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Euclidean arrangements in Banach spaces

by

Daniel J. Fresen (New Haven, CT)

Abstract. We study the way in which the Euclidean subspaces of a Banach space
fit together, somewhat in the spirit of the Kashin decomposition. The main tool that we
introduce is an estimate regarding the convex hull of a convex body in John’s position
with a Euclidean ball of a given radius, which leads to a new and simplified proof of the
randomized isomorphic Dvoretzky theorem. Our results also include a characterization of
spaces with nontrivial cotype in terms of arrangements of Euclidean subspaces.

1. Introduction. A fundamental result in the geometry of Banach
spaces is Dvoretzky’s theorem (see e.g. [30, 38]), which states that any Ba-
nach space X of dimension n ∈ N is richly endowed with approximately
Euclidean subspaces of dimension bc log nc. Besides knowing that there are
many Euclidean subspaces, it is not known precisely how these subspaces
are arranged within X. In the case X = `n1 it has been shown, going back
to the work of Kashin [18], that there exist mutually orthogonal subspaces
E1, E2 ⊂ Rn such that Rn = E1 ⊕ E2 and for all i ∈ {1, 2} and all x ∈ Ei,

c1|x| ≤
1√
n
‖x‖1 ≤ c2|x|

where c1, c2 > 0 are universal constants, |x| = (
∑n

i=1 x
2
i )

1/2 and ‖x‖1 =∑n
i=1 |xi|. The same decomposition was shown to hold for spaces with uni-

versally bounded volume ratio [40, 43] (see Section 3 for more details). Using
the results just mentioned, it is easy to show that there exists an orthonormal
basis for Rn, say (ei)

n
i=1, such that for all (0.99n)-sparse vectors a ∈ Rn,

(1.1) c1

( n∑
i=1

a2i

)1/2
≤ 1√

n

∥∥∥ n∑
i=1

aiei

∥∥∥
1
≤ c2

( n∑
i=1

a2i

)1/2
.

In this paper we seek a collection of Euclidean subspaces of a general finite-
dimensional Banach space that fit together like a grid in such a way so that,
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with respect to a particular basis, vectors with various regularity properties
act as though they were in a Hilbert space, in the sense of (1.1). We are
interested in both isomorphic and almost-isometric type estimates. There
are two main types of regularity that we impose. The first is sparsity, and
the second is simplicity of support, measured in terms of cyclic length and
Kolmogorov complexity.

The most interesting example is `n∞ which has a 1 + ε Kashin-style de-
composition but not the richer arrangement of 1+ ε Euclidean subspaces as
described above. Numerous questions remain unsolved, even for `n∞.

2. Main results

2.1. The isomorphic theory. A key innovation of the paper is the
following lemma which uses a result of Vershynin [45] on contact points of
∂BX with the John ellipsoid (see Theorem 3.5 and Corollary 3.6).

Lemma 2.1. There exist universal constants c, c′, c1 > 0 with c′ > 2c21
such that the following holds. Consider any Banach space X of dimension
n ∈ N and let t ∈ R with 1 ≤ t ≤ c1

√
n. Identify X with Rn so that BX

is in John’s position. Let Kt = conv{tBn
2 , BX}. Let Mt and bt denote the

median and maximum of the Minkowski functional of Kt on Sn−1. Then

Mt

bt
≥ ct

√
1

n
log

(
c′n

t2

)
.

The bodyK(ρ) = BX∩ρBn
2 , related toKt by duality, has appeared before

in the literature. For this we refer the reader to [12, 25] and the references
therein. An immediate consequence is a version of the randomized isomorphic
Dvoretzky theorem of Litvak, Mankiewicz and Tomczak-Jaegermann [24]
(see also the original papers by Milman and Schechtman [31, 32], as well as
[14, 15]).

Corollary 2.2. There exist universal constants c, c1, c2, C > 0 such
that the following is true. Let (X, ‖ · ‖) be a real Banach space of dimension
n ∈ N that we identify with Rn so that the ellipsoid of maximum volume in
BX = {x : ‖x‖ ≤ 1} is the standard Euclidean ball Bn

2 . Let 1 ≤ k ≤ n and
let E ∈ Gn,k be a random subspace uniformly distributed in Gn,k. Then with
probability at least 1 − C exp(−cmax{k, log n}) the following event occurs.
For all x ∈ E,

c1M
(k)|x| ≤ ‖x‖ ≤ c2

√
k + log n

log(1 + n/k)
M (k)|x|

where M (k) is the average value of the Minkowski functional of the set
conv(BX∪ tBn

2 ) on S
n−1, with t =

√
(k + log n)/log(1 + n/k).
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Proof. Assume first that k < c′n for a sufficiently small c′ > 0. Set
Kt = conv(BX ∪ tBn

2 ) and apply Lemma 2.1 followed by Milman’s general
Dvoretzky theorem (see e.g. Theorem 3.3) with ε = 1/2. We conclude that
with probability at least 1 − C exp(−cmax{k, log n}) the following event
occurs: for all x ∈ E, c1M (k)|x| ≤ ‖x‖Kt ≤ c2M

(k)|x|. Then note that
‖x‖Kt ≤ ‖x‖ ≤ t‖x‖Kt . If c′n ≤ k ≤ n the result follows by John’s theorem.

For a vector a ∈ Rn, let a[ ∈ Rn denote the indicator function of the
support of a, i.e.

a[i =

{
0, ai = 0,
1, ai 6= 0.

Let ‖a‖0 = ‖a[‖1 = |{i : ai 6= 0}| denote the sparsity of a, let ‖a‖Kol =
CKol(a

[) denote the Kolmogorov complexity of a[, and let

‖a‖cyc = min{k ≤ n : ∃m ≤ n, (k ≤ i < n⇒ a(m+i)modn = 0)}
denote the cyclic length of the support of a.

Another direct consequence of Lemma 2.1 (or just as well Corollary 2.2)
is as follows.

Corollary 2.3. There exist universal constants c, c′, C > 0 such that
the following is true. Let (X, ‖ · ‖) be a real Banach space of dimension
n ∈ N that we identify with Rn so that the ellipsoid of maximum volume
in BX = {x : ‖x‖ ≤ 1} is the standard Euclidean ball Bn

2 . Let (ei)
n
i=1 be

a random orthonormal basis for Rn generated by the action of a random
orthogonal matrix uniformly distributed in O(n). Then with probability at
least 1− Cn−c, the following event occurs. For all a ∈ Rn,

cMD(a)

( n∑
i=1

a2i

)1/2
≤
∥∥∥ n∑
i=1

aiei

∥∥∥ ≤ D(a)MD(a)

( n∑
i=1

a2i

)1/2
where MD(a) is the average value of the Minkowski functional of the set
conv(BX ∪D(a)Bn

2 ) on S
n−1, and the distortion D(a) can be written as

(2.1) c′min

{
‖a‖1/20 ,

(
‖a‖cyc + log n

log(1 + n‖a‖−1cyc)

)1/2

,(
‖a‖0 + ‖a‖Kol + log n

log(1 + n(‖a‖0 + ‖a‖Kol)−1)

)1/2}
.

Note also that Mt is nonincreasing in t while tMt is nondecreasing.

The same dependence on ‖a‖0 can be achieved with the use of the
Dvoretzky–Rogers factorization [4, 11, 41, 42, 45], but only on a subspace
of proportional dimension. Note that in Corollary 2.3, logarithmic sparsity
alone is not enough to guarantee bounded Euclidean distortion.
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Problem 2.4. Does there exist a universal constant C > 0 and a se-
quence (ωn)

∞
n=1 with limn→∞ ωn = ∞ such that the following is true: For

every n ∈ N and any real Banach space (X, ‖ · ‖) of dimension n, there is a
basis (ei)

n
i=1 for X such that for any a ∈ Rn with ‖a‖0 ≤ ωn,( n∑

i=1

a2i

)1/2
≤
∥∥∥ n∑
i=1

aiei

∥∥∥ ≤ C( n∑
i=1

a2i

)1/2
?

Can one take ωn = c log n? Can one take (ei)
n
i=1 to be orthonormal with

respect to the John ellipsoid of BX?

In Section 2.2 we show that the corresponding 1 + ε estimate does not
hold in `n∞.

Lemma 2.1 can also be used to prove an inequality for the distribution of
norms on Sn−1 that is very similar to a result of Schechtman and Schmuck-
enschläger [39]. This in turn shows that bodies in John’s position with low
Dvoretzky dimension have a large Klartag–Vershynin parameter du(K), a pa-
rameter which is significant partly because of its relation to the outer inclu-
sion in Dvoretzky’s theorem [19]. These results are presented in Corollar-
ies 4.3 and 4.4.

Finally, let us note that a forthcoming paper of Chasapis and Gian-
nopoulos [7] further explores consequences of Lemma 2.1, which includes an
isomorphic version of the global Dvoretzky theorem of Bourgain, Linden-
strauss and Milman.

2.2. The almost-isometric theory. Let (X, ‖ · ‖) be a real Banach
space of dimension n ∈ N. Using Corollary 2.3 followed by a further applica-
tion of the randomized Dvoretzky theorem, it follows that we may identify
X with Rn in such a manner that c1Bn

2 ⊂ E ⊂ c2B
n
2 , where E is the John

ellipsoid of BX , and we may write X as the internal direct sum of subspaces

X =

N⊕
i=1

Hi

where dim(Hi) ≥ c(ε) log n and the subspaces (Hi)
N
i=1 are pairwise orthogo-

nal, and for each 1 ≤ i ≤ N and each x ∈ Hi,

(1− ε)M̃ |x| ≤ ‖x‖ ≤ (1 + ε)M̃ |x|

where M̃ depends on X. However for many spaces such as those with a
symmetric basis and those that come with a pre-packaged coordinate system,
such as `n∞, the Euclidean structure associated to the (exact) John ellipsoid is
of particular importance. Answering a question that we posed in an earlier
draft of this paper, Konstantin Tikhomirov gave a proof of the following
result which we discuss further in Section 5.1. We thank him for allowing us
to include it here.
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Theorem 2.5. There exists a universal constant c > 0 with the fol-
lowing property. Let (X, ‖ · ‖) be a real Banach space of dimension n ∈ N
that we identify with Rn so that the ellipsoid of maximum volume in BX =
{x : ‖x‖≤ 1} is the standard Euclidean ball Bn

2 . Let c(log log n)
3/2/(log n)1/2

< ε < 1/2. Then there exists a decomposition X =
⊕N

i=1Hi into mutually
orthogonal subspaces (Hi)

N
i=1 with dim(Hi) ≥ cε2(log ε−1)−1 log n such that

for all 1 ≤ i ≤ N and all x ∈ Hi,

(1− ε)M ]|x| ≤ ‖x‖ ≤ (1 + ε)M ]|x|
where M ] is the median of ‖ · ‖ on Sn−1.

In Corollary 4.2 we consider the infinite-dimensional case. Theorem 2.5
guarantees the existence of at least one decomposition, and we do not know
whether it holds for a typical decomposition. Referring back to Theorem 2.3,
we also do not know whether one can achieve a 1 + ε estimate for all a such
that ‖a‖cyc ≤ c(ε)ωn for some fixed function ωn with ωn → ∞, such as
ωn = log n.

Definition 2.6. Let X be an infinite-dimensional Banach space over R.
We shall say that X satisfies Definition 2.6 if for all ε > 0 and all k ∈ N,
there exists N ∈ N with the following property. For any finite-dimensional
subspace E ⊂ X with dim(E) > N , there exists a basis (ei)

n
i=1 for E such

that for any a ∈ Rn with ‖a‖0 ≤ k,

(2.2) (1− ε)
( n∑
i=1

|ai|2
)1/2

≤
∥∥∥ n∑
i=1

aiei

∥∥∥
X
≤ (1 + ε)

( n∑
i=1

|ai|2
)1/2

.

The space c0 does not have this property (see Lemma 5.3). Going back to
the work of Kwapień [21] and Figiel, Lindenstrauss and Milman [9], it is well
known that there are intimate connections between the Euclidean structures
within a Banach space and the notions of type and cotype. The `n∞ spaces
have, in a sense, the smallest possible collection of Euclidean subspaces. By
the Maurey–Pisier–Krivine theorem, these spaces are excluded as subspaces
of X precisely when X has nontrivial cotype. This leads naturally to the
following result.

Theorem 2.7. An infinite-dimensional real Banach space X satisfies
Definition 2.6 if and only if it has nontrivial cotype.

Our proof shows that when X has cotype q < ∞ and corresponding
cotype constant β ∈ (0, 1], such a basis exists provided 0 < ε < 0.99 and
k ≤ cβ2ε2(log(en/k))−1n2/q. For cotype 2 spaces the bound for k can be
polished slightly and written as k ≤ cβ2ε2(log β−1 + log ε−1)−1n.

2.3. Related observations. Our results are closely related to the re-
stricted isometry property of Candès and Tao [6] which plays a fundamental
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role in compressed sensing. They can be understood as generalized restricted
isometry/isomorphism properties for random operators from `n2 into more
general normed spaces. It follows from Theorem 2.7 that nontrivial cotype
is a natural condition to assume in the following two results.

Proposition 2.8. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be real Banach spaces of
dimensions n,m ∈ N respectively, with cotype q1, q2 <∞ and corresponding
cotype constants β1, β2 ∈ (0, 1]. Let 0 < ε < 0.99 and consider any k ∈ N
such that

k ≤ cε2(log(en/k))−1min{β21n2/q1 , β22m2/q2}.
Then there exist bases (ei)

n
i=1 and (fi)

m
i=1 in X and Y respectively with the

following property. Let G be an m × n random matrix with i.i.d. N(0, 1)
entries. With probability at least

1− c1 exp(−Cβ22m2/q2ε2)

the following event occurs. For all k-sparse vectors a ∈ Rn,

(1− ε)
∥∥∥ n∑
j=1

ajej

∥∥∥
X
≤
∥∥∥∥ 1√

m

m∑
i=1

n∑
j=1

Gijajfi

∥∥∥∥
Y

≤ (1 + ε)
∥∥∥ n∑
j=1

ajej

∥∥∥
X

Here, c, c1, C > 0 are universal constants.

Let us say that a vector x ∈ X is k-sparse with respect to a basis (ei)ni=1

if it can be expressed as a linear combination of no more than k basis vectors.
The Johnson–Lindenstrauss lemma [16] does not hold in a general Banach
space, even in spaces with nontrivial cotype (see [17] and the references
therein). For vectors that are sparse with respect to a particular basis (which
can be chosen randomly), the situation is different.

Proposition 2.9. Let (X, ‖ · ‖) be a real Banach space of dimension
n ∈ N, with cotype q ∈ [2,∞) and corresponding cotype constant β ∈ (0, 1].
Let 0 < ε < 0.99 and let k ∈ N be such that k ≤ cβ2ε2(log(en/k))−1n2/q.
Then there exists a basis (ei)ni=1 for X with the following property. Let Ω ⊂ X
be a finite collection of vectors that are each k-sparse with respect to the
given basis and let m = bCε−2 log |Ω|c. Then there exists a linear operator
T : X → `m2 such that for all x, y ∈ Ω,

(1− ε)‖x− y‖ ≤ |Tx− Ty| ≤ (1 + ε)‖x− y‖.
If in the above proposition one insists on a map Q : X → E, where E

is a subspace of X, then we may use Dvoretzky’s theorem and modify the
bound on m.

3. Background. Most of the background material relevant to the paper
can be found in [1, 9, 26, 27, 30, 33, 34, 35]. The letters c, c1, c2, c′, C etc.
denote universal constants that take on different values from one line to the
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next. They are not arbitrary, but have very specific numerical values that we
do not always have control over. The symbols P and E denote probability and
expected value. For p ∈ [1,∞), let ‖x‖p = (

∑n
i=1 |xi|p)1/p denote the `np norm

of a vector x ∈ Rn and let | · | = ‖ · ‖2 be the standard Euclidean norm. For
p = ∞, ‖x‖∞ = max{|xi| : 1 ≤ i ≤ n}. Let Bn

p = {x ∈ Rn : ‖x‖p ≤ 1} and
Sn−1 = {x ∈ Rn : |x| = 1}. The Grassmannian manifold Gn,k consists of all
k-dimensional linear subspaces of Rn, while the orthogonal group O(n) is the
space of all orthogonal n×n matrices. The spaces Sn−1, Gn,k and O(n) each
have a unique rotation invariant probability measure called Haar measure,
which will be denoted in each case as σn. Of fundamental importance is
Lévy’s concentration inequality.

Theorem 3.1. Let f : Sn−1 → R be a Lipschitz function and let Mf =	
Sn−1 f dσn. Then for all t > 0,

(3.1) σn{θ ∈ Sn−1 : |f(θ)−Mf | < tLip(f)} ≥ 1− c1e−c2nt
2

where c1, c2 > 0 are universal constants. The same result holds with the
mean Mf replaced with anything between (say) the 10th and 90th percentile
of f , such as the median, and Lip(f) is measured with respect to either the
Euclidean metric on Sn−1 or the geodesic distance.

A (centrally) symmetric convex body K ⊂ Rn is a compact, convex set
with nonempty interior such that x ∈ K if and only if −x ∈ K. The associ-
ated Minkowski and dual Minkowski functionals are the norms defined by

‖x‖K = inf{t ≥ 0 : x ∈ tK},
‖y‖K◦ = max{〈x, y〉 : x ∈ K},

where 〈·, ·〉 is the standard Euclidean inner product. The body

K◦ = {y : ‖y‖K◦ ≤ 1}

is known as the polar of K.
The John ellipsoid of a convex body K, denoted EK , is the ellipsoid of

maximal volume contained within K. It can be shown via a compactness
argument that such an ellipsoid exists. It is also known that EK is unique.
When EK = Bn

2 , we say that K is in John’s position, and in this case
(assuming K is symmetric)

Bn
2 ⊆ K ⊆

√
nBn

2 .

Two parameters of particular importance are the mean and the maximum,

M(K) =
�

Sn−1

‖θ‖K dσn(θ),(3.2)

b(K) = max{‖θ‖K : θ ∈ Sn−1}.(3.3)
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When K is in John’s position we have b ≤ 1, and it can be shown using the
Dvoretzky–Rogers lemma that

(3.4) M ≥ c
√

log n

n
.

Let (Ω, ρ) be a compact metric space and 0 < ε < 1. An ε-net N ⊂ Ω
is a set such that for all θ ∈ Ω there exists ω ∈ N such that ρ(θ, ω) < ε and
for all ω1, ω2 ∈ N , ρ(ω1, ω2) ≥ ε. Sometimes the latter condition is dropped.
Such a set can easily be shown to exist. In the case Ω = Sn−1, a volumetric
argument yields

(3.5) |N | ≤
(
3

ε

)n
.

By homogeneity, any x ∈ Rn can be expressed as x = |x|ω0 + x′, where
ω0 ∈ N and |x′| < ε|x|. Iterating this expression yields

(3.6) x/|x| = ω0 +

∞∑
i=1

εiωi

where (ωi)
∞
i=0 is a sequence in N and 0 ≤ εi < εi. Applying the triangle

inequality then leads to the following lemma.

Lemma 3.2. Let ‖ · ‖ be a norm on Rn and δ ∈ (0, 1/4). Let M > 0 and
let N be a δ-net in Sn−1. Suppose that for all ω ∈ N , (1 − δ)M ≤ ‖ω‖ ≤
(1 + δ)M . Then for all x ∈ Rn, (1− 4δ)M ≤ ‖x‖ ≤ (1 + 4δ)M .

Theorem 3.3 (The general Dvoretzky theorem). Let ‖ · ‖ be a norm
on Rn with parameters M, b as defined by (3.2) and (3.3) respectively. Let
0 < ε < 0.99 and k ≤ c1ε2M2b−2n, and let E ∈ Gn,k be any fixed subspace.
Let T be a random orthogonal matrix uniformly distributed in O(n) and let
E = TF . Then with probability at least 1 − c1 exp(−c2ε2M2b−2n) we have,
for all x ∈ E, (1− ε)M |x| ≤ ‖x‖ ≤ (1 + ε)M |x|.

Sketch. Let us start by giving Milman’s original proof under the slightly
stronger assumption that k ≤ c1ε2(log ε−1)−1M2b−2n. Let N be an ε/4-net
in S(F ) = {x ∈ F : |x|=1}. The epsilon net bound (3.5) yields |N |≤(12/ε)k.
It follows from the triangle inequality and the definition of b that ‖ · ‖ is
Lipschitz on Rn with Lip(‖ · ‖) = b. For each ω ∈ N , Tω is uniformly dis-
tributed in Sn−1. The result then follows from Lévy’s inequality (3.1) with
t = 4−1εMb−1, the union bound, and Lemma 3.2. To eliminate the factor
(log ε−1)−1, one can use a random n×n matrix Q with i.i.d. standard Gaus-
sian entries, instead of T ∈ O(n), as well as a more intricate epsilon net
argument. The use of a Gaussian matrix allows one to take advantage of the
fact that if u ⊥ v then Qu and Qv are independent. Eliminating the factor
(log ε−1)−1 using Gaussian processes/matrices was done by Gordon [13] and
Schechtman [36]. Lastly, the matrix n−1/2Q acts as an approximate isometry
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on F (with respect to the Euclidean norm on F and QF ), and so the result
for Q can then be transferred to the result for T .

If (Fi)Ni=1 is any collection of subspaces of Rn, then we may apply The-
orem 3.3 simultaneously to all Fi and modify the corresponding probability
(using the union bound). This is usually how we shall apply Theorem 3.3.

If X is any finite-dimensional Banach space, then there exists a basis for
X such that with respect to this basis, the unit ball BX = {x : ‖x‖ ≤ 1} is
in John’s position and by (3.4), we can take k = bcε2 log nc. The best known
dependence on ε for the existence of at least one deterministic subspace E
is c(ε) = cε(log ε−1)−2 by Schechtman [37, 38].

The volume ratio of a convex body K ⊂ Rn is defined as

vr(K) =

(
voln(K)

voln(EK)

)1/n

.

This goes back to the paper of Szarek [40] where it was used implicitly to
prove Kashin’s result, and then explicitly defined in [43] following a sugges-
tion by Pełczyński. The volume ratio theorem states that if K is symmetric,
1 ≤ k ≤ n, and E ∈ Gn,k is a random subspace of dimension k (uniformly
distributed with respect to the Haar measure on Gn,k corresponding to EK),
then with probability at least 1− 2−n,

EK ∩ E ⊆ K ∩ E ⊆ (4πvr(K))n/(n−k)(EK ∩ E).

For spaces with universally bounded volume ratio, such as `n1 where vr(Bn
1 )

≤
√
2π/e, this gives a version of Dvoretzky’s theorem with proportional di-

mension, as well as the Kashin decomposition mentioned in the introduction.
The probability bound 1 − 2−n is somewhat arbitrary and can be replaced
with 1 − tn for any t > 0 if we replace the 4π with ct−1. Setting t = 1/10
(say) and using the union bound and the inequality

(
n
k

)
≤ (en/k)k then

implies inequality (1.1) for k = d0.99ne.
A Banach space E embeds (linearly) into a space Y with distortion γ ≥ 1,

denoted E ↪→γ Y , if there exists a linear subspace F ⊆ Y and a linear
bijection T : E → F such that ‖T‖ · ‖T−1‖ = γ. The Euclidean distortion of
E is defined as

d2(E) = inf{γ ≥ 1 : E ↪→γ H}
where H is a suitably large Hilbert space. A space X is finitely representable
in Y if for all finite-dimensional subspaces E ⊂ X and all ε > 0, E ↪→1+ε Y .
By Dvoretzky’s theorem, every Hilbert space is finitely representable in every
infinite-dimensional Banach space.

The notions of type and cotype capture the spirit of the Lp spaces in an
abstract setting. Let (εi)∞i=1 denote an i.i.d. sequence of Rademacher random
variables with P{εi = 1} = P{εi = −1} = 1/2. A Banach space X is said to
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have type p ∈ [1, 2] if there exists α ∈ [1,∞) such that for all finite sequences
(xi)

m
i=1 in X,

E
∥∥∥ m∑
i=1

εixi

∥∥∥ ≤ α( m∑
i=1

‖xi‖p
)1/p

.

Similarly, X is said to have cotype q ∈ [2,∞] if there exists β ∈ (0, 1] such
that for all (xi)mi=1 in X,

β
( n∑
i=1

‖xi‖q
)1/q

≤ E
∥∥∥ n∑
i=1

εixi

∥∥∥
with the appropriate interpretation when q =∞. Any Banach space X has
type 1 and cotype ∞, and these are referred to as trivial type/cotype. If X
has type p and cotype q, then it has type p′ and cotype q′ for all p′ ∈ [1, p]
and q′ ∈ [q,∞]. Type and cotype are inherited by subspaces, and the space
Lp (1 ≤ p < ∞) has type min{p, 2} and cotype max{p, 2}. If E is a finite-
dimensional space with cotype q < ∞ and corresponding constant β, then
with respect to the John ellipsoid of BE inequality (3.4) can be improved to

(3.7) M ≥ cβn1/q−1/2

where n = dim(E), and the general Dvoretzky theorem guarantees the ex-
istence of Euclidean subspaces of dimension cε2β2n2/q. Here we use the no-
tation in [9] where β ∈ (0, 1]. Some authors refer to β−1 as the cotype
constant, and others use yet another definition which is equivalent up to a
constant Cp.

Let pX and qX be the supremum (resp. infimum) over all values of p and
q such that X has type p and cotype q. One of the most significant results in
the theory of type and cotype is the Maurey–Pisier–Krivine theorem [20, 28],
which builds on work by Brunel and Sucheston [5].

Theorem 3.4. If X is infinite-dimensional, then `pX and `qX are finitely
representable in X.

The following powerful result of Vershynin plays a key role in our work
(see [45, Corollary 5.5 and the discussion on p. 269]):

Theorem 3.5. There exists a function ξ : (0, 1) → (1,∞) such that the
following is true. Consider any ε ∈ (0, 1) and let X be any n-dimensional
real Banach space that we identify with Rn so that BX = {x : ‖x‖ ≤ 1} is
in John’s position. Then there exists m > (1− ε)n and a sequence (vi)

m
i=1 ⊂

Sn−1 ∩ ∂BX such that for all a ∈ Rm,

ξ(ε)−1
( m∑
i=1

a2i

)1/2
≤
∣∣∣ m∑
i=1

aivi

∣∣∣ ≤ ξ(ε)( m∑
i=1

a2i

)1/2
.
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Corollary 3.6. Let (X, ‖ · ‖X) be a real Banach space of dimension
n ∈ N and let m = dn/2e. Then there exists an inner product 〈·, ·〉] on X
and a sequence (ui)

m
i=1 that is orthonormal with respect to 〈·, ·〉] such that for

all 1 ≤ i ≤ m,
C−1 ≤ ‖ui‖X ≤ C,
C−1 ≤ ‖ui‖X∗ ≤ C,

where ‖ · ‖X∗ is the dual norm on X under the duality corresponding to
〈·, ·〉], i.e. ‖x‖X∗ = sup{〈x, y〉] : ‖y‖X ≤ 1}. Furthermore, the ellipsoid
of maximum volume in BX , denoted E, satisfies c1E] ⊆ E ⊆ c2E], where
E] = {x ∈ X : 〈x, x〉] ≤ 1}.

Proof. Here we review the theory surrounding Vershynin’s result. Identify
X with Rn so that K = BX is in John’s position. By Theorem 3.5, there
exists a sequence (vi)mi=1 of contact points between Bn

2 and ∂K such that for
any sequence of coefficients (ai)mi=1 ∈ Rm,

c1

( m∑
i=1

a2i

)1/2
≤
∣∣∣ m∑
i=1

aivi

∣∣∣ ≤ c2( m∑
i=1

a2i

)1/2
.

By construction, ‖vi‖K = |vi| = 1 for all 1 ≤ i ≤ m. These vectors are
linearly independent, and can be extended to a basis for Rn, (vi)ni=1, such that
(vi)

n
i=m+1 are orthonormal and span{vi}mi=1 is orthogonal to span{vi}ni=m+1.

Using these properties, for any sequence of coefficients (ai)ni=1 ∈ Rn,

c3

( n∑
i=1

a2i

)1/2
≤
∣∣∣ n∑
i=1

aivi

∣∣∣ ≤ c4( n∑
i=1

a2i

)1/2
,

which implies c ≤ ‖A‖2→2 ≤ c′ and c ≤ ‖A−1‖2→2 ≤ c′, where A is the n×n
matrix with the vectors (vi)ni=1 as columns and ‖ · ‖2→2 denotes the operator
norm of a matrix from `n2 to `n2 . Let (ui)ni=1 denote the dual basis of (vi)ni=1,
i.e. the columns of (AT )−1. Since ‖AT ‖2→2 = ‖A‖2→2 and ‖(AT )−1‖2→2

= ‖A−1‖2→2, we have

c5

( n∑
i=1

a2i

)1/2
≤
∣∣∣ n∑
i=1

aiui

∣∣∣ ≤ c6( n∑
i=1

a2i

)1/2
.

By the Hahn–Banach theorem, there exists (wi)mi=1 such that ‖wi‖K◦ = 1 and
〈vi, wi〉 = 1. Since K◦ ⊆ Bn

2 , |wi| ≤ 1. Since |vi|, |wi| ≤ 1 and 〈vi, wi〉 = 1,
it follows that vi = wi. Therefore ‖vi‖K◦ = 1. By definition of (ui)

n
i=1,

〈ui, vj〉 = δi,j , and therefore for each 1 ≤ i ≤ m,

|ai| =
∣∣∣〈 m∑
j=1

ajuj , vi

〉∣∣∣ ≤ ∥∥∥ m∑
j=1

ajuj

∥∥∥
K
,
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which implies that for all a ∈ Rm,

max
1≤i≤m

|ai| ≤
∥∥∥ m∑
j=1

ajuj

∥∥∥
K
≤ c6

( m∑
i=1

a2i

)1/2
.

Here we have also used the fact that the set K is in John’s position, which
implies that ‖ · ‖K ≤ | · |. Define 〈x, y〉] = 〈ATx,AT y〉. Since ATui = ei
for each 1 ≤ i ≤ m, it follows that (ui)

m
i=1 are orthonormal with re-

spect to 〈·, ·〉]. The fact that c1E] ⊆ Bn
2 ⊆ c2E] follows from the fact that

max{‖AT ‖2→2, ‖(AT )−1‖2→2} ≤ c.
The Kolmogorov complexity of a finite binary string b ∈ {0, 1}∗ =⋃∞

n=0{0, 1}n is defined as (see for example [23])

CKol(b) = min{`(p) : p ∈ {0, 1}∗, φ(p) = b}
where φ is the universal partial recursive function generated by a specific
universal Turing machine, and `(p) denotes the length of p. This measures
the amount of information contained in the string, which may be much less
than its length due to redundancy and the existence of patterns. For example
a string of the form

(3.8) b = (0, 0, 0, . . . , 1, 1, 1, . . . , 0, 0, 0, . . .)

has Kolmogorov complexity at most c log(n + 2), where n = `(b). In order
to describe the string, we need to express the fact that a zero never occurs
between two 1’s, which can be communicated using at most c bits. We must
then describe the starting point of the 1’s and the ending point, which re-
quires at most 2 log2(n+1)+ c bits. The types of strings most relevant to us
are those with low complexity, such as those of the form (3.8). This differs
from the more common situation where one is interested in strings of high
complexity.

4. Isomorphic theory

Lemma 4.1. Let (Xi)
m
i=1 be an i.i.d. N(0, 1) sequence and (logm)−1/2 ≤

s ≤ 1− c(logm)−1. With probability at least 0.52,

|{i : s
√
logm ≤ Xi ≤ 3

√
logm}| ≥ c′m1−s2 .

Proof. Let Φ denote the cumulative standard normal distribution func-
tion. For all t ≥ 1 (see e.g. [8]),

φ(t)

2t
≤ 1− Φ(t) ≤ φ(t)

t
where φ is the standard normal density. This implies that

P{s
√

logm ≤ Xi ≤ 3
√

logm} ≥ cm−s2 .
Let Y = |{i : s

√
logm ≤ Xi ≤ 3

√
logm}|. By taking the constant c in the
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statement of the lemma to be sufficiently large, it follows that EY ≥ 1000
and √

Var(Y ) ≤ (EY )1/2 ≤ EY
30

.

It then follows from Chebyshev’s inequality that P{Y ≥ EY/10} ≥ 0.52.

Proof of Lemma 2.1. Without loss of generality we may assume that
n > n0 and t > c2, where n0 and c2 are sufficiently large universal constants.
Let A = {x ∈ X : ‖x‖ ≤ 1} and m = dn/2e. Identify X with Rn so that the
inner product 〈·, ·〉] from Corollary 3.6 is the standard Euclidean inner prod-
uct, and consider the vectors (ui)mi=1 as in Corollary 3.6. With this coordinate
structure, A is not necessarily in John’s position. Near the end of the proof
we shall use a second coordinate structure. After applying an orthogonal
transformation, we may assume that ui = ei for all 1 ≤ i ≤ m, where (ei)ni=1

are the standard basis vectors of Rn. Let At = conv{A, tBn
2 }. Then ‖y‖A◦t =

max{‖y‖A◦ , t|y|}. Let θ ∈ Sn−1 be a random point uniformly distributed
on the sphere. We can simulate θ = X/|X|, where (Xi)

n
i=1 are i.i.d. N(0, 1)

variables. Set s = (1− 2 log(ct)/logm)1/2, in which case t = cm(1−s2)/2. By
Lemma 4.1, with probability at least 0.52, |Ω| ≥ cm1−s2 = ct2, where

Ω =
{
1 ≤ i ≤ m : s

√
logm ≤ Xi ≤ 3

√
logm

}
.

Let z =
∑

i∈Ω ei. Then 〈z,X〉 ≥ s(logm)1/2|Ω|. By Corollary 3.6 and
the triangle inequality, ‖z‖A◦ ≤ c|Ω| and |z| = |Ω|1/2. By the bound
on |Ω|, c|Ω| ≥ t|Ω|1/2, which implies that ‖z‖A◦t ≤ c|Ω|. We thus have
‖X‖At ≥ 〈z,X〉/‖z‖A◦t ≥ cs(logm)1/2 (with probability ≥ 0.52). With prob-
ability at least 0.99, |X| ≤ c

√
n. Therefore, with probability at least 0.51,

‖θ‖At ≥ cs
√
(log n)/n. Since this probability bound is strictly greater

than 0.5, this leads to a bound on the median of ‖ · ‖At on Sn−1, i.e.
med(‖ · ‖At) ≥ cs

√
(log n)/n.

Now consider a linear transformation T : Rn → Rn such that K = TA
is in John’s position (this is the final position/coordinate structure as in
the statement of the lemma). By Corollary 3.6, c3|x| ≤ |Tx| ≤ c4|x| for
all x ∈ Rn. Recalling the definition Kt = conv{tBn

2 ,K}, which implies
that ‖x‖K◦t = max{‖x‖K◦ , t|x|}, we see that c3‖x‖A◦t ≤ ‖x‖K◦t ≤ c4‖x‖A◦t
for all x ∈ Rn, and therefore c3‖x‖At ≤ ‖x‖Kt ≤ c4‖x‖At . This then im-
plies that Mt ≥ cs

√
(logm)/m, and clearly bt ≤ t−1. Recalling that s =

(1− 2 log(ct)/logm)1/2, these inequalities imply that

Mt

bt
≥ ct

(
1− 2 log(ct)

logm

)1/2( logm

m

)1/2

ct =

(
logm− 2 log(ct)

m

)1/2

≥ ct

√
1

n
log

(
c′n

t2

)
.
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Proof of Corollary 2.3. The idea of the proof is as follows: make repeated
use of Lemma 2.1 (or just as well Corollary 2.2) and Theorem 3.3 and then
use the union bound. The probability of a positive outcome for each group is
at least 1−Cn−c, and there are at most C log n groups. For the sake of clarity,
we choose to provide the details. Upper case letters such as C,C ′, C1 denote
constants that are sufficiently large, while lower case letters such as c, c′, c1
etc. denote sufficiently small constants in (0, 1). Without loss of generality we
may take n > n0 for some universal constant n0 ∈ N. For each A ⊆ {1, . . . , n}
let xA ∈ Rn be such that xi = 1 if i ∈ A and xi = 0 if x /∈ A, and consider
the corresponding coordinate subspace EA = {x ∈ Rn : i /∈ A ⇒ xi = 0}.
Define

‖A‖0 := ‖xA‖0, ‖A‖cyc := ‖xA‖cyc, ‖A‖Kol := ‖xA‖Kol.

For each 1 ≤ j ≤ log2
√
c1n, set

Λ(1, j) =
{
A ⊆ {1, . . . , n} : ‖A‖1/20 = bc2jc

}
,

Λ(2, j) =

{
A ⊆ {1, . . . , n} :

(
‖A‖cyc + log n

log(1 + n‖A‖−1cyc)

)1/2

≤ c2j
}
,

Λ(3, j) =

{
A ⊆ {1, . . . , n} :

(
‖A‖0 + ‖A‖Kol + log n

log(1 + n(‖A‖0 + ‖A‖Kol)−1)

)1/2

≤ c2j
}
.

Now let U ∈ O(n) be a uniformly distributed random matrix. Consider the
events {Ψ(i, j) : 1 ≤ i ≤ 3, 1 ≤ j ≤ log2

√
c1n} where Ψ(i, j) is the event that

for all A ∈ Λ(i, j) and all a ∈ EA, 1
2Mt|a| ≤ ‖Ua‖ ≤ 3

2 tMt|a|, where t = C2j

and Mt is the median of the Minkowski functional of Kt = conv{BX , tBn
2 }

restricted to Sn−1, as in Lemma 2.1. Our task now is to bound the probability
of these events, and we do so separately for each value of i.

Case 1: i = 1 and 1 ≤ j ≤ log2
√
c1n. We now use Lemma 2.1 with

t = C2j and Theorem 3.3 with ε = 1/2, k = bc2jc2 < 4c1n,

N = |Λ(1, j)| =
(
n

k

)
≤
(
en

k

)k
and (Fi)

N
i=1 any enumeration of {EA : A ∈ Λ(1, j)}. This implies that with

probability at least

1− C exp

(
−ct2 log

(
c′n

t2

))
≥ 1− Cn−c

the following event occurs: for all A ∈ Λ(1, j) and all a ∈ EA, 1
2Mt|a|

≤ ‖Ua‖Kt ≤ 3
2Mt|a| and therefore 1

2Mt|a| ≤ ‖Ua‖ ≤ 3
2 tMt|a|. i.e. P(Ψ(1, j))

≥ 1− Cn−c.
Case 2: i = 2 and 1 ≤ j ≤ log2

√
c1n. We now follow the same procedure

as in Case 1. Set t = C2j , and consider the function ψ(s) = s2 log(c′n/s2). It
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follows from the inequality defining Λ(2, j) and the fact that ψ is increasing
on C ≤ s ≤ c

√
n, that ψ evaluated at

s = c−1
(
‖A‖cyc + log n

log(1 + n‖A‖−1cyc)

)1/2

is bounded above by ψ(t), for any particular A ∈ Λ(2, j). Simplifying the
resulting inequality yields c−1‖A‖cyc ≤ t2 log(c′n/t2). Here one also uses the
fact that ‖A‖cyc < cn, which follows directly from the definition of Λ(2, j).
Then define k = dct2 log(c′n/t2)e. Note that every A ∈ Λ(2, j) is contained
in a set of the form

A′m,k = {(m+ i)modn : 0 ≤ i ≤ k − 1}.
Thus we may take N = n and apply Lemma 2.1 and Theorem 3.3 with
ε = 1/2 and Fi = A′i,k. Our conclusion is that P(Ψ(2, j)) ≥ 1− Cn−c.

Case 3: i = 3 and 1 ≤ j ≤ log2
√
c1n. This is similar to Case 2. Set

t = C2j . Repeating the above argument, we see that ‖A‖0 + ‖A‖Kol ≤
ct2 log(c′n/t2). We may then set k = dct2 log(c′n/t2)e and ε = 1/2. Since
any binary string b can be written as b = φ(p) for some other binary
string p (here φ is the universal partial recursive function involved in the
definition of Kolmogorov complexity, see Section 3), the number of strings
b with CKol(b) ≤ k is at most |{p ∈ {0, 1}∗ : `(p) ≤ k}| ≤ 2k+1. Therefore
N = |Λ(3, j)| ≤ 2k+1. It then follows after a third use of Lemma 2.1 and
Theorem 3.3 that P(Ψ(3, j)) ≥ 1− Cn−c.

By the union bound

P (Ψ) ≥ 1− Cn−c log(n) ≥ 1− Cn−c

where Ψ denotes the intersection of all Ψ(i, j) as 1 ≤ i ≤ 3 and 1 ≤ j
≤ log2

√
c1n. This completes the probabilistic argument. For the remainder

of the proof we assume that Ψ occurs and show that the conclusion of Theo-
rem 2.3 holds. Consider any a ∈ Rn, and the associated quantity D(a) as de-
fined by (2.1). If the minimum in (2.1) is attained at ‖a‖1/20 and ‖a‖1/20 ≤ c′n
then there exists 1 ≤ j ≤ log2

√
c1n such that ‖a‖1/20 ≤ bc2jc and a ∈ EA

for some A ∈ Λ(1, j). Since Ψ(1, j) ⊇ Ψ , we have 1
2Mt|a| ≤ ‖Ua‖ ≤ 3

2 tMt|a|
with t = 2j ≤ C ′‖a‖1/20 and the conclusion of the theorem holds. Otherwise,
if ‖a‖1/20 > c′n then by John’s theorem n−1/2|a| ≤ ‖Ua‖ ≤ |a|, and the con-
clusion still holds. Similar arguments hold when the minimum is attained at
either of the other two terms involving ‖a‖cyc and ‖a‖Kol.

Corollary 4.2. Let X be an infinite-dimensional Banach space over
R with a Schauder basis (ei)

∞
i=1. For any N ∈ N and ε > 0, X admits

an FDD (finite-dimensional decomposition) (En)
∞
n=1 where dim(En) ≥ N

and d2(En) ≤ (1 + ε).
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Proof. For all n ∈ N define Un = span{ej : (n − 1) exp(cN) < j
≤ n exp(cN)}. Then apply Corollary 2.3 followed by Theorem 3.3 to Un

to obtain Un = V
(n)
1 ⊕V (n)

2 ⊕· · ·⊕V (n)
N(n), where dBM(V

(n)
i , `ki2 ) ≤ 1+ ε, with

ki = dim(V
(n)
i ). We now claim that

X = V
(1)
1 ⊕ V (1)

2 ⊕ · · · ⊕ V (1)
N(1) ⊕ V

(2)
1 ⊕ V (2)

2 ⊕ · · · ⊕ V (2)
N(2) ⊕ · · · .

The main subtlety here is convergence, however it follows using John’s theo-
rem that the norms of the partial sum projections of Un onto

⊕k
i=1 V

(n)
i for

1 ≤ k ≤ N(n) are all bounded above by ecN .

It was shown by Schechtman and Schmuckenschläger [39] that if K ⊂ Rn
is a convex body in John’s position, then for all t ≥ 0,

(4.1) P{‖G‖K ≤ t} ≤ P{‖G‖∞ ≤ t}
where G is a standard normal random vector in Rn. Using Lemma 2.1 we
may recover a very similar type of estimate.

Corollary 4.3. There exist universal constants C, c, c1, c2 > 0 such
that the following holds. Let K ⊂ Rn be a symmetric convex body in John’s
position. Then for all 1 ≤ t ≤ c′

√
log n,

σn{θ ∈ Sn−1 : ‖θ‖K ≤ t/
√
n} < C exp(−c1n exp(−c2t2))

where σn is normalized Haar measure on Sn−1.

Proof. We first assume that C ′ ≤ t ≤ c
√
log n. Set s = c

√
n exp(−ct2)

and consider Ks = conv{K, sBn
2 }. By Lemma 2.1,

Ms ≥ c

√
1

n
log

(
c′n

s2

)
=

2t√
n

and Lip(‖ · ‖Ks) ≤ s−1. By Lévy’s inequality,

σn

{
θ ∈ Sn−1 : 1

2
Ms ≤ ‖θ‖Ks ≤

3

2
Ms

}
≥ 1− C exp(−cns2M2

s )

≥ 1− C exp(−cnt2 exp(−ct2)),
and the desired bound follows because ‖θ‖K ≥ ‖θ‖Ks . If 1 ≤ t < C ′, then
the result follows by readjusting the constants in the bound.

We refer to [19, 22] and Theorem 3.1 in [10] for related small ball esti-
mates.

For a convex body K ⊂ Rn with 0 ∈ int(K), the parameter du(K) is
defined for each u > 1 as

du(K) = min

{
n,− log σn

{
θ ∈ Sn−1 : ‖θ‖K ≤

1

u
M

}}
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where M is the mean of ‖ · ‖K on Sn−1. It was shown by Klartag and
Vershynin [19] that the outer inclusion in the randomized Dvoretzky the-
orem holds with uniformly bounded distortion for all dimensions 1 ≤ l
≤ c(u)du(K). It is known that du(K) ≥ ck(K), for u ≥ 2 say, where k(K) =

nM2 (here b = 1), and that for 1 ≤ p ≤ ∞, dCp(B
n
p ) ≥ cpn where cp, Cp > 0

depend only on p (and can be taken independent of p for 1 ≤ p ≤ 2).

Corollary 4.4. For all ε ∈ (0, 1/2) and all T > 0 there exists u0 ≤
CT/
√
ε such that for all n ≥ exp(Cε−1) and any symmetric convex body

K ⊂ Rn in John’s position with

M(K) ≤ T
√

log n

n
we have

du0(K) ≥ cn1−ε.
Proof. Set t = c

√
ε log n and u0 = M

√
nt−1 ≤ CT/

√
ε. The result then

follows from Corollary 4.3 or equation (4.1).

5. Almost-isometric theory

5.1. Almost-isometric decompositions in John’s position. For the
entirety of this subsection, let (X, ‖ · ‖) denote a real normed space of di-
mension n ∈ N that we identify with Rn so that BX is in John’s position.
For any subspace E ⊂ X let b(E) denote the Lipschitz constant of ‖ · ‖
restricted to E, and M ](E) the median of ‖ · ‖ restricted to Sn−1 ∩ E. Let
M ] = M ](X). All random objects that we consider (points, subspaces and
orthogonal matrices) are distributed according to Haar measure on the ap-
propriate space. Lemmas 5.1 and 5.2, as well as the proof of Theorem 2.5,
are taken (with permission) from [44], with minor modifications.

Lemma 5.1. There exists c > 0 such that the following is true. Let
k ≥ (M ])2n and F ∈ Gn,k. Let U ∈ O(n) be a random orthogonal matrix
and let E = UF . Then with probability at least 1− 2−k, b(E) ≤ c

√
k/n.

Proof. Let N be a 1/2-net in Sn−1∩F with |N | ≤ 6k. The result follows
by applying Lévy’s inequality (3.1) with t = c3

√
k/n and applying the series

representation (3.6), the union bound, and the triangle inequality.

Lemma 5.2. There exists a universal constant c1 > 0 such that the fol-
lowing is true. Let ‖·‖ be a norm on Rn with the unit ball in John’s position,
let θ ∈ Sn−1 be a random point and E ∈ Gn,k a random subspace (for some
k < n). Let ε > 0 be such that

P
{∣∣‖θ‖ −M ]

∣∣ ≥ εM ]
}
≤ 1/4.

Then
P{|M ](E)−M ]| ≤ εM ]} ≥ 1− 2 exp(−c1k).
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Proof. Let (vi)ki=1 be i.i.d. random points on Sn−1. Let
α = P{M ](E) ≤ (1− ε)M ]},
M = {H ∈ Gn,k :M ](H) ≤ (1− ε)M ]}.

By definition of M, for all 1 ≤ i ≤ k and any H ∈ M we have the ‘condi-
tional’ probability P{‖vi‖ ≤ (1− ε)M ] : vi ∈ H} ≥ 1/2, and therefore

P
{
|{i : ‖vi‖ ≤ (1− ε)M ]}| ≥ k/2

}
≥ α/2.

Of course the event {vi ∈ H} has measure zero and this does not fit into the
classical definition of conditional probability. However, it can be justified us-
ing a construction involving Fubini’s theorem on O(n)×O(k). On the other
hand, from the condition imposed on ε, P{‖vi‖ ≤ (1− ε)M ]} ≤ 1/4 and

E|{i : ‖vi‖ ≤ (1− ε)M ]}| ≤ k/4.
By Hoeffding’s inequality,

P
{
|{i : ‖vi‖ ≤ (1− ε)M ]}| ≥ k/2

}
≤ exp(−c1k).

The bound on P{M ](E) ≥ (1 + ε)M ]} follows similar lines.

Proof of Theorem 2.5. IfM ] ≥ c1ε−1((log n)/n)1/2, the statement follows
from Theorem 3.3 and we may assume without loss of generality that M ] <
c1ε
−1((log n)/n)1/2. Let

N = bn1−ε2(log ε−1)−2c
and let H1 ⊕ · · · ⊕HN be a decomposition of Rn into mutually orthogonal
subspaces of dimension either k or k + 1, with k ≈ nε

2(log ε−1)−2 , and let
U ∈ O(n) be a random orthogonal matrix. From Lemmas 5.1 and 5.2,
it follows that with high probability, for all i, M ](UHi)/b(UHi) ≥
c4ε
−1(log ε−1)

√
(log k)/k. It now follows by Theorem 3.3 that each UHi

can be decomposed yet again into approximately Euclidean subspaces of
dimension cε2(log ε−1)−1 log n.

5.2. Grid structures

Lemma 5.3. The space c0 does not satisfy Definition 2.6.

Proof. Assume for the sake of a contradiction that c0 satisfies Defini-
tion 2.6. Let n ≥ 3, k = 2 and consider any 0 < ε < (

√
2− 1)4. This ensures

that both of the following inequalities hold:
(1 + ε+ 2

√
ε) <

√
2(1− ε),(5.1)

(1 + ε)2 < 2(1− ε)2.(5.2)
Let (fi)

n
i=1 be a basis for `n∞ such that for any a ∈ Rn with ‖a‖0 ≤ 2,

(2.2) holds. Let T be the n× n matrix with the vectors (fi)ni=1 as columns.
For all 2-sparse vectors x ∈ Rn, (2.2) can be written as
(5.3) (1− ε)|x| ≤ ‖Tx‖∞ ≤ (1 + ε)|x|.



Euclidean arrangements in Banach spaces 73

It follows by setting x = ej (the jth standard basis vector of Rn) that for all
1 ≤ j ≤ n,

1− ε ≤ max
1≤i≤n

|Ti,j | ≤ 1 + ε.

In particular, there exists ν = ν(j) such that |Tν,j | ≥ 1 − ε. Since this
holds for each column, there are at least n entries of the matrix such that
|Ti,j | ≥ 1− ε. By duality, for all 1 ≤ i ≤ n and any j, l ∈ {1, . . . , n},

T 2
i,j + T 2

i,l ≤ (1 + ε)2.

By (5.2), there can be at most one such entry per row, and we conclude
that there is exactly one in every row. Hence ν ∈ Sn is a permutation of the
set {1, . . . , n}. For all 1 ≤ i ≤ n, if j 6= ν−1(i) then T 2

i,j = T 2
i,j + T 2

i,ν−1(i)

−T 2
i,ν−1(i) ≤ (1 + ε)2 − (1 − ε)2 = 4ε and |Ti,j | ≤ 2

√
ε. The matrix T

is therefore a small perturbation of a permutation matrix. If we now take
x = e1 + e2, then |x| =

√
2 and for all 1 ≤ i ≤ n,

|Ti,1 + Ti,2| ≤ 1 + ε+ 2
√
ε <
√
2(1− ε)

by (5.1), which implies that ‖Tx‖∞ <
√
2(1−ε). This contradicts (5.3), and

the result follows.

Proof of Theorem 2.7. If X fails to have nontrivial cotype, then it fol-
lows from the Maurey–Pisier–Krivine theorem that `∞ (equivalently c0) is
finitely representable in X, and therefore X fails to satisfy Definition 2.6 by
Lemma 5.3. On the other hand, if X has cotype q for some q < ∞, and
cotype constant β ∈ (0, 1], then it follows by Theorem 3.3 that X satis-
fies Definition 2.6. Here we also use the fact that

(
n
k

)
≤ (en/k)k, and the

bound M ≥ cβn1/q−1/2 from (3.7). The corresponding probability bound
is positive if k ≤ cβ2ε2(log(en/k))−1n2/q. In the case q = 2, this bound
can be polished. A simple calculation shows that if 0 < s < 1/3 and
T ≥ max{e, 3s−1 log s−1}, then T−1 log T ≤ s. Applying this with T = n/k
we see that k ≤ cβ2ε2(log β−1 + log ε−1)−1n is sufficient.

6. Remaining proofs. We state the following result for completeness
and because we could not find exactly what we wanted in the literature. See
[2] for a similar statement that applies to a wider class of random matrices,
but has slightly weaker dependence on ε.

Lemma 6.1. Consider any m,n, k ∈ N and 0 < ε < 0.99 such that
k ≤ cε2(log(en/k))−1m. Let U be a random m×n matrix with i.i.d. N(0, 1)
entries. With probability at least 1− c1 exp(−c2mε2), the inequality

(1− ε)|x| ≤ m−1/2|Ux| ≤ (1 + ε)|x|
holds simultaneously for all k-sparse vectors x ∈ Rn.
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Proof. Let E ∈ Gn,k be any k-dimensional coordinate subspace of Rn. By
Schechtman’s version of the general Dvoretzky theorem ([36, Theorem 2], or
the proof of Theorem 3.3 here), the required bound holds for all x ∈ E with
probability at least 1 − c1 exp(−c2mε2). There are at most

(
n
k

)
≤ (en/k)k

such coordinate subspaces, and the result follows from the union bound.

Proof of Proposition 2.8. We know from Theorem 2.7 that there exists a
basis in X, say (ei)

n
i=1 such that for all k-sparse vectors a ∈ Rn,

(1− ε/6)|a| ≤
∥∥∥ n∑
i=1

aiei

∥∥∥
X
≤ (1 + ε/6)|a|

Identify X with Rn using this basis. Identify Y with Rm in such a way that
BY is in John’s position, and then readjust the coordinate structure by scalar
multiplication so that the mean of ‖ ·‖Y in Sm−1 obeysM(‖·‖Y ) = 1. Let G
be a random m×n matrix with i.i.d. N(0, 1) entries. For each k-dimensional
coordinate subspace E ⊂ X, GE has dimension k with probability 1 and is
uniformly distributed in Gm,k. Therefore, using Theorem 3.3 and (3.7), with
probability at least 1 − c1 exp(−cβ22m2/q2ε2), for all y ∈ GE, (1 − ε/6)|y|
≤ ‖y‖Y ≤ (1 + ε/6)|y|. By applying the union bound, with probability at
least 1 − c1n

k exp(−cβ22m2/q2ε2), for all k-sparse vectors x ∈ X we have
(1− ε/6)|Gx| ≤ ‖Gx‖Y ≤ (1 + ε/6)|Gx|. The result now follows from Lem-
ma 6.1 and the inequality 1−ε ≤ (1−ε/6)(1+ε/6)−2 ≤ (1−ε/6)−2(1+ε/6)
≤ 1 + ε.

Proof of Proposition 2.9. The difference between any two k-sparse vectors
is 2k-sparse. The result now follows from Theorem 2.7 and the comment fol-
lowing the statement of the theorem (by readjusting the constants involved)
as well as the usual form of the Johnson–Lindenstrauss lemma.
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