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L1-convergence and hypercontractivity of
diffusion semigroups on manifolds

by

Feng-Yu Wang (Beijing)

Abstract. Let Pt be the Markov semigroup generated by a weighted Laplace opera-
tor on a Riemannian manifold, with µ an invariant probability measure. If the curvature
associated with the generator is bounded below, then the exponential convergence of
Pt in L1(µ) implies its hypercontractivity. Consequently, under this curvature condition
L1-convergence is a property stronger than hypercontractivity but weaker than ultracon-
tractivity. Two examples are presented to show that in general, however, L1-convergence
and hypercontractivity are incomparable.

1. Introduction. Let M be a connected, complete, noncompact Rie-
mannian manifold either without boundary or with a convex boundary ∂M .
Consider the operator L := ∆ + Z, where Z is a C1 vector field such that
for some K ≥ 0,

Ric(X,X)− 〈∇XZ,X〉 ≥ −K|X|2, X ∈ TM.(1.1)

Then the (reflecting) L-diffusion process is non-explosive (see e.g. [10, Theo-
rem 8.2]). Let Pt be the corresponding diffusion semigroup. We assume that
Pt has a (unique) invariant probability measure µ (see [3] for a sufficient
condition of its existence and uniqueness). In particular, if Z = ∇V for
some V ∈ C2(M) such that R :=

�
M eV (x) dx <∞, where dx stands for the

Riemannian volume measure, then µ(dx) = R−1eV (x)dx.
Our main purpose is to compare the L1-convergence and hypercontrac-

tivity of Pt. Let us first explain that both properties are stronger than the
L2-exponential convergence of Pt.

It is well known that the log-Sobolev inequality implies the Poincaré in-
equality, and if Pt is symmetric then these two inequalities are equivalent,
respectively, to the hypercontractivity and L2-exponential convergence of
Pt (see e.g. [6, 8]). Therefore, at least for the symmetric case, the hyper-
contractivity of Pt is stronger than its exponential convergence in L2(µ). In
fact, this implication is also true for the non-symmetric case as soon as (1.1)
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holds, since according to [15, Theorem 2.1] (see also [19, Theorem 5.3]) if
(1.1) holds then the hypercontractivity of Pt is equivalent to the log-Sobolev
inequality as well, which in turn implies the Poincaré inequality and hence
the L2-exponential convergence of Pt.

On the other hand, suppose that Pt converges in L1(µ), i.e. there is a
positive function ξ on [0,∞) with ξ(t) ↓ 0 as t ↑ ∞ such that

‖Pt − µ‖1→1 ≤ ξ(t), t ≥ 0,

where ‖ · ‖p→q denotes the operator norm from Lp(µ) to Lq(µ), and µ(f) :=�
M f dµ for f ∈ L1(µ). Then, by the semigroup property, Pt converges in
L1(µ) exponentially fast, i.e. there exist c, λ > 0 such that

‖Pt − µ‖1→1 ≤ ce−λt, t ≥ 0.(1.2)

Since ‖Pt − µ‖∞→∞ ≤ 2 for all t ≥ 0, by Riesz–Thorin’s interpolation
theorem (see e.g. [5]) one has

‖Pt − µ‖2→2 ≤
√

2c e−λt/2, t ≥ 0.(1.3)

If, in particular, Pt is symmetric, then (1.2) implies

‖Pt − µ‖∞→2 = ‖Pt − µ‖2→1 ≤ ‖Pt − µ‖1→1 ≤ ce−λt, t ≥ 0,

hence according to [14, Theorem 2.3],

‖Pt − µ‖2→2 ≤ e−λt, t ≥ 0.

Therefore, besides hypercontractivity, L1-convergence also implies L2-expo-
nential convergence.

Our main result says that under condition (1.1), L1-exponential conver-
gence is a property between hypercontractivity and ultracontractivity. We
refer to [15, 20] for explicit sufficient and necessary conditions for these two
contractivity properties.

Theorem 1.1. (1) If (1.1) holds, then (1.2) implies the log-Sobolev in-
equality : there exists C > 0 such that

µ(f2 log f2) ≤ Cµ(|∇f |2), µ(f2) = 1.(1.4)

Consequently , the L1-convergence of Pt implies its hypercontractivity , i.e.
for any t > 0 there exists pt > 2 such that ‖Pt‖2→pt ≤ 1.

(2) If either (1.1) holds or Pt is symmetric, then the ultracontractivity
of Pt (i.e. ‖Pt‖1→∞ <∞ for some t > 0) implies (1.2) for some c, λ > 0.

Remark 1.2. When Pt is symmetric, its L1-convergence is equivalent
to strong ergodicity:

lim
t→0

sup
ν∈P(M)

‖νPt − µ‖var = 0,

where P(M) is the set of all probability measures on M , νPt ∈ P(M) is
defined by (νPt)(A) := ν(Pt1A) for a measurable set A, and ‖ · ‖var is the
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total variation norm defined by ‖ψ‖var := supA ψ(A) − infA ψ(A) for a set
function ψ. In fact, if ν is absolutely continuous with respect to µ then (see
e.g. [4, Theorem 5.7])

1
2
‖νPt − µ‖var = �

M

(
Pt
dν

dµ
− 1
)+

dµ =
1
2
µ

(∣∣∣∣Pt
dν

dµ
− 1
∣∣∣∣
)
.

Since Pt (t > 0) has transition density (see e.g. [7, p. 79]) and since µ has
strictly positive density with respect to the volume measure (see e.g. [3,
Theorem 1.1(ii)]), νP1 is absolutely continuous with respect to µ. Thus, for
any t > 1 one has

‖Pt − µ‖1→1 = sup
f≥0, µ(f)=1

µ(|Ptf − 1|) ≤ sup
ν∈P(M)

‖νPt − µ‖var

= sup
ν∈P(M)

‖(νP1)Pt−1 − µ‖var

= sup
ν∈P(M)

µ

(∣∣∣∣Pt−1
d(νP1)
dµ

− 1

∣∣∣∣
)
≤ ‖Pt−1 − µ‖1→1.

Therefore, in other words, Theorem 1.1(1) means that under (1.1) the strong
ergodicity of Pt implies the log-Sobolev inequality.

The proof of Theorem 1.1 is given in the next section, while two ex-
amples are presented in Section 3 to show that in general L1-convergence
and hypercontractivity are incomparable.

2. Proof of Theorem 1.1. To prove Theorem 1.1(1), we need the
following interpolation theorem due to Peetre [13] (see also [9, Theorem
A.1]). In the version below we give an explicit relationship between the
relevant constants.

Theorem 2.1 (Peetre’s interpolation theorem). Let φ0, φ1, φ2 be three
non-negative increasing functions defined on [0,∞) such that φ1 =
φ0σ(φ2/φ0) for a concave function σ and φi(2r) ≤ aφi(r) for some a > 0
and all r ≥ 0, i = 0, 1, 2. Let T be a linear operator defined on a space
D(T ) ⊃ Oφi := {f : µ(φi(|f |)) < ∞}, i = 0, 1, 2. There exists c > 0 such
that if

� φi(|Tf |) dµ ≤ ci � φi(|f |) dµ, f ∈ Oφi , i = 0, 2,(2.1)

for some c0, c2 > 0, then

� φ1(|Tf |) dµ ≤ c(c0 ∨ c2) � φ1(|f |) dµ, f ∈ Oφ1 .(2.2)

Proof. For f ∈ D(T ), define

L(t, f) := inf
f=f0+f2

{µ(φ0(|f0|)) + tµ(φ2(|f2|))}, t ≥ 0.
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By (A.4) in [9], there exist C ∈ [1,∞) and a positive measure ν on [0,∞)
such that for any f ∈ D(T ),

1
C

∞
�
0

L(t, f) ν(dt) ≤ µ(φ1(|f |)) ≤ C
∞

�
0

L(t, f) ν(dt).(2.3)

By (2.1),

L(t, Tf) ≤ inf
f=f0+f2

{µ(φ0(|Tf0|)) + tµ(φ2(|Tf2|))}

≤ inf
f=f0+f2

{c0µ(φ0(|f0|)) + tc2µ(φ2(|f2|))} ≤ (c0 ∨ c2)L(t, f).

Combining this with (2.3) we obtain (2.2).

Proof of Theorem 1.1. (1) By (1.1) we have (see [1, 17])

Pt(f2 log f2) ≤ 2(exp[2Kt]− 1)
K

Pt|∇f |2 + (Ptf2) log(Ptf2), t > 0.

This implies that

(2.4) µ(f2 log f2)

≤ 2(exp[2Kt]− 1)
K

µ(|∇f |2) + µ((Ptf2) logPtf2), t > 0.

To apply Theorem 2.1, let φ0(r) = r, φ2(r) = r2 and φ1(r) = r log(1 + r).
We have σ(r) = log(1 + r), which is concave. Applying Theorem 2.1 to
T := Pt − µ and using (1.2) and (1.3), we obtain

µ(|Ptf2 − 1| log(1 + |Ptf2 − 1|))
≤ c2µ(|f2 − 1| log(1 + |f2 − 1|))e−λ2t, µ(f2) = 1,

for some c2, λ2 > 0 and all t ≥ 0. Therefore, there exists c3 > c2 such that

µ(Ptf2 logPtf2) ≤ c3e
−λ2tµ(f2 log f2) + c3, t ≥ 0, µ(f2) = 1.

Combining this with (2.4) for a proper choice of t > 0, we obtain

µ(f2 log f2) ≤ Aµ(|∇f |2) +B, µ(f2) = 1,(2.5)

for some A,B > 0. Therefore, to prove the hypercontractivity of Pt, it
suffices to verify the following Poincaré inequality (see e.g. [6, Theorem
6.1.22(ii)]):

µ(f2) ≤ Cµ(|∇f |2) + µ(f)2,(2.6)

where C > 0 is a constant. To this end, we make use of [14, Proposition
3.1], which involves the weak and super Poincaré inequalities. First, since
x log x ≥ Rx− eR−1 for all x,R ≥ 0, we have (for µ(f 2) = 1)

µ(f2 log f2) = 2µ(f2 log |f |) ≥ 2R− 2eR−1µ(|f |)
≥ 2R− 1− e2Rµ(|f |)2, R > 0.
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Combining this with (2.5) we arrive at

µ(f2) ≤ Aµ(|∇f |2) + e2Rµ(|f |)2

2R−B − 1
, 2R > B + 1.

Thus, we have the following super Poincaré inequality for some β : (0,∞)→
(0,∞):

µ(f2) ≤ rµ(|∇f |2) + β(r)µ(|f |)2, r > 0.

On the other hand, by e.g. [3, Theorem 1.1(ii)] one has µ(dx) = eV (x)dx
for some V ∈ C(M). Then [14, Theorem 3.1] implies the weak Poincaré
inequality, i.e. there exists α : (0,∞)→ (0,∞) such that

µ(f2) ≤ α(r)µ(|∇f |2) + r‖f‖2∞, r > 0, µ(f) = 0.

Therefore, by [14, Proposition 1.3] we obtain (2.6) for some constant C > 0.
(2) If Pt is ultracontractive then (2.5) holds for some constants A,B > 0

(see e.g. [19, Theorem 5.3]). Thus, as explained above, (2.6) holds and hence
‖Pt − µ‖2→2 ≤ e−t/C , t ≥ 0. Therefore, if ‖Pt0 − µ‖1→2 < ∞ then for all
t > 0 one has

‖Pt+t0 − µ‖1→1 ≤ ‖Pt0 − µ‖1→2‖Pt − µ‖2→2 ≤ e−t/C‖Pt0 − µ‖1→2.

3. Incomparability of L1-convergence and hypercontractivity.
To show that L1-convergence and hypercontractivity are incomparable, let
us first recall a result on strong ergodicity which is equivalent to L1-conver-
gence for the symmetric case according to Remark 1.2. By Tweedie [16,
Theorem 2(iii)] it is well known that for irreducible Markov chains on Z+
strong ergodicity is equivalent to supi∈Z+

Eiτ0 <∞, where τ0 is the hitting
time to 0 and Ei is the expectation with respect to the Markov chain start-
ing from i. The same has been proved recently by Mao [12] for diffusion
processes.

Theorem 3.1 (Mao [12]). Consider L := a(x)d2/dx2 + b(x)d/dx, where
a, b ∈ C1([0,∞)) with a(x) > 0 for all x ≥ 0. Let

C(x) =
x

�
0

b(r)
a(r)

dr, x ∈ R.

Assume that
� ∞
0 (eC(r)/a(r)) dr < ∞. Then the corresponding reflecting dif-

fusion semigroup Pt is strongly ergodic if and only if

δ :=
∞

�
0

e−C(x) dx

∞
�
x

eC(r)

a(r)
dr <∞.(3.1)

Proof. We include the proof for completeness. Let τ0 := inf{t ≥ 0 :
xt = 0}, where xt is the reflecting L-diffusion process.
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(a) (3.1) is equivalent to supx>0E
xτ0 <∞. Let

F (x) :=
x

�
0

e−C(r)dr

∞
�
r

eC(s)

a(s)
ds, x ≥ 0.

We have LF (x) = −1 and hence for x > 0,

0 ≤ ExF (xτ0∧t) = F (x)− Ex(τ0 ∧ t), t > 0.

Letting t→∞ we obtain Exτ0 ≤ F (x) and hence (3.1) implies supx>0E
xτ0

<∞.
Conversely, letting τn := inf{t ≥ 0 : xt ≥ n} we have

F (x) = Exτ0 ∧ τn +ExF (τ0 ∧ τn)(3.2)

≤ F (n)P x(τn < τ0) + Exτ0, n > x.

Since for G(x) :=
� x
0 e
−C(r)dr one has LG = 0, it follows that

F (x) = ExG(xτ0∧τn) = G(n)P x(τn < τ0), n > x.

Combining this with (3.2) we arrive at

F (x) ≤ Exτ0 +
F (n)G(x)
G(n)

, n > x.(3.3)

This implies that F (∞) < ∞ provided supx>0E
xτ0 < ∞. Indeed, if F (∞)

=∞, then since
� ∞
0 (eC(r)/a(r)) dr <∞, we haveG(∞) =∞ and F (n)/G(n)

→ 0 as n→∞. Thus, by letting n→∞, we see from (3.3) that F (x) ≤ Exτ0
for all x > 0 and hence supx>0E

xτ0 =∞.
(b) Strong ergodicity implies supx>0E

xτ0 <∞. If Pt is strongly ergodic,
then there exists t > 0 such that infx>1 P

x(xt ≤ 1) ≥ 1
2µ([0, 1]) =: c > 0,

where µ is the invariant probability measure. Thus,

P x(τ1 > 2t) ≤ P x(xt > 1, x2t > 1) = Ex1{xt>1}P
xt(xt > 1)

≤ (1− c)2, x > 1.

Similarly, we have

P x(τ1 > nt) ≤ (1− c)n, x > 1.

Therefore,

Exτ1 =
∞

�
0

P x(τ1 > s) ds ≤ δ <∞

for some δ > 0 and all x > 1.
On the other hand, by the proof in (a) we see that

Exτ1 =
x

�
1

e−C(r) dr

∞
�
r

eC(s)

a(s)
ds, x > 1.
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Then
� ∞
0 (eC(s)/a(s)) ds <∞ and

sup
x>0

Exτ0 = sup
x>1

Exτ0 = sup
x>1

Exτ1 +
1

�
0

e−C(r)dr

∞
�
r

eC(s)

a(s)
ds <∞.

(c) supx>0E
xτ0 < ∞ implies strong ergodicity. For any x > y ≥ 0,

let (xt, yt) be a coupling of the reflecting L-diffusion process with x0 = x,
y0 = y. We have

T := inf{t ≥ 0 : xt = yt} ≤ τ0 := inf{t ≥ 0 : xt = 0}.
As usual we let xt = yt for t > T so that for any measurable set A we have

|δxPt(A)− δyPt(A)| ≤ Ex,y |1A(xt)− 1A(yt)| ≤ P x,y(xt 6= yt) ≤ P x,y(T > t).

Therefore,

sup
x>y≥0

‖δxPt − δyPt‖var ≤ 2 sup
x>y≥0

P x,y(T > t) ≤ 2 sup
x>0

P x(τ0 > t)

≤ supx>0E
xτ0

t
,

which goes to zero as t→∞. This means that Pt is strongly ergodic.

Example 3.1. Consider the Ornstein–Uhlenbeck operator L := d2/dx2−
xd/dx on [0,∞). It is well known that the semigroup Pt of the reflecting
L-diffusion process is hypercontractive. But according to Theorem 3.1, Pt
is not strongly ergodic since (3.1) does not hold. Therefore, Pt does not
converge in the L1-norm by Remark 1.2.

Example 3.2. Let M = [0,∞) and consider L := d2/dx2 + b(x)d/dx,
where

b(x) := −γ
′(x)
γ(x)

− 1
γ(x)

, x ≥ 0,

with γ constructed as follows. For any n ≥ 1, let φn ∈ C∞[0,∞) be non-
negative such that φn|[n,n+e−n]c = 0 and

φn|[n+e−n/4,n+3e−n/4] = maxφn = en(1 + n)−2.

Set γ(r) = (1 + r)−2 +
∑

n≥1 φn(r), r ≥ 0. Then Pt is strongly ergodic and
hence L1-convergent but not hypercontractive.

Proof. We have

C(x) :=
x

�
0

b(r) dr = − log γ(x)−
x

�
0

dr

γ(r)
, x ≥ 0.

Then

exp[−C(x)] = γ(x) exp
[x

�
0

dr

γ(r)

]
, exp[C(x)] = − d

dx
exp
[
−
x

�
0

dr

γ(r)

]
.
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Therefore,
� ∞
0 eC(x) dx = 1 and

∞
�
0

e−C(x) dx

∞
�
x

eC(y) dy =
∞

�
0

γ(x) dx ≤
∞

�
0

dr

1 + r2 +
∞∑

n=1

1
1 + n2 <∞.

Thus, (3.1) holds and hence Pt is strongly ergodic.
On the other hand, we use [2, Theorem 1.1] to disprove the log-Sobolev

inequality. Observe that

1
3

(1 + x)3 ≥
x

�
0

dr

γ(r)
≥ 1

3
(1 + x)3 −

∑

n≥1

n+e−n

�
n

(1 + r)2 dr

≥ 1
3

(1 + x)3 −
∑

n≥1

(2 + n)2e−n =:
1
3

(1 + x)3 − c1.

Then for µ([0, x]) :=
� x
0 e

C(r) dr,
∞

�
0

e−C(x)µ([0, x]) dx =
∞

�
0

γ(x)
(

exp
[ x

�
0

dr

γ(r)

]
− 1
)
dx

≥ e−c1
∞

�
0

e(1+x)3/3

(1 + x)2 dx−
∞

�
0

γ(x) dx =∞

since
� ∞
0 γ(x)dx <∞. Moreover,

I(n) :=
( n+e−n

�
0

e−C(y) dy
)( ∞

�
n+e−n

eC(y)dy
)(

log
1

� ∞
n+e−n e

C(y)dy

)

=
( n+e−n

�
0

γ(y) exp
[ y

�
0

dr

γ(r)

]
dy

)
exp
[
−
n+e−n

�
0

dr

γ(r)

]( n+e−n

�
0

dr

γ(r)

)

≥ c2

( n+3e−n/4

�
n+e−n/4

en

(1 + n)2 exp[(1 + y)3/3]dy
)
e−(1+n)3/3(1 + n)3

≥ c3(1 + n)− c4

for some c2, c3, c4 > 0. Thus limn→∞ I(n) = ∞. Therefore, according to [2,
Theorem 1.1] the log-Sobolev inequality does not hold; see also [11] for a
more general result.
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[3] V. I. Bogachev, M. Röckner and F. Y. Wang, Elliptic equations for invariant mea-
sures on finite and infinite dimensional manifolds, J. Math. Pures Appl. 80 (2001),
177–221.

[4] M. F. Chen, From Markov Chains to Non-Equilibrium Particle Systems, World Sci.,
Singapore, 1992.

[5] E. B. Davies, Heat Kernels and Spectral Theory , Cambridge Univ. Press, 1989.
[6] J. D. Deuschel and D. W. Stroock, Large Deviations, Pure Appl. Math. 137, Aca-

demic Press, San Diego, 1989.
[7] K. D. Elworthy, Geometric aspects of diffusions on manifolds, in: Lecture Notes in

Math. 1362, 277–425, Springer, 1988, 277–425.
[8] L. Gross, Logarithmic Sobolev inequalities and contractivity properties of semigroups,

in: Lecture Notes in Math. 1563, Springer, 1993, 54–88.
[9] J. Gustavsson and J. Peetre, Interpolation of Orlicz spaces, Studia Math. 60 (1977),

33–59.
[10] X. M. Li, Strong p-completeness of stochastic differential equations and the exis-

tence of smooth flows on noncompact manifolds, Probab. Theory Related Fields
100 (1994), 485–511.

[11] Y. H. Mao, Logarithmic Sobolev inequalities for birth-death processes and diffusion
processes on the line, Chinese J. Appl. Probab. Statist. 18 (2002), 94–100.

[12] —, Strong ergodicity for Markov processes by coupling methods, J. Appl. Probab.
39 (2002), 839–852.

[13] J. Peetre, A new approach in interpolation spaces, Studia Math. 34 (1970), 23–42.
[14] M. Röckner and F. Y. Wang, Weak Poincaré inequalities and L2-convergence rates
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