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Weak convergence of summation processes in Besov spaces

by

Bruno Morel (Lille)

Abstract. We prove invariance principles for partial sum processes in Besov spaces.
This functional framework allows us to give a unified treatment of the step process and the
smoothed process in the same parametric scale of function spaces. Our functional central
limit theorems in Besov spaces hold for i.i.d. sequences and also for a large class of weakly
dependent sequences.

1. Introduction. Let (ξn) be a sequence of stochastic processes with
index set T . The distribution of ξn may be considered as a probability mea-
sure µn on some suitable topological function space S. When T = [0, 1], the
classical S for limit-distribution theorems such as invariance principles is
C[0, 1] for continuous processes or the Skorokhod space D[0, 1] for processes
having only discontinuities of the first kind. As already pointed out by Lam-
perti [16], taking S as small as possible allows more continuous functionals
on S, which are the real center of interest, as far as statistical applications
are concerned. So the smaller the space S, the stronger the corresponding
limit theorem. An obvious bound in this shrinkage is given by the maximal
smoothness shared by the paths of ξn and of the limiting process ξ.

With this general motivation, in this paper we discuss some extensions
of Donsker’s invariance principle. In the whole paper we interchangeably
use the terms weak convergence and convergence in distribution; both mean
weak convergence of distribution measures. We consider two most classical
partial sum processes built on a given sequence (Xk) of random variables:
ζn is the random step function defined by

ζn(t) := n−1/2
n∑

k=1

Xk
�

{k/n≤t}, 0 ≤ t ≤ 1,

and ξn is the random polygonal line interpolating ζn at the points t = k/n,

ξn(t) := n1/2
n∑

k=1

Xk|[(k − 1)/n, k/n] ∩ [0, t]|, 0 ≤ t ≤ 1,
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where |A| denotes the (one-dimensional) Lebesgue measure of the Borel
set A. This unusual formulation of ξn enables a convenient extension to
the case T = [0, 1]d. It is well known that if (Xk) is i.i.d. with EX1 = 0
and EX2

1 = 1, then ζn weakly converges in D[0, 1] to the Wiener process W ,
while ξn weakly converges in C[0, 1] to the same limit. In what follows, these
convergences are referred to as Donsker’s invariance principles or functional
central limit theorems (FCLT) in the spaces D[0, 1] or C[0, 1].

Donsker’s result has been widely extended to various kinds of dependent
sequences (Xk). For simplicity we only consider the strong mixing and as-
sociation. In the strong mixing case, the functional central limit theorem
was successively studied by Davydov [8], Oodäıra and Yoshihara [20], and
Doukhan, Massart and Rio [12]. In the associated case, it was studied by
Newman and Wright [19]. All these invariance principles rely on moment
inequalities for partial sums.

On the other hand, improvement of Donsker’s theorem by a suitable
restriction of S in order to fit the regularity of the paths goes back to
Lamperti [16]. Since both the smooth summation process ξn and the Wiener
processW have (almost surely) paths in Hölder spaces Cα[0, 1], 0 < α < 1/2,
it is natural to extend Donsker’s result to these spaces. Lamperti [16] obtains
an invariance principle for the smoothed summation process ξn in Hölder
spaces Cα[0, 1], 0 < α < 1/2−1/γ, for i.i.d. variables having a finite moment
of order γ > 2. This assumption, stronger than the usual square integrability
of X1, cannot be relaxed as shown by the following example. By considering
an i.i.d. sequence (Xk; k ≥ 1) of symmetric random variables such that
P (X1 ≥ u) = 1/(2up), u ≥ 1, Lamperti [16] noticed that the corresponding
(ξn) is not tight in Cα[0, 1] for α = 1/2 − 1/p. Recently Račkauskas and
Suquet [22] proved more precisely that if ξn satisfies the invariance principle
in Cα[0, 1] for some 0 < α < 1/2, then necessarily supt>0 t

pP (|X1| > t) <∞,
for any p < 1/(1/2 − α). Lamperti’s FCLT was extended by Hamadouche
[15] to various kinds of weak dependent sequences. In the i.i.d. case, Erickson
[13] proves the convergence of the smooth process ξn when T = [0, 1]d in
a more precise scale of function spaces than the Hölder scale. However he
considers the d-dimensional indexed step process ζn in the Skorokhod space.

Although the smoothed process ξn has been studied in the one-parameter
family of Hölder spaces for a long time, only few attempts were made to es-
tablish the convergence of the step process ζn in a parametric family of
function spaces rather than in the Skorokhod space. Boufoussi, Chassaing
and Roynette [4] use isomorphisms between Besov spaces and certain se-
quence spaces to obtain an invariance principle for X1 belonging to the
domain of attraction of a stable law with parameter α, 1 < α < 2. The
three-parameter scale of Besov spaces is involved in interpolation theory,
approximation problems, partial differential equations and wavelet theory.
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It extends classical families of function spaces such as Hölder spaces, Sobolev
spaces and most of their generalizations. Gaussian processes in Besov spaces
are discussed by Ciesielski, Kerkyacharian and Roynette [7]. The Besov reg-
ularity of the Wiener process was obtained by Roynette [23]. Connection
between Besov spaces and wavelets have also been used in statistics (see
Donoho et al. [10] and the references therein).

In this paper, we prove an invariance principle in Besov spaces for both
step and smoothed processes with index set T = [0, 1]d. As in the above
literature, our method relies on moment inequalities of order γ > 2. Consid-
ering Besov spaces allows us to give a unified proof for step and smoothed
summation processes in the same parametric scale of function spaces. An-
other feature of our approach consists in dealing directly with Besov spaces
through their definition by a modulus of smoothness instead of considering
isomorphisms with sequence spaces. Continuous embeddings between Besov
spaces and Hölder spaces allow us to derive Lamperti’s FCLT in Hölder
spaces and its extensions to dependent sequences and to dimension d > 1
from our main theorem under the same assumptions as in the above refer-
ences. This means that there is no loss in replacing Hölder spaces by Besov
spaces for the study of the smoothed summation process ξn. The special case
d = 1 is amazing because the optimal result in Besov spaces for the step
process ζn is obtained under a moment assumption of order two. Stronger
moment assumptions give no stronger invariance principle in contrast to the
case d > 1.

A definition and some preliminary analytical results on Besov spaces
are stated in Section 2. We recall some continuous embeddings and give a
compactness criterion. Section 3 deals with weak convergence. We establish
a characterization of tightness together with two practical sufficient condi-
tions. The main theorem is given in Section 4, whereas its proof is postponed
to Section 5. This general invariance principle in Besov spaces holds under
independence, strong mixing or association, as shown in Section 4.

2. Besov spaces. All the functions considered in this paper are real-
valued and defined on [0, 1]d. For x = (x1, . . . , xd) let |x| := max1≤k≤d |xk|.
Fix (p, s, q) ∈ [1,∞)×(0,∞)× [1,∞) and denote by m = [s+1] the smallest
integer such that m > s. Introduce the following modulus of smoothness for
f ∈ Lp = Lp([0, 1]d) and δ > 0:

ωp,s,q(f, δ) :=

( �

0<|h|<δ

‖∆m
h f‖

q
p

|h|sq
dh

|h|d
)1/q

,

where ∆m
h is the finite difference operator defined by ∆1

hf(x) := f(x+ h)−
f(x) and ∆m+1

h := ∆m
h ∆

1
h. In the above definition we should take care of
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the domain for the p-norm; our convention is

‖∆m
h f‖p :=

( �

Dm,h

|∆m
h f(t)|p dt

)1/p
,

where Dm,h is the subset of [0, 1]d on which ∆m
h f(t) is defined. With the

above notations, the Besov space Bs,q
p = Bs,q

p ([0, 1]d) is defined by

Bs,q
p := {f ∈ Lp : ωp,s,q(f, 1) <∞}

and endowed with the norm

‖f‖p,s,q := ‖f‖p + ωp,s,q(f, 1).

Below we recall some classical results on Besov spaces. The reader is
referred to Triebel [25], Bergh–Löfström [1] and Peetre [21] for further in-
formation, more general definitions (0 < p, q ≤ ∞, s ∈ R) and proofs.

With the above notations (Bs,q
p , ‖ ‖p,s,q) is a separable Banach space (p

and q are both finite). For 1 ≤ p1, p2, q1, q2 < ∞, s1, s2 > 0, the following
continuous embeddings hold:

Bs1,q1
p1

↪→ Bs2,q1
p2

, p2 > p1, s1 − d/p1 ≥ s2 − d/p2.

It is worth noticing that Bs,q
p contains only continuous functions when

s > d/p. Recall that membership of f in Hölder spaces Cα, α > 0, is defined
by

∑

L(k)≤[α]

sup
x
|Dkf(x)|+

∑

L(k)=[α]

sup
x6=y

|Dkf(x)−Dkf(y)|
|x− y|α−[α]

<∞,

where [α] denotes the integer part of α and k = (k1, . . . , kd) denotes a
multi-integer with length L(k) := k1 + · · · + kd. The following continuous
embeddings hold:

Bs,q
p ↪→ Cα, s− d/p > α.

For noninteger α, Cα can be seen as Bα,∞
∞ , although C1 is strictly contained

in the Zygmund space B1,∞
∞ . This will allow us to compare our results in

Besov spaces with those obtained in Hölder spaces. For step functions, can
we compare the Skorokhod topology with a Besov one? Notice first that the
condition s < 1/p characterizes membership of step functions in separable
Besov spaces. As the following two examples show in the case d = 1, it is not
difficult to construct a sequence of step functions which converges in each
Bs,q
p , 0 < s < 1/p, but not in the Skorokhod space, and another one which

converges in the Skorokhod sense (and even uniformly), but in no Bs,q
p with

0 < s < 1/p.

Example 2.1. The sequence of functions defined by

fn :=
�

[ 1
2
, 1
2

+ 1
n

)
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converges to 0 in Bs,q
p for every (p, s, q) with 1 ≤ p < ∞, s < 1/p and

1 ≤ q <∞, although it does not converge for the Skorokhod topology.

Proof. Let 1 ≤ p < ∞. Elementary calculations lead to ‖fn‖p = n−1/p,

then to ‖∆1
hfn‖p = min(2|h|, 2/n)1/p and lastly to ωp,s,q(fn, 1) ≤ Cns−1/p.

Thus we obtain the convergence of fn to 0 in Bs,q
p for any s < 1/p and any q.

On the other hand should fn be convergent for the Skorokhod topology, the
limit would be 0 too (by uniqueness of the limit in Lp) and because this
limit is continuous the convergence would be uniform, which is absurd.

Example 2.2. The sequence of functions defined by

gn :=
1

lnn

n−1∑

k=0

�

[ 2k
2n
, 2k+1

2n
)

converges uniformly to 0, but does not converge in Bs,q
p for any (p, s, q) with

1 ≤ p <∞, 0 < s < 1/p and 1 ≤ q <∞.

Proof. The convergence of gn to 0 is uniform because ‖gn‖∞ = (lnn)−1,
but elementary calculations lead to

‖∆1
hgn‖p ≥ (lnn)−1|nh|1/p for |h| ≤ 1/2n.

Therefore

‖gn‖p,s,q ≥ ωp,s,q(gn, 1) ≥ ωp,s,q(gn, 1/2n) ≥ Cns(lnn)−1

and ‖gn‖p,s,q goes to infinity for each s > 0.

Therefore neither Besov nor Skorokhod topology is stronger than the
other, as far as step functions are concerned. However, both Skorokhod and
Bs,q
p convergences imply Lp convergence.

After these topological remarks, we give a compactness criterion that
provides the tightness criteria stated in the next section. This criterion is
a corollary of the Riesz–Fréchet–Kolmogorov theorem (see e.g. Brézis [5,
Theorem IV.25]), which ensures that a subset K of Lp (1 ≤ p < ∞) is
relatively compact if and only if it is bounded in Lp and satisfies

(1) lim
h→0

sup
f∈K
‖∆1

hf‖p = 0.

Proposition 2.3. A subset K of Bs,q
p (1 ≤ p < ∞, s > 0, 1 ≤ q < ∞)

is relatively compact if and only if it is bounded in Lp and satisfies

(2) lim
a→0

sup
f∈K

ωp,s,q(f, a) = 0.

Proof. The boundedness in Lp is clearly necessary. Let ε > 0 and let
g1, . . . , gm be an ε-net for ‖ ‖p,s,q. Since (2) is obvious for a finite subset, by
using the elementary inequality

ωp,s,q(f, a) ≤ ωp,s,q(g, a) + ‖f − g‖p,s,q
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we see that ωp,s,q(f, a) < 2ε uniformly for f ∈ K for small enough a. Con-
versely, the conditions are sufficient. Let ε > 0 and b > 0 be such that
ωp,s,q(f, b) ≤ ε for all f ∈ K. Let

cb :=

( �

b≤|h|<1

2q

|h|sq
dh

|h|d
)1/q

.

Because (2) implies (1), K is relatively compact in Lp by the Riesz–Fréchet–
Kolmogorov theorem. Thus K can be covered by a finite number of balls
whose ‖ ‖p-radii are less than ε/(1 + cb). The elementary inequalities

‖∆m
h f‖p ≤ 2m‖f‖p, ωp,s,q(f − g, a) ≤ ωp,s,q(f, a) + ωp,s,q(g, a)

give immediately

‖f − g‖p,s,q ≤ ‖f − g‖p +

( �

b≤|h|<1

2mq‖f − g‖qp
|h|sq

dh

|h|d
)1/q

+ ωp,s,q(f, b) + ωp,s,q(g, b),

which shows that K can be covered by a finite number of balls whose ‖ ‖p,s,q-
radii are less than 3ε.

3. Weak convergence in Besov spaces. In Section 2, the Besov space
Bs,q
p (1 ≤ p <∞, s > 0, 1 ≤ q <∞) is presented as a separable Banach space

equipped with a modulus of smoothness that provides a nice compactness
criterion. Let us recall a well-known consequence of the Prokhorov theorem
(see for instance Ledoux–Talagrand [17, Section 2.1]). In order to prove the
weak convergence of a sequence (ξn) of random elements in a separable
Banach space B to a limit ξ, it suffices to check the weak convergence of
(f(ξn)) to f(ξ) in R for any f in a dense subset of the topological dual B ′

and the tightness of (ξn) in B. Real-valued stochastic processes indexed by
[0, 1]d with paths in Bs,q

p can be seen as random elements in B := Bs,q
p .

Now we present a necessary and sufficient condition for tightness, de-
duced from the preliminary framework presented in Section 2; then we de-
duce two sufficient conditions which will be used in Section 4 to establish
invariance principles.

Theorem 3.1. A sequence (ξn) of random variables with values in Bs,q
p

(1 ≤ p <∞, s > 0, 1 ≤ q <∞) is tight if and only if

(3) lim
M→∞

sup
n
P{‖ξn‖p > M} = 0

and for each ε > 0,

(4) lim
a→0

sup
n
P{ωp,s,q(ξn, a) > ε} = 0.
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Proof. This theorem is analogous to the classical one in C([0, 1]) (see
for example Theorem 8.2 in Billingsley [2, p. 55]). The proof is exactly the
same, except that the Arzelà–Ascoli theorem is replaced by the compactness
criterion given by Proposition 2.3.

Corollary 3.2. Let p ∈ [1,∞) and (ξn) be a sequence of stochastic
processes indexed by [0, 1]d. Suppose there exists a constant c1 > 0 such that

(5) sup
n
E|ξn(t)|p ≤ c1, t ∈ [0, 1]d,

and there exist constants δ, c2 > 0 and an integer m ≥ δ/p such that

(6) sup
n
E|∆m

h ξn(t)|p ≤ c2|h|δ, h ∈ [0, 1]d, t ∈ Dm,h.

Then (ξn) is tight in Bs,p
p , 0 < s < δ/p.

Proof. We only use the “if” part of Theorem 3.1. By the Markov in-
equality and Fubini theorem, we deduce (3) from (5) and (4) from (6).

Boufoussi, Chassaing and Roynette [4] obtain an analogous result by a
different approach. Note that (3) and (4) imply E‖ξn‖pp,s,p <∞ for 0 < s <
δ/p. Consequently, ξn has paths in Bs,p

p , 0 < s < δ/p, almost surely. This first
corollary is obtained under assumptions which are similar to Kolmogorov’s
conditions for membership in Hölder spaces. It is worth noticing that we
can take δ > 0 instead of δ ≥ 1. Therefore condition (6) does not assume
the continuity of the paths. However, (6) seems sometimes too strong a
requirement, especially when considering jump processes like partial sums.
The next corollary explains how the moment inequality (6) can be replaced
by a weaker assumption, which is just (6) for |h| not too small, as soon as
we monitor the convergence in probability of the corresponding modulus of
smoothness.

Corollary 3.3. Let p ∈ [1,∞) and (ξn) be a sequence of stochastic
processes indexed by [0, 1]d. Suppose there exists a constant c1 > 0 such that

(7) sup
n
E|ξn(t)|p ≤ c1, t ∈ [0, 1]d.

Moreover assume that for a sequence (an) decreasing to 0, some constants
δ, c2 > 0 and an integer m ≥ δ/p,
(8) sup

n
E|∆m

h ξn(t)|p ≤ c2|h|δ, |h| ≥ an, t ∈ Dm,h,

and for each 0 < s < δ/p and ε > 0,

(9) lim
n→∞

P{ωp,s,p(ξn, an) > ε} = 0.

Then (ξn) is tight in Bs,p
p , 0 < s < δ/p.
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Proof. Let bn = min(a, an) and notice that

P{ωp,s,p(ξn, a) > ε} ≤ P{ωp,s,p(ξn, bn) > ε/2}+ P{ωp,s,p(ξn, bn, an) > ε/2},

with

ωp,s,q(f, δ, η) :=

( �

δ≤|h|<η

‖∆m
h f‖

q
p

|h|sq
dh

|h|d
)1/q

.

Then an easy adaptation of the proof of Corollary 3.2 gives the result.

Introducing a decreasing sequence (an) goes back to Davydov [9], who
studied the convergence of discontinuous processes to continuous ones in the
Skorokhod space D[0, 1]. Hamadouche [15] uses such a sequence to prove a
tightness condition in Hölder spaces Cα, 0 < α < 1. Hamadouche’s result
can be obtained as a consequence of Corollary 3.3 via the continuous em-
beddings recalled in Section 2.

4. Invariance principle for summation processes. We generalize
to dimension d the definition of summation processes given in Section 1.
Consider a strictly stationary sequence (Xj; j ∈ Zd) and denote by Qn

the d-dimensional discrete cube Qn := {1, . . . , n}d. The jump summation
processes are defined by

ζn(t) := n−d/2
∑

j∈Qn
Xj

�

{j/n6t}, t ∈ [0, 1]d,

where x 6 y means x1 ≤ y1, . . . , xd ≤ yd and j/n := (j1/n, . . . , jd/n). The
smoothed summation processes are defined by

ξn(t) := nd/2
∑

j∈Qn
Xj |Rn,j ∩ [0, t]|, t ∈ [0, 1]d,

where |A| denotes the (d-dimensional) Lebesgue measure of A and the el-
ementary cube Rn,j , j ∈ Qn, is defined by Rn,j := [(j1 − 1)/n, j1/n] ×
· · · × [(jd − 1)/n, jd/n]. Denote by W = (W (t), t ∈ [0, 1]d) a standard d-
dimensional Brownian sheet, i.e. a centered Gaussian process with covari-
ance E[WtWu] = min(t1, u1) · · ·min(td, ud). Let r ≥ 1. Since E|Wt−Wu|2r ≤
Cr|t− u|r, we get the finiteness of E‖W‖2r,s,2r by Fubini’s theorem. There-
fore W lies almost surely in Bs,p

p , 1 ≤ p < ∞, 0 < s < 1/2. By continuous
embeddings (see Section 2) we can deduce that W lies in Bs,q

p , 1 ≤ p, q <∞,
0 < s < 1/2. Roynette [23] provides an extensive study of membership in
Besov spaces for Brownian motion (d = 1). For our purpose, it is sufficient
to notice that the bound for membership of W in separable Besov spaces is
s < 1/2. The analogous bound for ζn (resp. ξn) is s < 1/p (resp. s ≤ 1).
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Theorem 4.1 (Main theorem). Let (Xj; j ∈ Zd) be a strictly stationary
sequence satisfying the following conditions:

(10)
∑

k∈Zd
|Cov(X0,Xk)| <∞;

for each g ∈ C∞([0, 1]d), there is a Gaussian random variable G such that

(11) n−d/2
∑

j∈Qn
g(j/n)Xj

d−−−→
n→∞

G;

and there exist γ > 2, c > 0 such that for all finite discrete parallelepipeds J ,

(12) E
∣∣∣
∑

j∈J
Xj

∣∣∣
γ
≤ c|J |γ/2.

Then

(a) (ζn) converges in distribution to σW in Bs,γ
γ , 0 < s < 1/γ,

(b) (ξn) converges in distribution to σW in Bs,γ
γ , 0 < s < 1/2,

where σ2 :=
∑

j∈Zd Cov(X0,Xj).

In (12), |J | denotes the cardinality of the finite index set J . In what
follows we shall use freely the same notation for cardinality and Lebesgue
measure, the context helping to dispell initial doubts on the meaning of
the formulas. We postpone the proof of the main theorem to Section 5.
Since γ > 2, the convergence result obtained for ξn is stronger than for ζn.
This is not surprising, because ξn is a smoothed version of ζn. The case
γ = 2 is excluded in Theorem 4.1, because hypothesis (10) implies the
inequality given in (12) with γ = 2. However, a careful reading of the proof
of Theorem 4.1 (see Section 5) ensures that it is still valid in this case.
Therefore we may refer further to the case γ = 2, although it is not explicitly
included in the main theorem. Now we can deduce from Theorem 4.1 the
following corollary via the embeddings recalled in Section 2.

Corollary 4.2. With the above notations and under assumptions of
Theorem 4.1,

(a) (ζn) converges in distribution to σW in Bs,q
p for

1 ≤ p <∞, 0 < s < min(1/2, 1/p, d/p− (d− 1)/γ), 1 ≤ q <∞,
(b) (ξn) converges in distribution to σW in Bs,q

p for

1 ≤ p <∞, 0 < s < min(1/2, 1/2 + d/p− d/γ), 1 ≤ q <∞,
(c) if γ > 2d, then (ξn) converges in distribution to σW in Cα for

0 < α < 1/2− d/γ.

Proof. Consequence of the continuous embeddings recalled in Section 2.
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Result (c) in this corollary is the d-dimensional generalization of Lam-
perti’s [16] invariance principle in Hölder spaces (Lamperti obtains the case
d = 1 for i.i.d. variables). It requires γ > 2d and can be deduced from (b).
Note that (b) holds even if γ ≤ 2d. Result (a) provides the natural analogue
of (b) for the step process ζn. When d = 1, the case γ = 2 (see remarks
after Theorem 4.1) gives the convergence of the step process ζn in Bs,q

p ,
1 ≤ p < ∞, 0 < s < min(1/p, 1/2), 1 ≤ q < ∞. This is the optimal re-
sult in separable Besov spaces, since s < 1/p (resp. s < 1/2) is a necessary
condition for membership of ζn (resp. W ) in Bs,q

p with p and q both finite.
Therefore a stronger assumption (12) gives no stronger conclusion for the
step process ζn, in contrast to what happens for the polygonal process ξn.
This amazing phenomenon occurs only in dimension one.

The rest of this section is devoted to some examples of strictly stationary
sequences satisfying the assumptions under which Theorem 4.1 is proved.
We begin with the case of independent variables. Afterwards we study two
kinds of weak dependence: strong mixing and association.

Corollary 4.3. Let (Xj; j ∈ Zd) be an i.i.d. sequence of random vari-
ables with EX0 = 0 and E|X0|γ < ∞ for some γ > 2. Then the conclusion
of Theorem 4.1 holds with σ2 = EX2

0 .

Proof. Evidently, the covariance series (10) converges absolutely since it
reduces to one term. Assumption (11) is a consequence of the Lindeberg cen-
tral limit theorem. Moreover (12) is the classical Marcinkiewicz–Zygmund
inequality for i.i.d. variables.

Let us now consider strongly mixing variables. We refer to Doukhan [11]
for all the results on mixing random variables. We only consider strongly
mixing or α-mixing random variables. Let us just recall that most of the
classical mixing assumptions imply strong mixing. For a sequence X = (Xj;

j ∈ Zd) the strong mixing coefficient αX(r, u, v) is defined by

αX(r, u, v) := sup {|P(A ∩B)− P(A)P(B)| : A ∈ σ(X,Λ1), B ∈ σ(X,Λ2),

d(Λ1, Λ2) ≥ r, |Λ1| ≤ u, |Λ2| ≤ v},
where Λi, i = 1, 2, are subsets of Zd and σ(X,Λi) denotes the σ-algebra gen-
erated by (Xj ; j ∈ Λi). We can derive an invariance principle for summation
processes built on strongly mixing variables.

Corollary 4.4. Let (Xj ; j ∈ Zd) be a strictly stationary strongly mix-
ing sequence of random variables. If there exist γ > 2 and ε > 0 such that
E|X0|γ+ε <∞ and

(13)
∞∑

r=0

(r + 1)d(c−u+1)−1αX(r, u, v)ε/(c+ε) <∞,
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where c is an even integer , c ≥ γ and u + v ≤ c, then the conclusion of
Theorem 4.1 holds.

Proof. The verification of assumption (12) reduces to establishing a
Marcinkiewicz–Zygmund inequality for strongly mixing variables. This can
be found in Doukhan [11, Section 1.4.1]. On the other hand (10) and (11)
are implied by the central limit theorem given in Guyon [14, Theorem 3.2]
under weaker assumptions than Doukhan’s. Therefore Theorem 4.1 holds
under Doukhan’s assumptions.

Let us now recall that a sequence (Xj; j ∈ Zd) is called associated if for

any finite subset S of Zd and any functions f and g mapping RS into R and
coordinatewise nondecreasing,

Cov
(
f(Xj; j ∈ S), g(Xj; j ∈ S)

)
≥ 0.

The corresponding invariance principle deduced from the main theorem is
the following.

Corollary 4.5. Let (Xj ; j ∈ Zd) be a strictly stationary associated
sequence of random variables. If there exist γ > 2 and ε > 0 such that
E|X0|γ+ε <∞ and

(14) U(n) :=
∑

|k|≥n
Cov(X0,Xk) = O(n−d(γ−2)(γ+ε)/(2ε)),

where |k| = max(|k1|, . . . , |kd|), then the conclusion of Theorem 4.1 holds.

Proof. Condition (14) implies the finiteness of

σ2 =
∑

k∈Zd
Cov(X0,Xk).

We refer to Bulinskĭı [6, Corollary 1] for the proof of the Marcinkiewicz–
Zygmund inequality (12) under (14). In order to prove (11) we use Newman’s
theorem for triangular arrays of absolutely continuous functions of associ-
ated variables (see [18, Theorem 16 and subsequent remarks on extension
to triangular arrays]).

As usual the moment assumption E|X0|γ+ε < ∞ with ε > 0 on weakly
dependent sequences is stronger than the corresponding moment assumption
E|X0|γ < ∞ on independent sequences. The other condition (14) plays the
same role as (13) in the strong mixing case: it allows one to estimate the
lack of independence between variables. When d = 1, Bulinskĭı’s condition
(14) is exactly Birkel’s condition (see Birkel [3])

(15) u(n) := 2
∞∑

k=n

Cov(X0,Xk) = O(n−(γ−2)(γ+ε)/(2ε)).
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For strongly mixing variables, Doukhan’s condition (13) is essentially the
d-dimensional extension of Yokoyama’s [26] condition

(16)

∞∑

r=0

(r + 1)γ/2−1αX(r)ε/(γ+ε) <∞,

where (Xj ; j ∈ Z) is a strictly stationary α-mixing sequence with E|X0|γ+ε

<∞ and αX(r) is defined by

αX(r) := sup
k∈Z
{|P(A ∩B)− P(A)P(B)| :

A ∈ σ(Xj; j ≤ k), B ∈ σ(Xj; j ≥ r + k)}.
Hamadouche [15] obtains the FCLT in Cα, α < 1/2−1/γ, for the smoothed
summation processes ξn under Yokoyama’s condition (16) (resp. Birkel’s
condition (15)) in the strongly mixing (resp. associated) case. Theorem 4.1
gives a suitable extension of this result to Besov spaces and to the jump
process ζn. As explained in Section 2, it is fruitless to compare results for
step processes in the Skorokhod space with those in Besov spaces (see e.g.
Examples 2.1 and 2.2). However Oodäıra and Yoshihara [20] obtain an in-
variance principle in D([0, 1]) for the jump summation process ζn built on a
strictly stationary strongly mixing sequence satisfying the usual assumption
E|X0|γ+ε <∞ and

(17)

∞∑

r=0

αX(r)ε/(γ+ε) <∞.

Let us point out that under Oodäıra and Yoshihara’s condition (17) we

obtain the convergence of the step process ζn in Bs,2
2 [0, 1] (see remark on

the case γ = 2 after Theorem 4.1) and consequently in any Bs,q
p [0, 1] for

1 ≤ p <∞, 0 < s < min(1/2, 1/p), 1 ≤ q <∞.
Oodäıra and Yoshihara’s condition is relaxed by Doukhan, Massart and
Rio [12] to obtain the FCLT in D[0, 1] for strongly mixing variables under a
quantile assumption rather than a moment assumption. Their method seems
difficult to extend to the general case considered in Theorem 4.1.

5. Proof of the main theorem. The proof of Theorem 4.1 is divided
into four lemmas. The first one deals with triangular arrays and requires
only the sequence (Xj; j ∈ Zd) to be weakly stationary (i.e. the covariances
are invariant under translations).

Lemma 5.1. Let (Xj; j ∈ Zd) be a weakly stationary sequence.

(a) Suppose that ∑

k∈Zd
|Cov(X0,Xk)| <∞.
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Then

(18) lim
n→∞

Var
(
n−d/2

∑

j∈Qn
Xj

)
=
∑

k∈Zd
Cov(X0,Xk) =: σ2.

(b) Suppose that the array of real numbers (an,j ; j ∈ Qn) satisfies

(19) lim
n→∞

∑

j∈Qn
a2
n,j = τ2 <∞,

and for each k ∈ Zd,

(20) lim
n→∞

∑

j∈Qn,k
(an,j − an,j+k)2 = 0,

where Qn,k denotes the intersection of Qn with its translate −k+Qn.
Then

(21) lim
n→∞

Var
(∑

j∈Qn
an,jXj

)
= σ2τ2.

Proof. For x real, let x+ := max(x, 0). The index set Qn,k is either a
(discrete) parallelepiped, or empty. Elementary computations show that its
cardinality is always equal to

|Qn,k| =
d∏

l=1

(n− |kl|)+.

Using the weak stationarity, we get

Var
(
n−d/2

∑

j∈Qn
Xj

)
=
∑

k∈Zd
n−d|Qn,k|Cov(X0,Xk)

=
∑

k∈Zd

d∏

l=1

(
1− |kl|

n

)+

Cov(X0,Xk),

whence (18) follows, by applying the dominated convergence theorem with
respect to the counting measure on Zd. The proof of (21) uses the same
arguments, upon observing that

Var
( ∑

j∈Qn
an,jXj

)
=
∑

k∈Zd
Cov(X0,Xk)

∑

i∈Qn,k
an,ian,i+k

=
∑

k∈Zd
Cov(X0,Xk)

∑

i∈Qn,k
(a2
n,i + (an,i+k − an,i)an,i).

The second lemma gives the weak convergence against a dense subset of
the dual.
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Lemma 5.2. With the notations of Theorem 4.1 and under the assump-
tions (10) and (11), for all f ∈ C∞[0, 1]d,�

[0,1]d

f(t)ζn(t) dt
d−−−→

n→∞

�

[0,1]d

f(t)σW (t) dt,

�

[0,1]d

f(t)ξn(t) dt
d−−−→

n→∞

�

[0,1]d

f(t)σW (t) dt.

Proof. Observe first that the limit is a centered Gaussian random vari-
able whose variance is σ2‖g‖22, with

g(x) :=

�

[0,1]d

�

{x6t}f(t) dt.

Using the definition of the jump processes and exchanging summations gives�

[0,1]d

f(t)ζn(t) dt = n−d/2
∑

j∈Qn
g(j/n)Xj =: Sn.

Since (11) ensures the convergence of Sn, by a classical renormalization
argument it suffices to check the convergence of Var(Sn) to σ2‖g‖22. We
apply Lemma 5.1 to the triangular array

an,j := n−d/2g(j/n).

By Riemann summation,

lim
n→∞

n−d
∑

j∈Qn
g(j/n)2 = ‖g‖22.

Therefore (19) is satisfied with τ 2 := ‖g‖22. Moreover g is Lipschitz, so for
any k ∈ Zd,

n−d
∑

j∈Qn,k
(g(j/n)− g((j + k)/n))2 ≤ C2 |k|2

n2
.

Thus (20) is fulfilled and by Lemma 5.1 we get

lim
n→∞

Var(Sn) = σ2τ2 = σ2‖g‖22.
The proof for ξn can be reduced to that for ζn by another application of

Lemma 5.1. Using the definition of the jump processes, we get

(22)

�

[0,1]d

f(t)ξn(t) dt = nd/2
∑

j∈Qn
Xj

�

Rn,j

g(x) dx =: S′n.

Define a′n,j := nd/2 �
Rn,j

g(x) dx and bn,j := a′n,j − an,j . Notice that

|bn,j | ≤ nd/2
�

Rn,j

|g(j/n)− g(x)| dx ≤ nd/2n−d C
n

= Cn−d/2−1,
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and for each given k ∈ Zd,
|bn,j − bn,j+k|2 ≤ 2|bn,j+k|2 + 2|bn,j|2 ≤ 4C2n−(d+2),

so applying Lemma 5.1 to bn,j with τ = 0, we obtain

lim
n→∞

Var(Sn − S′n) = 0.

Therefore S′n converges in distribution to the same limit as Sn.

Since C∞([0, 1]d) is a dense subset of (Bs,q
p )′, 1 < p < ∞, s > 0, 1 <

q < ∞ (see Triebel [24, Sections 2.3.3 and 2.11.1]), Lemma 5.2 gives the
convergence against any element of the dual for both (ζn) and (ξn). Now we
use Corollary 3.3 to check the tightness of (ζn). The boundedness condition
(7) and the moment inequality (8) are consequences of the next lemma.

Lemma 5.3. With the notations of Theorem 4.1 and under hypothesis
(12), there exists c1 > 0 such that for all n ≥ 1 and t ∈ [0, 1]d,

E|ζn(t)|γ ≤ c1,

and there exists c2 > 0 such that for all n ≥ 1 and t, u ∈ [0, 1]d,

E|ζn(t)− ζn(u)|γ ≤ c2(|t− u|+ 1/n)γ/2.

Proof. Recall that

E|ζn(t)|γ = n−dγ/2
∣∣∣
∑

j

Xj
�

{j/n≤t}
∣∣∣
γ
,

and apply the Marcinkiewicz–Zygmund inequality (12) with Jt = Zd+∩[0, nt]
to obtain

E|ζn(t)|γ ≤ cn−dγ/2|Jt|γ/2.
Since |Jt| ≤ nd uniformly in t, c1 = c is suitable.

Let us now consider

E|ζn(t)− ζn(u)|γ = n−dγ/2E
∣∣∣
∑

j

Xj(
�

{j/n≤t} −
�

{j/n≤u})
∣∣∣
γ
,

and set aj :=
�

{j/n≤t} −
�

{j/n≤u}. Observe that

• aj = 1 when j ∈ J+ := Zd+ ∩ ([0, nt] \ [0, nu]),

• aj = −1 when j ∈ J− := Zd+ ∩ ([0, nu] \ [0, nt]),
• aj = 0 otherwise.

By the triangle inequality,

E1/γ|ζn(t)− ζn(u)|γ ≤ n−d/2
(
E1/γ

∣∣∣
∑

j∈J+

Xj

∣∣∣
γ

+ E1/γ
∣∣∣
∑

j∈J−
Xj

∣∣∣
γ)
.

Then, by the Marcinkiewicz–Zygmund inequality,

E1/γ |ζn(t)− ζn(u)|γ ≤ cn−d/2(|J+|1/2 + |J−|1/2).
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Elementary calculations provide the estimate

max(|J+|, |J−|) ≤ dnd−1(n|t− u|+ 1),

which leads to

E|ζn(t)− ζn(u)|γ ≤ c2(|t− u|+ 1/n)γ/2,

where c2 = (2c
√
d)γ .

So we have (8) for p = γ, δ = γ/2, and an = 1/n. Note that we only
need δ = 1 for the step process ζn. Since γ > 2, we have a better moment
inequality than required but this will be helpful further to check the tightness
in Bs,γ

γ , 0 < s < 1/2, of the smooth process ξn. It now remains to check (9).
This is the purpose of the next lemma.

Lemma 5.4. With the notations of Theorem 4.1 and under hypothesis
(12), there exist a random variable Yn and a constant C > 0 such that for
all n ≥ 1,

E|Yn|γ ≤ Cn1−γ/2,(23)

‖∆1
hζn‖γ ≤ Yn|h|1/γ, |h| ≤ 1/n.(24)

Proof. By considering h = h1e1 + · · ·+ hded, where {e1, . . . , ed} denotes
the canonical basis of Rd, it suffices to prove (24) for each ekhk, 1 ≤ k ≤ d,
and the result follows from the triangle inequality. Thus we assume that
h = h1e1. Then, by symmetry, the assumption h1 ≥ 0 is not a restriction.
Therefore we suppose that 0 < h1 ≤ 1/n. By definition,

ζn(t+ h1e1)− ζn(t) = n−d/2
∑

j

Xj
�

{t1<j1/n≤t1+h}
�

{j2/n≤t2} · · ·
�

{jd/n≤td}.

Then we use the following splitting:�

Dh

|ζn(t+ h1e1)− ζn(t)|γ dt =
∑

k∈K

�

Tk

|ζn(t+ h1e1)− ζn(t)|γ dt,

where

K := {k = (k2, . . . , kd) : 1 ≤ k2 ≤ n, . . . , 1 ≤ kd ≤ n}
and

Tk := (0, 1− h1]× ((k2 − 1)/n, k2/n]× · · · × ((kd − 1)/n, kd/n].

From the definition of Tk, we get�

Tk

∣∣∣ζn(t+ h1e1)− ζn(t)
∣∣∣
γ
dt

= n−dγ/2
�

Tk

∣∣∣
∑

1≤j≤k

∑

1≤j1≤n
Xj1,j2,...,jd

�

{t1<j1/n≤t1+h1}
∣∣∣
γ
dt,
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and so because the intervals [j/n− h1, j1/n) are disjoint,�

Tk

|ζn(t+ h1e1)− ζn(t)|γ dt

= n−dγ/2
�

Tk

∑

1≤j1≤n

∣∣∣
∑

1≤j≤k
Xj1,j2,...,jd

∣∣∣
γ �

{t1<j1/n≤t1+h1} dt.

Therefore�

Tk

|ζn(t+ h1e1)− ζn(t)|γ dt = n−dγ/2
∑

1≤j1≤n

∣∣∣
∑

1≤j≤k
Xj1,j2,...,jd

∣∣∣
γ
|h|n1−d,

and by summing over k we obtain

‖∆1
hζn‖γγ ≤ |Yn|γ |h1|,

where

|Yn|γ := n1−d−dγ/2 ∑

k∈K

∑

1≤j1≤n

∣∣∣
∑

1≤j≤k
Xj1,j2,...,jd

∣∣∣
γ
.

Now the Marcinkiewicz–Zygmund inequality (12) implies

E|Yn|γ ≤ cn1−d−dγ/2 ∑

1≤j1≤n

∑

k∈K

( d∏

i=2

ki

)γ/2
.

The elementary estimate

∑

1≤j1≤n

∑

k∈K

( d∏

i=2

ki

)γ/2
= O(nd+(d−1)γ/2)

finally leads to E|Yn|γ ≤ Cn1−γ/2.

The next step consists in showing that (9) holds via Lemma 5.4. Let
0 < s < 1/γ. By the Fubini theorem, we get

Eωγ,s,γ(ζn, 1/n)γ =

�

0<|h|<1/n

|h|−sγE‖∆1
hζn‖γγ

dh

|h|d .

Hence by (24),

(25) Eωγ,s,γ(ζn, 1/n)γ ≤ E|Yn|γ
�

0<|h|<1/n

|h|1−sγ dh

|h|d .

For 0 < s < 1/γ the integral in (25) is O(nsγ−1), so by combining (25)
and (23) we obtain

P{ωγ,s,γ(ζn, 1/n) > ε} ≤ Cε−γnγ(s−1/2).

Therefore (9) holds for p = γ, 0 < s < 1/γ, q = γ.
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Combining this result with the consequences of Lemma 5.3 ensures by
Corollary 3.3 that (ζn) is tight in Bs,γ

γ , 0 < s < 1/γ. Since Lemma 5.2 allows
us to identify the limit, (a) in the main theorem is proved.

Now we use Corollary 3.2 to check the tightness of (ξn). For the same
reasons as (ζn), (ξn) satisfies the boundedness condition (7) for p = γ under
(12). Unlike (ζn), (ξn) is smooth enough to satisfy the moment inequality
(6) for all t, u ∈ [0, 1]d. If |t− u| ≤ 1/n, then t and u are in the same cube
Rn,j or at worst in adjacent cubes. Elementary techniques show that due to
(12), we have

E|ξn(t)− ξn(u)|γ ≤ Cd|t− u|γ/2,
where Cd depends on the dimension d but not on n. If |t− u| ≥ 1/n, let k
and l in Zd be such that t and k/n (respectively u and l/n) are in the same
cube. Then by the triangle inequality,

E1/γ|ξn(t)− ξn(u)|γ ≤ E1/γ|ξn(t)− ξn(k/n)|γ + E1/γ |ξn(l/n)− ξn(k/n)|γ

+E1/γ |ξn(l/n)− ξn(u)|γ.
The first and third terms can be bounded using the case |t − u| ≤ 1/n.
For the second, notice that ξn(k/n) = ζn(k/n) and ξn(l/n) = ζn(l/n), then
apply Lemma 5.3. Combine all the preceding results to obtain

E|ξn(t)− ξn(u)|γ ≤ cd|t− u|γ/2, t, u ∈ [0, 1]d.

Therefore by Corollary 3.2, (ξn) is tight in Bs,γ
γ , 0 < s < 1/2. Just as for

(ζn), Lemma 5.2 allows us to identify the limit. We thus deduce (b) in the
main theorem.
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Élie Cartan, Nancy, 1993.
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