaginary powers as well. Carefully inspecting the proof of [28,
Theorem 4.2.6] we get

D((w − A(t))1−η) = [E,D(A(t))]1−η = [E,D(∆)]1−η = D((−∆)1−η)

with equivalent norms uniformly in t ∈ [0, T ]. Therefore, we obtain

‖(w − A(t))1−ηB1‖γ(W 2,2(0,1),E) ≃ ‖(−∆)1−ηB1‖γ(W 2,2(0,1),E),

with constants uniform in t ∈ [0, T ]. By the right-ideal property for γ-
radonifying operators we conclude

‖(w−A(t))−ηB‖γ(H,E) = ‖(w − A(t))1−ηB1(w − A(t))−1‖γ(H,E)

≤ ‖(w − A(t))−1‖B(H,W 2,2(0,1))‖(w − A(t))1−ηB1‖γ(W 2,2(0,1),E).

Since ‖(w−A(t))−1‖B(H,W 2,2(0,1)) is bounded uniformly in t ∈ [0, T ], we have
proved that for all t ∈ [0, T ],

B ∈ γ(H, E
A(t)−w
−η ) with CB,η := sup

t∈[0,T ]
‖(w − A(t))−ηB‖γ(H,E) < ∞.

It follows from the above results that for all 0 ≤ s < t ≤ T , P (t, s)B
extends to a bounded operator from H into E. Moreover, since Lp has type 2,
for η, α > 0 with η ∈ (1/4, µ) and η + α < 1/2, and all t ∈ [0, T ],

‖s 7→ (t − s)−αP (t, s)B‖γ(0,t;H,E) ≤ C2‖s 7→ (t − s)−αP (t, s)B‖L2(0,t;γ(H,E))

≤ C2‖s 7→ (t − s)−αP (t, s)(w − A(s))η(w − A(s))−ηB‖L2(0,t;γ(H,E))

≤ C2C(µ − η)−1CB,η‖s 7→ (t − s)−η−α‖L2(0,t) ≤ Cµ,η,α,T < ∞.

We may apply Theorem 4.3(1) in the case of unbounded B with arbitrary
α ∈ (0, 1/4) to get a mild solution

U ∈ Cλ([0, T ];D((w − A(0))δ)) = Cλ([0, T ]; H2δ,p
0 (0, 1))

for any choice λ > 0 and δ ≥ 0 with λ + δ < 1/4 and 2δ > 1/p. It fol-
lows from Proposition 4.7 that U is also a weak solution. One may choose
p large enough and use a Sobolev imbedding theorem to find that U ∈
Cλ([0, T ]; C2δ′

0 ([0, 1])), where λ > 0 and 0 ≤ δ′ < δ are as before. As in [19]
one may conclude that (5.9) has a solution U ∈ Cλ([0, T ] × [0, 1]) for all
λ ∈ (0, 1/4) with U(·, 0) ≡ U(·, 1) ≡ 0.
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6. Maximal regularity. For A(t) independent of time, several authors
studied maximal regularity problems related to (1.1). In [13, 14] in the case
where E is a Hilbert space the authors obtained sufficient conditions such
that the solution U of (4.1) has the property that for all t ∈ [0, T ], U(t) takes
values in D((−A)1/2) almost surely and (−A)1/2U is continuous in second
moment. Such regularity results open the way to study certain non-linear
stochastic partial differential equations driven by additive noise. In [19] these
results have been extended to certain Banach spaces under the assumption
that −A admits a bounded H∞-calculus. The notion of a bounded H∞-
calculus was introduced by Cowling, Doust, McIntosh, and Yagi in [11] and
has been studied by many authors.

We will consider the maximal regularity question for A(t) depending on t
and satisfying the assumptions of the Kato–Tanabe theory as explained in
Section 2.2.

For precise information on the bounded H∞-calculus and the γ-bounded
H∞-calculus we refer to [17, 21, 22, 23, 25]. We use the same notation as in
[19]. Consider the following hypothesis:

(H∞
γ ) There exist C > 0 and φ ∈ [0, π/2) such that for all t ∈ [0, T ],

−Aw(t) admits a γ-bounded H∞-calculus on Σφ whose γ-bound
satisfies

γ({‖f(−Aw(t))‖ : ‖f‖H∞(Σφ) ≤ 1}) ≤ C.

The hypothesis (H∞) is defined similarly, with the weaker notion of uni-
form boundedness. If E has Pisier’s property (α), then the hypotheses are
equivalent (see [23, Theorem 5.3]).

We will now prove the following maximal regularity result. For a Banach
space F , we write B([0, T ]; F ) for the Banach space of bounded measurable
functions f : [0, T ] → F .

Theorem 6.1. Assume that E has type 2 and that (A(t))t∈[0,T ] satisfies
(KT) and (H∞

γ ). If B ∈ γ(H, E), then there exists a mild solution U of
(4.1) with continuous paths and for all p ∈ [1,∞) there exists a constant
C > 0 such that for all t ∈ [0, T ],

E‖(w − A(t))1/2U(t)‖p ≤ Cp‖B‖p
γ(H,E).

Moreover , for every p ∈ [1,∞) the function (t, ω) 7→ (w − A(t))1/2U(t, ω)
belongs to B([0, T ]; Lp(Ω; E)) and it is strongly progressive.

It follows from Proposition 3.2 and the preceding text that U is the
unique weak solution of (4.1) as well.



28 M. Veraar and J. Zimmerschied

Proof. It follows from Theorem 2.3 and Corollary 3.5 that (4.1) has a
mild solution

U(t) =

t\
0

P (t, s)B dWH(s).

To prove the first statement it suffices, by Proposition 2.6 and the Kahane–
Khinchin inequalities, to show that there is a constant C > 0 independent
of t such that

‖s 7→ (w − A(t))1/2P (t, s)B‖γ(0,t;H,E) ≤ C‖B‖γ(H,E).

To do so we may use (2.6) to write

‖s 7→ (w − A(t))1/2P (t, s)B‖γ(0,t;H,E)

≤ ‖s 7→ (w − A(t))1/2e(t−s)A(t)B‖γ(0,t;H,E)

+ ‖s 7→ (w − A(t))1/2V (t, s)B‖γ(0,t;H,E),

where V (t, s) =
Tt
s e(t−τ)A(t)R(τ, s) dτ and R is as in (2.7). Since E has type

2 it has finite cotype and we infer from (H∞
γ ) and [19, Theorem 6.2 and

Remark 6.3] that there is a constant C > 0 such that for all t ∈ [0, T ],

‖s 7→ (w − A(t))1/2e(t−s)A(t)B‖γ(0,t;H,E) ≤ C‖B‖γ(H,E).

To estimate the other term we use the fact that E has type 2 to obtain

‖s 7→ (w − A(t))1/2V (t, s)B‖γ(0,t;H,E)

≤ C2‖s 7→ (w − A(t))1/2V (t, s)B‖L2(0,t;γ(H,E)).

It follows from (2.7) that

‖(w − A(t))1/2e(t−τ)A(t)R(τ, s)‖ ≤ C(t − τ)−1/2(τ − s)ρ−1,

where C is a constant independent of t, s, τ . By the definition of V we obtain

‖s 7→ (w − A(t))1/2V (t, s)B‖L2(0,t;γ(H,E))

=
( t\

0

∥∥∥
t\
s

(w − A(t))1/2e(t−τ)A(t)R(τ, s)B dτ
∥∥∥

2

γ(H,E)
ds

)1/2

≤
( t\

0

( t\
s

‖(w − A(t))1/2e(t−τ)A(t)R(τ, s)B‖γ(H,E) dτ
)2

ds
)1/2

≤
( t\

0

( t\
s

C(t − τ)−1/2(τ − s)ρ−1‖B‖γ(H,E) dτ
)2

ds
)1/2

=

( t\
0

(
C(t − s)ρ−1/2 Γ (1/2)Γ (ρ)

Γ (ρ + 1/2)
‖B‖γ(H,E)

)2

ds

)1/2

≤ C̃T ρ‖B‖γ(H,E)
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for a certain constant C̃ > 0. This proves the estimate. The final assertion
follows from this and Lemma 2.7.

For general Banach spaces a similar result can be proved under the re-
striction that the parameter ρ of (KT2) satisfies ρ ∈ (1/2, 1]. In [42, Section
5.3] a general example is discussed where ρ = 1. There are however situations
where ρ = 1/2.

Theorem 6.2. Assume that E has finite cotype and that (A(t))t∈[0,T ]

satisfies (KT) with ρ ∈ (1/2, 1) and (H∞
γ ). If B ∈ γ(H, E), then there exists

a mild solution U of (4.1) with continuous paths and for all p ∈ [1,∞) there
exists a constant C such that for all t ∈ [0, T ],

E‖(w − A(t))1/2U(t)‖p ≤ Cp‖B‖p
γ(H,E).

Moreover , for every p ∈ [1,∞) the function (t, ω) 7→ (w − A(t))1/2U(t, ω)
belongs to B([0, T ]; Lp(Ω; E)) and is strongly progressive.

It follows from Proposition 3.2 and the text before it that U is the unique
weak solution of (4.1) as well.

Proof. The proof is the same as that of Theorem 6.1, except for the
estimate of the γ-norm of s 7→ (w − A(t))1/2V (t, s)B. We first estimate R
from the definition of V .

As in [42, Section 5.3] we may write R(t, s)B =
∑

m≥1 Rm(t, s)B, where
we inductively define

R1(t, s) =
1

2πi

\
Γ

eλ(t−s) ∂

∂t
R(λ, A(t) − w) dλ,

Rm(t, s) =

t\
s

R1(t, τ)Rm−1(τ, s) dτ.

Here Γ = {rekiφ : r ∈ [0,∞), k = ±1} for some φ ∈ (π/2, π). It follows from
(2.8) and (KT3) that

‖s 7→ R1(t, s)B‖γ(0,t;H,E)

≤
∑

k∈{−1,1}

1

2π

∞\
0

‖s 7→ er(t−s) cos(kφ) ∂

∂t
R(rekφi, A(t) − w)B‖γ(0,t;H,E) dr

≤
∑

k∈{−1,1}

‖B‖γ(H,E)

2π

∞\
0

( t\
0

e2r(t−s) cos(kφ) ds
)1/2

∥∥∥∥
∂

∂t
R(rekφi, A(t) − w)

∥∥∥∥ dr

≤
L‖B‖γ(H,E)

π

∞\
0

(
1 − e2rt cos(φ)

−2r cos(φ)

)1/2 1

1 + rρ
dr
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=
L‖B‖γ(H,E)

π

∞\
0

(
1 − e2x cos(φ)

−2x cos(φ)

)1/2 tρ−1/2

tρ + xρ
dx

≤
L‖B‖γ(H,E)

π

1\
0

tρ−1/2

tρ + xρ
dx +

L‖B‖γ(H,E)

π(−2 cos(φ))1/2

∞\
1

x−1/2 tρ−1/2

tρ + xρ
dx.

Since ρ < 1 we have

1\
0

tρ−1/2

tρ + xρ
dx ≤

1\
0

tρ−1/2

xρ
dx =

tρ−1/2

1 − ρ
.

Since ρ > 1/2, the other term may be estimated as

∞\
1

x−1/2 tρ−1/2

tρ + xρ
dx ≤

∞\
1

x−1/2 tρ−1/2

xρ
dx =

tρ−1/2

ρ − 1/2
.

We may conclude that

‖s 7→ R1(t, s)B‖γ(0,t;H,E) ≤ C‖B‖γ(H,E)t
ρ−1/2,

where

C =
L

π(1 − ρ)
+

L

π(−2 cos(φ))1/2(ρ − 1/2)
.

We claim that for m ≥ 1,

‖s 7→ Rm(t, s)B‖γ(0,t;H,E) ≤ Cmtmρ−1/2 Γm−1(ρ)Γ (ρ + 1/2)

Γ (mρ + 1/2)
.

We already saw that the result holds for m = 1. For the other m, by induc-
tion [42, 5.54] and (2.7) we obtain

‖s 7→ Rm+1(t, s)B‖γ(0,t;H,E) ≤
t\
0

‖R1(t, τ)‖ ‖Rm(τ, s)B‖γ(0,τ ;H,E) dτ

≤
t\
0

C(t − τ)ρ−1Cmτmρ−1/2 Γm−1(ρ)Γ (ρ + 1/2)

Γ (mρ + 1/2)
dτ

= Cm+1t(m+1)ρ−1/2 Γ (ρ)Γ (mρ + 1/2)

Γ ((m + 1)ρ + 1/2)

Γm−1(ρ)Γ (ρ + 1/2)

Γ (mρ + 1/2)

= Cm+1t(m+1)ρ−1/2 Γm(ρ)Γ (ρ + 1/2)

Γ ((m + 1)ρ + 1/2)
.

This proves the claim.
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From the claim we deduce

‖s 7→ R(t, s)B‖γ(0,t;H,E) ≤
∑

m≥1

‖s 7→ Rm(t, s)B‖γ(0,t;H,E)

≤ tρ−1/2Γ (ρ + 1/2)
∑

m≥1

CmT (m−1)ρ Γm−1(ρ)

Γ (mρ + 1/2)
=: C̃tρ−1/2

for a certain constant C̃. Hence there is a constant C such that for all
t ∈ [0, T ],

‖s 7→ (w − A(t))1/2V (t, s)B‖γ(0,t;H,E)

=

t\
0

‖(w − A(t))1/2e(t−τ)A(t)‖ ‖s 7→ R(τ, s)B‖γ(0,τ ;H,E) dτ

≤ C

t\
0

(t − τ)−1/2τρ−1/2 dτ ≤ Ctρ
Γ (1/2)Γ (ρ + 1/2)

Γ (ρ + 1)
.

This is the required estimate.
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