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The weak type inequality for the Walsh system
by

USHANGI GOGINAVA (Thilisi)

Abstract. The main aim of this paper is to prove that the maximal operator o is
bounded from the Hardy space H,; to weak-L;/; and is not bounded from H;y /5 to Ly /.

1. Introduction. The first result on a.e. convergence of the Walsh—Fejér
means o, f is due to Fine [1]. Later, Schipp [6] showed that the maximal
operator o f is of weak type (1, 1), from which the a.e. convergence follows
by standard arguments. Schipp’s result implies by interpolation also the
boundedness of ¢* : L, — L, (1 < p < oo). This fails to hold for p =1
but Fujii [2] proved that ¢* is bounded from the dyadic Hardy space H;
to Ly (see also Simon [8]). Fujii’s theorem was extended by Weisz [11], who
proved that the maximal operator of the Fejér means of the one-dimensional
Walsh-Fourier series is bounded from the martingale Hardy space H,(I) to
L,(I) for p > 1/2. Simon [9] gave an example to show that this does not
hold for 0 < p < 1/2. In the endpoint case p = 1/2 Weisz |14] proved that
o* is bounded from the Hardy space Hj /(1) to weak-Ly /o(1).

For the two-dimensional Walsh—Fourier series Weisz [12]| proved that the
maximal operator

is bounded from the two-dimensional dyadic martingale Hardy space H,
to L, for p > 2/3, and Goginava [4] generalized this result to d-dimensional
Walsh—Fourier series. The a.e. convergence of the arithmetic means of square
partial sums of double Vilenkin—Fourier series was studied by Gat [3].

The main aim of this paper is to prove that the maximal operator of the
Marcinkiewicz—Fejér means of the double Walsh—Fourier series is bounded
from the dyadic Hardy space Hj/, to weak-L;/; and is not bounded from
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Hy/; to Ly/5 provided that the supremum in the maximal operator is taken
over spatial indices.

2. Definitions and ntation. Let P denote the set of positive integers,
and N := P U {0}. Denote by Zs the discrete cyclic group of order 2, that
is, Zo = {0,1}, where the group operation is the modulo 2 addition and
every subset is open. The Haar measure on Zs is such that the measure
of a singleton is 1/2. Let G be the complete direct product of a countably
infinite number of copies of the compact group Zs. Elements of G are of the
form z = (zg, z1,...,2k,...) with z; € {0,1} (k € N). The group operation
on G is coordinatewise addition, and the measure (denoted by p) and the
topology are the product measure and topology. The compact Abelian group
G is called the Walsh group. A base of neighborhoods of x € G can be given
in the following way:

Iy(z) := G,
I(z) := Iy (x0,...,xn-1) ={y €G:y=(0y. -, Tn—1,Yn, Ynt+l,---) }

for n € N. These sets are called the dyadic intervals. Let 0 = (0,0,...) € G
denote the null element of G, I,, := I,(0) (n € N), I, := G\ I,. Set
en = (0,...,0,1,0,...) € G with the nth coordinate 1, and the other zeros.
Define

J
.I'Z'J = E Ts€s, Tii—1 = 0.
s=1

For k € N and z € G set
ri(x) = (=1)%,
the kth Rademacher function. If n € N, then n = 72, n;2', where n; €
{0,1} (i € N), i.e. n is expressed in the number system of base 2. Define
In| := max{j € N:n; # 0}, that is, 2"l <n < 2lnl+1,
The Walsh—Paley system is defined as the sequence of Walsh—Paley func-

tions
[oe)

wn(e) = [[0n@)™ = 1oy @)(-DE% " (ze G, neP).
k=0
The Walsh—Dirichlet kernel is defined by

n—1
Dn(x) = wy(z).
k=0
Recall that

) Do (@) = {2% if x €I,

0 ifxel,.
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The rectangular partial sums of the 2-dimensional Walsh—Fourier series are
defined as follows:

M—1

Sunf(a' 2? Fli pwila w;(2),

1=0

2

<.
I
o

where the number
fa.g) = | f@' 2w )w;(2?) du(a', 2?)
GxG

is said to be the (7, j)th Walsh—Fourier coefficient of the function f.
The norm (or quasinorm) of the space L,(G x G) is defined by

1= (] 1Pt a?)” 0 <p< o)

GxG

The space weak-L,(G x G) consists of all measurable functions f for which
1 ek o = Sup M| > NP < o0.
>

The o-algebra generated by the dyadic 2-dimensional cube Iy(x!) x I (%)
of measure 2% x 27F will be denoted by Fj, (k € N).

Denote by f = (f () n e N) a one-parameter martingale with respect
to (Fy,,n € N) (for details, see e.g. [10, 13]). The maximal function of the
martingale f is defined by

fr=sup|f™].

neN
In case f € L1(G x G), the maximal function can also be given by

Fo(2, 2%) = sup (In(xl)lx s ‘ S Flut, u?) dp(ut, u?)),

n=1 ft (@)X In(22)

(z',2%) € G x G.

For 0 < p < oo the Hardy martingale space H,(G x G) consists of all
martingales for which

1f1lez, = [1f*]lp < oo
If f € Li(G x G) then it is easy to show that the sequence (San on(f) :
n € N) is a martingale. If f is a martingale, that is, f = (f©, f(U, ), then
the Walsh—Fourier coefficients must be defined in a somewhat different way:
fli,5) = Jim | O 2wt yw; () du(a’, ).
*axa

The Walsh—Fourier coefficients of f € L1(G x G) are the same as those of
the martingale (San on(f) : n € N) obtained from f.
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For n = 1,2,... and a martingale f the Marcinkiewicz-Fejér means of
order 2" of the 2-dimensional Walsh—Fourier series of the function f are

given by
2n—1

1
o fz', 2%) = — Z Sjif(xt, a?).
=0

For the martingale f we consider the maximal operator

o f = sup |ogn f (2, 27)].
n

The 2-dimensional Marcinkiewicz—Fejér kernel of order 2" of the 2-di-
mensional Walsh—Fourier series is defined by

It is easy to show that
o flat,a®) = | fE 1) Kon (2" + ', 2% + %) du(t',1%).
GxG

A bounded measurable function a is a p-atom if there exists a dyadic
2-dimensional cube I x I such that

(a) SIX]ad,u:O;
(b) llalloe < po(1 x 1)~1/P;
(c) suppa C I x I.

3. Formulation of main results

THEOREM 1. The mazimal operator o¥ is bounded from the Hardy space
Hl/Q(G X G) to weak-Ll/Q(G X G)

THEOREM 2. The mazimal operator o¥ is not bounded from Hy/5(Gx@Q)
to Ll/z(G X G)

COROLLARY 1. Let p > 1/2. Then o* is bounded from the Hardy space
H,(G x G) to L,(G x G).

COROLLARY 2. Let0<p<1/2. Then o# is not bounded from H,(G x G
to weak-L,(G x G).

4. Auxiliary propositions. We shall need the following lemmas (see
[5, 13]).
LEMMA 1 (Weisz). Suppose that an operator V is sublinear and, for some
0<p<l,
sup o’ p{z € (Gx G)\ (I xI):|Va(z)| > o} <c¢p < o0

0>0
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for every p-atom a, where I denote the support of the atom. If V is bounded
from Ly, to Ly, for a fivzed 1 < p; < oo, then

|V fllweak-L,(Gxa) < pll fllm,-

LEMMA 2 (Nagy). Let A,m,neN, m<n<A, and (z',2?) € (I;\I;m+1)
X (In \ Int1). Then

Kya(z!, 2?)
(0 if 3i € By, x} # a7,
0 if Vi € By, x} = 12,35 € By, #! — ey — €5 & I, 2l = 1,

(]
25Tm=2 yf Vi€ By, xl =22, s € By, x! —e5 — ey € Int1, 2l = 1,

22m—1 if o' —em € Iny1, Vi € By, mll = 3:?,

where By ={n+1,...,A—1}, Bo={m+1,...,n}.

LeEMMA 3 (Nagy). Let A,s,l € N,(z!,2%) € Ix x (I;\ Ij31) and | <
s+l < A. Then

Kaa(zh, 2?)
0 if 3s,0<s+1<A 2®—afe,— e & Ia, 25, #0,
_ ) 92+s—2 if Is,l<s+1< A, x> — xlzel — est1 € Ia, $§+l 70,

21720 (A1) if 2% —ate € Ia,
where n(A,1) = [-274(24 — 2171 1 1/2) — (24 - 2)].
LEMMA 4 ([4]). Let (z',22) € Ixy x In. Then

| Koa(a! +t', 2% + %) du(t', £)

INXIN

2N 1
C
< v 3 Di@)Dia?)|, Az N.
j=1

LEMMA 5 ([4]). Let (z',22) € Iy x In. Then

| Koa(a! +1', 2% + %) du(t', £)
INXIN

2N 1 2N 1

< 23%{‘ 3 Dj(xl)Dj(ﬁ)‘ +2N‘ 3 Dj(ﬁ)‘}, A>N.
j=1 j=1
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LEMMA 6. Let (z',2%) € (Im \ Ims1) X (In \ Iny1), n > m, m,n =
0,...,N—1, A> N. Then

| Koa(a! +t', 2% + %) du(t', £)

INXIN
c2am—n n+1 . ) .
S TN Z 2" Dons1(z” + €m + er) Don (27 + €n + T g N-1)-
r=m-+1

Proof. From Lemma 2 and by (1) we can write the following estimate:

n+1

<e2m Z 2" Dons1 (2! + ey + €,)Don (2% + €, + ac,ll+17N_1).
r=m+1

Applying Lemma 4 we complete the proof.

LEMMA 7. Let (z!,22%) € Iy x (\I}31),1=0,...,N—1, A> N. Then

N
c2!
| Koa(a! +t1 22 + %) du(t', £%) < BN D 2Dy (2® + e+ em).

InXxIn m=Il+1
Proof. Since (see 7] and (1))
2N —1 N
‘ Z Dj($2)‘ = CZ2JD2N($2 +ej) = 2" Dy (2* + €))
j=1 =0

and (see Lemma 3)

oN_1 N-1
‘ 3 Dj(xl)Dj(xQ)‘ <2 3 2" Dyn(a® + ),
j=1 m=I+1

from Lemma 4 we obtain

| Koa(a! +1', 2% + %) du(t', £)

INXIN
B
< 23—N{ Z 2™ Do (2% + € + em) + 2V Don (22 + 61)}
m=Il+1

N
c2!
< o35 Z 2" Don (22 + €1 + €m).

m=I+1
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5. Proofs of main results

Proof of Theorem 1. We shall apply Lemma 1; we may suppose that
a € Ly is a 1/2-atom with support Iy x Iy. Since oqaa(z!,2?) = 0 for
A < N, we may assume that A > V.

Suppose that o = ¢2* for some A € N.

It is evident that

2)  p{(z',2?) e Iy x Iy : [o7a(zt, 2?)| > 27}
= p{(z',2?) e In x Iy : |o7a(al, 2?)| > c2*}
+u{(zt,2?) e Iy x Iy : |oTa(zt, 2?)] > 2™}
+ p{(zt,2?) e Iy x Iy : [0 a(zt, 2?)| > 2}

Let (z%,22) € (In \ Im+1) X (In \ In+1), 0 < m < n < N. Then from
Lemma 6 we have

(3)  ota(z!,z?)
< cllaljoo sup S Koa(z! + ' 2% +12) du(th, %)
A— INXIN

024N2m7n n+1
§ 237]\[ Z QTD2n+1(:E1 + Em + er)DQN (ZL‘Q + €En + x’}t—}—l,N—l)
r=m-+1

n+1
= N+tm—n Z 2" Dons1 (2! + e + €,)Don (2% + €, + $711+1,N—1)~
r=m-+1

Define

a#(azl,xQ) — oN+tm—n

n+1
X Z 2" Dont1 (2! + e + €,)Don (2% + €, + x}LH,N_l).
r=m+1

It is evident (see (1)) that af(:pl, x2) # 0 implies that
zt € In(0,2), =1,0,27 = 1,0,2% 41, ., TN_1)

and

:1:2 € IN(ﬁv .’Ei = 17x%L+17 s 7:1:}\771)
for some [ with m < [ < n+1, where 0 denotes a string of zeros. Consequently,

Uf($1,$2) < c22N+m+l
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Suppose 2N +m + 1 < A. Then
af(ml,ﬁ) < 2" and ,u{af’E > 2} =0.
Hence, we can suppose that

m+1>X—2N.

We have
N—-1 n

= 3 S w{@ha?) € (T \ Tns) X (I \ Tuga) s off (0,2%) > 2}

n=0 m=0

N-1 n n+1 1 1
SDID DD 2 2
n=0 m=0 l=m+1,m+I>A-2N gl =0 &} ,=0
p{(z',2*) € In(0,2), = 1,0,2] = 1,0, 271, ..., TN_1)
x IN(0,22 = 1,271, ..., TN_1) ]}
Define
A={(l,m):m+1>X=2N}, B:={(l,m):0<1<n,0<m<I}.
Suppose A — 2N < 0. Then it is evident that
ANB={(l,m):0<1<n,0<m<I}.

Hence, we can write

N-1 n N—1
2N” n? c c
(4) E<C§:§:§:22 <o¥ 2 5 S 5% S
n=0 [=0 m=0 n=0

Suppose A —2N > 0 and 0 < n < (A —2N)/2. Then it is easy to show
that

ANB=0.
Suppose A — 2N > 0 and (A —2N)/2 <n < A —2N. Then we can write
ANB={({l,m):(A=2N)/2<I<n, A—2N -1 <m <}

Consequently,
A]-2N oN-n
(5) Ex<c Z Z Z 922N
n=[\/2]—N I=[\/2]—N m=[\|-2N -1
_e N mm02-NP e e
= 9N Z on = 9N9A/2—N = 9)/2"

n=[\/2]-N
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Suppose A — 2N >0 and A — 2N < n < N. Then it is evident that
ANB={(l,m):(A—=2N)/2<I<AX—2N,A—-2N—-1<m<I}
U{(l,m): A—2N <1<n,0<m<I}.

Consequently, we can write

\]—2N oN-—n
(6) Z Z Z 922N
n=[A]—-2N I=[\/2]-N m=[\]-2N—I
Y Y vy
n=[\|-2N I=[\]—2N m=0
c ()\/Q—N) c
= 9N~ 9A-2N = 9)/2°
Combining (3)—(6) we obtain
N—-1 n
M 33 @ 52) € (b \ Ins1) x (In\ ns1) : oa(al,a?) > 2}
n=0 m=0
< /22,
Analogously, we can prove that
—1N-1
(8) Z > {(at,2?) € (In \ Ing1) X (In\ Iny1) : o%a(a',2?) > c2*}
n=0 m=n
< c/2M?

From (7) and (8) we get

(9) p{(zt,2?) € Iy x In : [o%a(z!, %) > 2} < ¢/2"2.

Let (z',2%) € In x (I; \ I;11). Then from Lemma 7 we have

(10) o a(z!, 2?) < 2™ sup S Koa(z! 4+t 2% + %) du(t', 1)
A>N InxIy

AN+ N
Z 2™ Don (3:2 +e+em)
m=Il+1

< 23N

N
= 2N Z 2" Don (2 + €1 + em).
m=Il+1
Define

N
Uf(:ﬂl,xz) = 2V H Z 2" Don (2% + €1 + em).
m=Il+1
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From (1) we can write
n 2 0 7 —
ot e {7 el
Therefore
o (z',27) #0
implies that
2?2 e In(0,2;=1,0,z,, = 1,0)
for some m with I < m < N. Consequently,
af(azl,aﬂ) < (2N +m
Suppose | + 2N +m < . Then
o (z',2?) < 2* and p{o¥ > 2} =0
Hence, we can suppose that
[+2N +m > A
Define
T:={(m,):l+m>X=2N}, S:={(m,0):0<I<m< N}
Suppose A — 2N < 0. Then it is evident that
TNS={(m,0):0<m<N,0<[<m}.

Hence

N—

(11) ,u{ 6 Iy X (Il \ Il+1) o (3: x ) > 62)‘}
=0

H

N—-1 N-—

IN

,u{ EINXIN(0$1—10$m— ,0):
=0 m=I+1

= 1 <N c c
Z 92N = N<2_N<2,\/2'

Suppose 2N < A < 3N. Then it is easy to show that

gM?

TNS={(m,):\/2—=N<m<A—=2N,A\—2N —-—m <1<m}
U{(m,l): A\ =2N <m < N,0<I1<m}.
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Consequently,
N-1
(12) > p{@',2?) € In x (I \ Ir1) : o%a(2',2?) > 2}
1=0
Al -2N m
<c Z Z p{(zt, 2?) € Iy x In(0,2; = 1,0, 2, = 1,0) :

m=[\/2]-N I=[\]-2N—m
o a(z!, z?) > 2™}
N-1 m

+ Z Z,u{(:nl,a:Q)EINXIN(G,:El:LG,xm:Lﬁ):

m=[\]-2N =0
. ot a(z!, 2?) > 21}
-2

m N-1 m
1 1
<e ), >, mwt > o
m=[\/2]-N I=[\]-2N—m m=[\]-2N =0
[\l -2N 2 2 2
m—(A/2—=N) ¢N cN cA c
=c _{/\%}_N 22N ton S v S 9(2/3)X < N2

Suppose A > 3N. Then
TnS={(m,l):A\/2—N<m<N,A\—=2N —m <[ <m}.

Consequently,
N-1
13) > p{@',2?) € In x (I \ 1) : oa(2',2?) > 2*}
=0
N-1 m

1 c(2N —)/2)%? 1 c
sc Z Z 2N S T oaN Tz oz S oaE
m=[\/2]-N I=[\]-2N—m

Combining (11)—(13) we obtain
(14) p{(z',2?) € Iy x Iy : [o7a(a’, 2?)| > 2*} < ¢/2V2.

Analogously, we can prove that
(15) p{(z',2?) e In x In : |o"a(z!, 2?)| > 2} < ¢/2V2.
From (9), (14) and (15) we obtain
p{(z',2?) € Iy x In : |07 a(z!, 22)| > 2'} < ¢/2V2.
Theorem 1 is proved.
Proof of Theorem 2. Let A € P and
Fa(at,a?) i= (Dyaes (1) = Dya(2)))(Dyacs (22) — Dya(a?)).
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It is evident that
N e 1 oA A+1
fA(i,k:):{l 1fz,k—‘2 ) 1,
0 otherwise.

Then we can write that

(16)  Spx(fazz’,z?)

0 ifk=0,...,24,
(Dg(x) — Doa(x"))(Dp(2?) — Dya(2?)) if k=24+1,...,24%1 — 1
fa(z!, z?) if k> 24+1,

We have

falat,a®) = sup |Sor gx (fasah,2?)] = | falat,2?)],

I £alle, = 1£5llp = I Dga[2 = 2240172
Since
Djyos — Doa = wpaDy,  k=1,...,2%,

from (16) we obtain

o fa(x', 2?) = sup |ogn (fa; 2", 2%)| > opasi (fa; 2", 27)
n

1 2441
= 9A+T Z Sk,k(fA%»’UlaﬂUz)
k=0
1 2441
= 5171 D (Du(e!) = Doa(@))(Daa?) = Doa(a?))|
k=24+1
1 24-1
= 5771| D Driaa(@') = Doa () (Dyya(2) — Doa(a?))|
k=1
1A 1
— 1 2\| 1 .2
Let
(z,2%) € T4(0,2p, = 1,0,2}, = 1,2} 1, .. 2h_y)
X IA(Ga $72’L = 17‘Til,+17 s 756}4—1)‘

Then from Lemma 2 we obtain

| Kya (2!, 22)] = 2m+n-2,
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Hence we can write
| 1Koa(a!, 2?2 dp(a’, 2?)

GxG
A—-1 A-1 1 1
> Z DOEEDY |
m=0n=m+ }#170 $114 1=0740,z},=1,0,z} =1 mn+1, mzil)XIA(G,m}Lzl,r;+1,...,x}471)
1 2\11/2 1 .2
| Kya (2, 2%)|" 2 du(a’, )
A-1 A-1

1 1
— (m+n—2)/2 E e E S _ ~ 1
- 2 1IA(0,x}n:1,O,r}l:1,x}L+l,...,m[ldﬁl)(‘T )

+1 =0 GxG

3
]
o
3
I
3

1 _ 1
Ty =0 Ty 4

(%) du(z",2?)

X 1IA(O x2=1 .Z‘,,H_l, Sy )

ply 1 cA
2 2 A—
>c E om/ E on/ —22,42 nZ—2A7

and
0% falli/2 cA?
[fallije = 2242240-2)

Theorem 2 is proved.

Since o# is bounded from Lo (G x G) to Loo(G x G) the validity of
Corollaries 3 and 4 follows by interpolation (see Weisz [13|) from Theorems
1 and 2.

>cA? > 00 as A — oo.
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