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On diffeomorphisms deleting weak compacta
in Banach spaces

by

Daniel Azagra and Alejandro Montesinos (Madrid)

Abstract. We prove that if X is an infinite-dimensional Banach space with Cp

smooth partitions of unity then X and X \ K are Cp diffeomorphic for every weakly
compact set K ⊂ X.

1. Introduction, main results and preliminaries. In 1953 Victor
L. Klee [20] proved that, if X is a non-reflexive Banach space or an infinite-
dimensional Lp space and K is a compact subset of X, there exists a hom-
eomorphism between X and X \ K which is the identity outside a given
neighborhood of K. Klee also proved that for those infinite-dimensional
Banach spaces X the unit sphere and the unit ball are homeomorphic to any
of the closed hyperplanes inX, and gave a topological classification of convex
bodies in Hilbert spaces. In subsequent papers, Bessaga and Klee generalized
those results to every infinite-dimensional normed space [10, 11, 12].

Klee’s original proofs were of a strong geometrical flavor: very beautiful,
but rather difficult to handle in an analytical way. Nevertheless, C. Bessaga
found elegant explicit formulas for deleting homeomorphisms, based on the
existence of continuous noncomplete (nonequivalent) norms in every infinite-
dimensional Banach space. This discovery allowed him in 1966 to construct
diffeomorphisms which delete points in the Hilbert space, and to prove that
the Hilbert space is diffeomorphic to its unit sphere [8]. These striking results
have been highly celebrated and they remain a key ingredient in the proofs
of the already classic fundamental theorems on Hilbert manifolds (e.g., that
any two homotopic Hilbert manifolds are diffeomorphic, see [13, 17, 22]).

These kinds of results about topological negligibility have also found many
interesting applications in several branches of mathematics, which include
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fixed point theory, smooth topological classification of convex bodies, strange
phenomena concerning ordinary differential equations and dynamical sys-
tems in infinite dimensions, the failure of Rolle’s theorem in infinite dimen-
sions and many more things; see [4, 5, 9, 3, 7] and the references therein. Very
recently, Manuel Cepedello and the first-named author have used smooth
topological negligibility to prove the following approximate strong version
of the Morse–Sard theorem: the smooth functions with no critical points are
dense in the space of continuous functions on every Hilbert manifold [2].

In view of the interest of such applications, it is natural to try to extend
these results to Banach spaces other than the Hilbert space.

The real-analytic and smooth negligibility of compact sets in Banach
spaces was first studied by Tadeusz Dobrowolski [15], who showed that for
every infinite-dimensional Banach space X having a Cp noncomplete norm,
and for every compact set K in X, the space X is Cp diffeomorphic to
X \K. Unfortunately, it is still unknown whether every Banach space with
a Cp smooth equivalent norm has a noncomplete Cp smooth norm as well.
Nevertheless, without showing the existence of smooth noncomplete norms,
it was recently proved in [4] that every Banach space (X, ‖ · ‖) with a Cp

smooth norm % is Cp diffeomorphic to X \K.
Despite all these efforts, the natural question as to the characterization

of those Banach spaces in which compact sets are topologically negligible
remains open. This is due to a surprising (and rather uncomfortable) theo-
rem proved by R. Haydon [18, 19]: there are Banach spaces which have C∞

smooth bump functions, and even C∞ smooth partitions of unity, but no
equivalent C1 smooth norm.

In this paper we deal with the following natural question: what can be
said about smooth negligibility of compacta in those Banach spaces with
smooth partitions of unity? As we have just pointed out, there are Banach
spaces with smooth partitions of unity which have no equivalent smooth
norms, and therefore the known results on diffeomorphisms deleting com-
pacta are useless in this setting. Nevertheless, we will prove the following.

Theorem 1.1. Let X be an infinite-dimensional Banach space which
has Cp smooth partitions of unity , and p ∈ N∪{∞}. Then, for every weakly
compact set K ⊂ X and every starlike body A such that dist(K,X \A) > 0,
there exists a Cp diffeomorphism h : X −→ X \K such that h is the identity
outside A.

In particular , when K is compact and K ⊂ int(A), there always exists
such a deleting diffeomorphism h.

The class of Banach spaces which admit smooth partitions of unity is
quite large (see [14]). On the other hand, it is an open problem to know
whether every Banach space with a Cp smooth equivalent norm has Cp
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smooth partitions of unity. If a positive answer to this question is ever
reached, then Theorem 1.1 will be an extension of the main theorem in
[4]. Otherwise and for the time being, by combining Theorem 1.1 with the
main result of [4], one can easily show the following.

Corollary 1.2. Let X be an infinite-dimensional Banach space. As-
sume that either X has a Cp smooth norm or else X has Cp smooth par-
titions of unity. Then, for every compact set K ⊂ X and every Cp smooth
starlike body A such that K ⊂ int(A), there exists a Cp diffeomorphism
h : X −→ X \K such that h is the identity outside A.

It should be noted that, so far, no one knows of an infinite-dimensional
Banach space with a C1 bump function which does not have either a C1

smooth norm or C1 smooth partitions of unity (hence which does not fall
into the category to which the above corollary applies). On the other hand,
it is easy to see that the existence of a C1 smooth bump is a necessary
condition for a Banach space X to have a diffeomorphism from X onto
X \ {0} which restricts to the identity outside some ball.

At this point we need to introduce some terminology and notation con-
cerning starlike bodies, which, apart from the statements of the preceding
results, will play a key role in our proofs.

A closed subset A of a Banach space X is said to be a starlike body if
there exists a point a0 in the interior of A such that every ray emanating
from a0 meets ∂A, the boundary of A, at most once. We will say that a0 is
a center of A. There can obviously exist many centers for a given starlike
body. Up to a suitable translation, we can always assume that a0 = 0 is the
origin of X, and we will often do so, unless otherwise stated. For a starlike
body A with center a0, we define the characteristic cone of A as

ccA = {x ∈ X : a0 + r(x− a0) ∈ A for all r > 0},
and the Minkowski functional of A with respect to the center a0 as

µA,a0(x) = µA(x) = inf{t > 0 : x− a0 ∈ t(−a0 + A)} for all x ∈ X.

Note that µA(x) = µ−a0+A(x− a0) for all x ∈ X. It is easily seen that µA is
a continuous function which satisfies µA(a0 + rx) = rµA(a0 + x) for every
r ≥ 0 and x ∈ X, and µ−1

A (0) = ccA. Moreover, A={x ∈ X : µA(x)≤1},
and ∂A = {x ∈ X : µA(x) = 1}. Conversely, if ψ : X → [0,∞) is con-
tinuous and satisfies ψ(a0 + λx) = λψ(a0 + x) for all λ ≥ 0, then the set
Aψ = {x ∈ X : ψ(x) ≤ 1} is a starlike body. More generally, for a continuous
function ψ : X → [0,∞) such that ψx(λ) = ψ(a0 + λx), λ > 0, is increasing
and sup{ψx(λ) : λ > 0} > ε for every x ∈ X \ ψ−1(0), the set ψ−1([0, ε]) is
a starlike body whose characteristic cone is ψ−1(0) 3 a0.

A familiar important class of starlike bodies are convex bodies, that is,
starlike bodies that are convex. For a convex body U , ccU is always a
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convex set, but in general the characteristic cone of a starlike body is not
convex.

We will say that A is a Cp smooth starlike body provided its Minkowski
functional µA is Cp smooth on the set X \ ccA = X \ µ−1

A (0). This is
equivalent to saying that ∂A is a Cp smooth one-codimensional submanifold
of X such that no affine hyperplane tangent to ∂A contains a ray emanating
from the center a0. Throughout this paper, p = 0, 1, . . . ,∞, and C0 smooth
means just continuous.

We will also say that A is Lipschitz if µA is a Lipschitz function on X. It
is easy to see that every convex body is Lipschitz with respect to any point
in its interior (but this is no longer true if we drop convexity: even in the
plane R2 there are starlike bodies which are not Lipschitz).

All the starlike bodies that we deal with in this paper are radially
bounded. A starlike body A is said to be radially bounded provided that,
for every ray emanating from the center a0 of A, the intersection of this
ray with A is a bounded set. This amounts to saying that ccA = {a0}.
In finite dimensions every radially bounded starlike body is in fact bounded
(because the Minkowski functional of the body attains an absolute minimum
on the unit sphere, which is compact), but this is no longer true in infinite-
dimensional Banach spaces. For instance, A = {x ∈ `2 :

∑∞
n=1 x

2
n/2

n ≤ 1}
is a radially bounded convex body which is not bounded in the Hilbert
space `2; the body A is the unit ball of the nonequivalent C∞ smooth norm
ω(x) =

(∑∞
n=1 x

2
n/2

n
)1/2

in `2. For every bounded starlike body A in a
Banach space (X, ‖ · ‖) there are constants M,m > 0 such that m‖x‖ ≤
µA(x) ≤M‖x‖ for all x ∈ X. If A is just radially bounded then we can only
ensure that µA(x) ≤M‖x‖ for all x ∈ X, for some M > 0. As is shown im-
plicitly in [14, Proposition II.5.1], a Banach space X has a Cp smooth bump
function if and only if there is a bounded Cp smooth starlike body in X.

We finish these preliminaries with some nonstandard notation concerning
strict inclusions between starlike bodies. In our proofs we will often require
that, for a couple of starlike bodies A ⊂ B, the boundaries of A and B
are well separated. There are at least two nonequivalent natural notions of
separation between boundaries of starlike bodies, and we will need to use
both of them, as each one has its own advantages. The strongest and most
natural notion corresponds to the fact that the distance between A and X\B
is positive. We will use the notation A ⊂d B to mean that dist(A,X\B) > 0,
and we will say that B strictly contains A in the distance sense. Notice that
this notion makes sense even though A and B do not have the same center,
or even if A and B are any sets, not necessarily starlike.

The other useful notion is that the Minkowski functionals of A and B are
well separated, in the following sense. First, note that if A ⊆ B are starlike
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with respect to the same center a0 then we always have µB(x) ≤ µA(x) for
all x ∈ X. If we also know that supx∈A µB(x) < 1 then we will write A ⊂µ B,
saying that B strictly contains A in the gauge sense. This is equivalent to
saying that there exists some δ > 0 such that a0 + (1 + δ)(−a0 +A) ⊆ B. Of
course, this notion only makes sense when A and B have at least one center
a0 in common. It is immediate to see that A ⊂d B implies that A ⊂µ B.
The converse is false in general, unless A is Lipschitz. When A ⊂ B have
the same center and A is Lipschitz we have A ⊂d B if and only if A ⊂µ B
(see Lemma 2.6 below).

2. Proof of the main result. In contrast with Bessaga-type construc-
tions [8, 15, 1, 4, 5], our proof does not provide an explicit elegant formula
for the deleting diffeomorphism. We rather turn to the origins and find in-
spiration in the geometrical ideas of the pioneering work of Klee [20] (see
also [23]). We will need to consider an infinite composition of carefully con-
structed self-diffeomorphisms of X.

The main ingredient of our proof is the following proposition, which
implies that if our infinite-dimensional space X has enough smooth starlike
bodies then every weakly compact set K can be removed by means of a
diffeomorphism h : X → X \K which is the identity outside some starlike
body.

Proposition 2.1. Let X be a Banach space, and K a subset of X. As-
sume that there are sequences (Pn), (Cn), (An), (Bn), (Qn), (Dn), (En) of
subsets of X and a sequence (cn) of points of X satisfying the following
conditions for each n ∈ N:

(1) An, Bn, Qn, Dn, En are radially bounded Cp smooth starlike bodies
with respect to cn+2;

(2) Cn+2 ⊂ Dn ⊂µ En ⊂µ An ⊂ Cn+1 ⊂ Pn+1 ⊂ Bn ⊂µ Qn ⊂ Pn;
(3)

⋂∞
n=1Cn = ∅,

(4)
⋂∞
n=1 Pn = K.

Then there exists a Cp diffeomorphism Ψ : X → X \K such that Ψ is the
identity on X \ P1.

In order to prove this proposition we will only require a simple geomet-
rical lemma. The purely topological version of this result is very easy (see
[12, 23], where the authors do not even bother to write the formulas), but
the smooth case is a little more difficult and requires a proof.

Lemma 2.2 (The Four Bodies Lemma). Let X be a Banach space, and
let A,B,C,D be four radially bounded Cp smooth starlike bodies with respect
to the same point a0 ∈ int(A). Assume that

A ⊂µ B ⊂ C ⊂µ D.
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Then there exists a Cp diffeomorphism h : X → X such that

(1) h(B) = C,
(2) h is the identity on A ∪ (X \D).

Proof. We may assume a0 = 0. Since A ⊂µ B and C ⊂µ D, there exists
some δ ∈ (0, 1) such that A ⊂ (1−δ)B and (1+δ)C ⊂ D. Take a C∞ smooth
function λ : R→ R such that λ is nondecreasing, λ(t) = 0 if t ≤ 1− δ, and
λ(t) = 1 for t ≥ 1. Define then f : X → X by

f(x) =
[
λ(µB(x))

µB(x)
µC(x)

+ 1− λ(µB(x))
]
x if x 6= 0,

and f(0) = 0. It is easy to check that f is a Cp diffeomorphism of X such
that f(B) = C and f is the identity on A.

On the other hand, pick a C∞ smooth function θ : R→ R such that θ is
nonincreasing, θ(t) = 1 if t ≤ 1 + δ/4, and θ(t) = 0 if t ≥ 1 + δ/2. Consider
the mapping g : X \ {0} → X \ {0} defined by

g(x) =
[
θ(µC(x))

µC(x)
µB(x)

+ 1− θ(µC(x))
]
x,

which is a Cp diffeomorphism as well. Now define h : X → X by

h(x) =
{
f(x) if µB(x) < 1 + δ/4,

g−1(x) if 1 < µB(x).

Observe that if 1 ≤ µB(x) ≤ 1 + δ/4 then f(x) = [µB(x)/µC(x)]x = g−1(x);
hence h is well defined and locally a Cp diffeomorphism. Moreover, it is easy
to see that h(X \ (1 + δ/4)B) = X \ (1 + δ/4)C, which (bearing in mind
the definition of h) implies that h is one-to-one. On the other hand, since
h((1 + δ/4)B) = (1 + δ/4)C and h(X \B) = g−1(X \B) = X \C, it follows
that h is a surjection. Therefore h : X → X is a Cp diffeomorphism. Finally,
it is clear that h(B) = C, and h is the identity on A ∪ (X \ (1 + δ/2)B) ⊃
A ∪ (X \D).

Proof of Proposition 2.1. The proof of this proposition, as well as some
parts of that of Proposition 2.3 below, resemble the arguments included in
[23] (which in turn are inspired, like the rest of the present paper, by Klee’s
seminal work [20]).

Fix any n ∈ N. Consider the inclusions of bodies

Dn ⊂µ En ⊂ Bn ⊂µ Qn, Dn ⊂µ En ⊂ An ⊂µ Qn.
According to the Four Bodies Lemma there exist Cp diffeomorphisms fn, gn :
X → X such that

fn(En) = Bn, fn is the identity on Dn ∪ (X \Qn),

gn(En) = An, gn is the identity on Dn ∪ (X \Qn).
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Define then hn = gn ◦ f−1
n : X → X, which is a Cp diffeomorphism of X

such that

hn(Bn) = An, hn is the identity on Dn ∪ (X \Qn).

Now consider the family (hn) of Cp diffeomorphisms. For each n ∈ N define
the mapping ψn : X → X to be the composition

ψn(x) = (h1 ◦ . . . ◦ hn)(x),

which is obviously a Cp diffeomorphism of X. Since hn is the identity on
X \ Qn and Qn ⊂ Pn, we see that hn is the identity on X \ Pn. It follows
that

(1) ψn|X\Pn = ψn−1|X\Pn for all n ≥ 2.

Note that, from the conditions in the statement of Proposition 2.1, we know
that

(2) X \ Pn ⊂ X \ Pn+1 ⊂ X \K for all n, X \K =
∞⋃

n=1

X \ Pn.

Then we can define ψ : X \K → X by letting

(3) ψ|X\Pn+1 = ψn|X\Pn+1 for each n ∈ N.
Taking equations (1) and (2) above into account, it is clear that the mapping
ψ is well defined, one-to-one, and is locally a Cp diffeomorphism. Let us see
that ψ is surjective and therefore a Cp diffeomorphism from X \K onto X.

Bearing in mind that hj is the identity on Dj ⊃ Cj+2 and Aj ⊂ Cj+1,
we have hj(An) = An if j ≤ n− 1, and since hn(Bn) = An we may deduce
that

ψn(Bn) = h1 ◦ . . . ◦ hn(Bn) = h1 ◦ . . . ◦ hn−1(An)

= h1 ◦ . . . ◦ hn−2(An) = . . . = An,

and in particular ψn(X\Bn) = X\An. But, by the hypothesis on the bodies,
Pn+1 ⊂ Bn ⊂ Pn, that is, X \ Pn ⊂ X \Bn ⊂ X \ Pn+1, and hence

(4) ψ(X \Bn) = ψn(X \Bn) = X \ An.
Now, note that the hypotheses of Proposition 2.1 imply that Cn+2 ⊂ An ⊂
Cn+1,

⋂∞
n=1Cn = ∅, which yields

(5) X =
∞⋃

n=1

(X \An).

On the other hand, since K =
⋂∞
n=1 Pn+1 ⊂

⋂∞
n=1Bn ⊂

⋂∞
n=1 Pn = K, we

have

(6) X \K =
∞⋃

n=1

(X \Bn).
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Now, by combining equations (4), (5) and (6), we get

ψ(X \K) = ψ
( ∞⋃

n=1

(X \Bn)
)

=
∞⋃

n=1

(X \An) = X,

hence ψ is a Cp diffeomorphism from X \ K onto X. Moreover, if x ∈
X \ P1 ⊂ X \ P2, from the definition of ψ, and bearing in mind that h1 is
the identity on X \P1, we conclude that ψ(x) = ψ1(x) = h1(x) = x. Finally,
if we define Ψ = ψ−1, it is clear that Ψ is a Cp diffeomorphism from X onto
X \K which is the identity off P1.

The next step in the proof of our main theorem is of course to ensure
that if an infinite-dimensional Banach space X has Cp smooth partitions of
unity then, for every weakly compact set K ⊂ X, there are families of Cp

smooth starlike bodies satisfying the conditions of Proposition 2.1.

Proposition 2.3. Let X be an infinite-dimensional Banach space which
admits Cp smooth partitions of unity. There exists B, a radially bounded Cp

smooth starlike body with respect to the origin, such that , for every weakly
compact set K ⊂ X and every r > 0 such that K ⊂ rB, there are sequences
(Pn), (Cn), (An), (Bn), (Qn), (Dn), (En) of subsets of X and a sequence
(cn) of points of X satisfying the following conditions for each n ∈ N:

(1) An, Bn, Qn, Dn, En are radially bounded Cp smooth starlike bodies
with respect to cn+2;

(2) Cn+2 ⊂ Dn ⊂µ En ⊂µ An ⊂ Cn+1 ⊂ Pn+1 ⊂ Bn ⊂µ Qn ⊂ Pn;
(3)

⋂∞
n=1Cn = ∅;

(4)
⋂∞
n=1 Pn = K;

(5) P1 ⊂ 4rB.

The proof of Proposition 2.3 is quite long and will be split into several
lemmas.

Notation 2.4. If X is a Banach space and BX = {x ∈ X : ‖x‖ ≤ 1} is
its unit ball, for all subsets A,B of X and for every ε > 0, we define

[A,B] = {tx+ (1− t)y : x ∈ A, y ∈ B, t ∈ [0, 1]},
and N(A, ε) = {x ∈ X : dist(x,A) ≤ ε} = A+ εBX . When A = {a} is a
singleton we will simply write [A,B] = [a,B].

Lemma 2.5. Let X be a Banach space, C a bounded convex body in X,
and K a weakly compact subset of X. Then V := [K,C] is a starlike body
with respect to every interior point of C. Moreover , V is bounded and µV :
X → [0,∞) is Lipschitz.

Proof. Since C ⊆ V , it is obvious that V has nonempty interior. By
using the (weak) compactness of K and [0, 1], it is easy to see that V is
closed.
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Now let us see that V is starlike with respect to every point x0 ∈ int(C).
Take two points x1, x2 ∈ ∂V ⊂ V with x1 ∈ [x0, x2]. Assuming that x1 6= x2
we will get a contradiction. Indeed, since V =

⋃
y∈K [y, C] and x1 ∈ ∂V , we

have x1 ∈ X \ int([y, C]) for every y ∈ K. Hence, for every y ∈ K, either
x1 ∈ ∂[y, C] or x1 6∈ [y, C]; in either case, since [y, C] is a starlike body with
respect to x0 ∈ int(C), and x2 6= x1 ∈ [x0, x2], we deduce that x2 6∈ [y, C].
But then x2 6∈

⋃
y∈K [y, C] = V, a contradiction.

It is obvious that V is bounded. It only remains to show that µV (with
respect to any point x0 ∈ int(C)) is Lipschitz. Without loss of generality we
may assume that the given center is x0 = 0. Let M > 0 be such that µC(x) ≤
M‖x‖ for all x ∈ X. Since C ⊆ [y, C] we have µ[y,C](x) ≤ µC(x) ≤ M‖x‖
for all x ∈ X and, bearing in mind that [y, C] is a convex body, this means
that µ[y,C] is M -Lipschitz for all y ∈ K. On the other hand, it is easily seen
that µV (x) = infy∈K µ[y,C](x). Since the infimum of M -Lipschitz functions
is always an M -Lipschitz function, we see that µV is M -Lipschitz.

Lemma 2.6. Let X be a Banach space, and A a Lipschitz starlike body
with respect to the origin. Then, for every ε > 0, there exists δ > 0 so that
A+ δBX ⊂ (1 + ε)A.

Proof. Let M be a Lipschitz constant for µA. For a given ε > 0 choose
δ > 0 with δM < ε. Take x = y + z, with y ∈ A, z ∈ δBX . Then we have

µA(x) = µA(y + z)− µA(y) + µA(y) ≤M‖z‖+ µA(y) ≤Mδ + 1 < 1 + ε.

Lemma 2.7. Let C be a bounded convex body in a Banach space X, with
0 ∈ int(C). Then, for every δ ∈ (0, 1), dist((1 − δ)C,X \ C) > 0, that is,
(1− δ)C ⊂d C.

Proof. This is an easy consequence of the preceding lemma and the fact
that µC is Lipschitz because C is a convex body.

Lemma 2.8. Let T : X → Y be a continuous linear injection between
two Banach spaces. Then, for every radially bounded Cp smooth body B′ in
Y which is starlike with respect to a point b′ ∈ T (X), the set B = T−1(B′)
is a radially bounded Cp smooth starlike body in X with respect to b =
T−1(b′).

Proof. Let b′ = T (b) be the center of B′. Then A′ := −b′+B′ is starlike
with respect to the origin, radially bounded and Cp smooth. Consider the
function ψ : X → [0,∞) defined by ψ(x) = µA′(T (x)). Then A := {x ∈ X :
ψ(x) ≤ 1} is a Cp smooth starlike body in X (with respect to the origin);
besides, since ψ(x) > 0 whenever x 6= 0, we have ccA = {0}, that is, A is
radially bounded. It is obvious that A = T−1(A′). Then B = T−1(B′) =
T−1(b′ + A′) = b + A is a radially bounded Cp smooth starlike body with
respect to b ∈ X.
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Lemma 2.9. Let T : X → Y be a continuous linear injection between two
Banach spaces. Assume that A′ and B′ are starlike bodies with respect to
y0 = T (x0) ∈ T (X), and A′ ⊂µ B′. Then A := T−1(A′) ⊂µ T−1(B′) := B.

Proof. Left to the reader.

The following lemmas show how one can approximate and interpolate
starlike bodies with smooth starlike bodies, provided the space has smooth
partitions of unity.

Lemma 2.10. Let X be a Banach space with Cp smooth partitions of
unity , and C a starlike body with ccC = {0}. Then, for every δ > 0, there
exists A ⊂ X, a Cp smooth starlike body , with ccA = {0} and such that
(1− δ)C ⊂ A ⊂ (1 + δ)C.

Proof. Since X has Cp smooth partitions of unity, it has a Cp smooth
bump as well, and in particular there exists a bounded Cp smooth starlike
body B with respect to the origin [14, Proposition II.5.1]. Choose ε0 ∈ (0, 1)
such that 1/(1− ε0) < 1 + δ, and 1 + ε0 < 1/(1− δ). Define ε : X \ {0} →
(0,∞) by ε(x) = ε0µC(x) for all x 6= 0, which is a continuous strictly
positive function. Since X has Cp smooth partitions of unity, so does its
open subset X \ {0}, and therefore every continuous function on X \ {0}
can be ε-approximated by a Cp smooth function on X \ {0}. Hence, given
the continuous function µC : X \ {0} → (0,∞), there exists a Cp smooth
function g : X \ {0} → R such that |µC(x)− g(x)| ≤ ε(x) for all x 6= 0. Now
define ψ : X → R by

ψ(x) = µB(x)g
(

x

µB(x)

)
if x 6= 0,

and ψ(0) = 0. The function ψ is clearly continuous on X, of class Cp on
X \ {0}, and positively homogeneous. Moreover,

|ψ(x)− µC(x)| =
∣∣∣∣µB(x)g

(
x

µB(x)

)
− µC(x)

∣∣∣∣

=

∣∣∣∣µB(x)g
(

x

µB(x)

)
− µB(x)µC

(
x

µB(x)

)∣∣∣∣ ≤ µB(x)ε
(

x

µB(x)

)
= ε0µC(x)

for all x 6= 0. In particular, ψ(x) ≥ (1 − ε0)µC(x) > 0 if x 6= 0. Therefore,
A := {x ∈ X : ψ(x) ≤ 1} is a Cp smooth starlike body with respect to 0.
Let us check that A approximates C as required. We have

x ∈ A⇔ ψ(x) ≤ 1⇒ µC(x) ≤ 1 + ε0µC(x)⇒ (1− ε0)µC(x) ≤ 1

⇒ x ∈ 1
1− ε0

C ⊂ (1 + δ)C,

so A ⊂ (1 + δ)C. On the other hand, if x ∈ (1− δ)C, that is, µC(x) ≤ 1− δ,
then ψ(x) ≤ (1 + ε0)µC(x) ≤ (1 + ε0)(1− δ) < 1, hence x ∈ A.
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Lemma 2.11. Let X be a Banach space with Cp smooth partitions of
unity , K a closed subset of X, and D a bounded starlike body with respect
to 0 such that K ⊂d D. Then there exist Cp smooth starlike bodies D1 and
D2 with respect to 0 such that

K ⊂ D1 ⊂µ D2 ⊂ D.
Moreover , if K is a bounded starlike body with respect to 0, the above is true
for any set D, and the starlike body D2 satisfies D2 ⊂d D.

Proof. Since K ⊂d D we can take 0 < θ < 1/2 so that K ⊂ (1− 2θ)D.
Choose δ ∈ (0, 1) with (1 − 2θ)/(1 − θ) < 1 − δ and (1 + δ)(1 − θ) < 1.
Applying the preceding lemma to C := (1 − θ)D, we get a Cp smooth
starlike body D1 with respect to 0 such that (1 − δ)C ⊂ D1 ⊂ (1 + δ)C.
In particular, taking into account that 1 − 2θ < (1 − θ)(1 − δ), we deduce
K ⊂ (1 − 2θ)D ⊂ (1 − θ)(1 − δ)D = (1 − δ)C ⊂ D1. Now pick ε > 0 such
that (1 + ε)(1 + δ)(1− θ) < 1, and set D2 := (1 + ε)D1. The body D2 is Cp

smooth and starlike with respect to 0, and D1 ⊂µ D2. Finally, we also have
D2 = (1 + ε)D1 ⊂ (1 + ε)(1 + δ)C ⊂ (1 + ε)(1 + δ)(1− θ)D ⊂ D.

Assume that K is a bounded starlike body with respect to 0, and D is
any subset of X such that K ⊂d D. Choose real numbers ε > 0 and δ ∈ (0, 1)
satisfying 1 < (1 − δ)(1 + ε) and (1 + δ)(1 + ε)K ⊂d D. By imitating the
previous paragraph, with C := (1+ε)K, we obtain D1, a Cp smooth starlike
body with respect to 0, such that (1 − δ)C ⊂ D1 ⊂ (1 + δ)C. Bearing in
mind the choice of δ and ε, we deduce that K ⊂ D1 ⊂d D. Now it is clear
how to define D2, a Cp smooth starlike body with respect to 0 such that
D1 ⊂µ D2 ⊂d D.

The following lemma is one of the keys to the proof of Proposition 2.3.

Lemma 2.12. Let X be a nonreflexive Banach space, K a weakly compact
set , and C a bounded convex body with 0 ∈ int(C) and K ⊂d C. Then there
exist ε > 0 and a sequence (Cn) of convex bodies such that

(1)
⋂∞
n=1Cn = ∅,

(2) Cn+1 ⊂d Cn ⊂ C for all n ∈ N,
(3) [K,C1] + 3εBX ⊂ C.

Proof. Since K ⊂d C, there exists δ0 > 0 such that K ⊂ (1−2δ0)C and,
by Lemma 2.7, dist((1− δ0)C,X \ C) ≥ δ1 for some δ1 > 0.

Since X is nonreflexive, according to James’s theorem, there exists a
continuous linear functional T ∈ X∗ such that T does not attain its supre-
mum on the body (1 − 2δ0)C; let α be that supremum. Define now Hn :=
{x ∈ (1− 2δ0)C : T (x) ≥ α − 1/n} for each n ∈ N. We have

⋂∞
n=1Hn = ∅,

Hn+1 ⊂ Hn for all n, and H1 ⊂ (1 − 2δ0)C ⊂d (1 − δ0)C. Take ε > 0 such
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that H1 + εBX ⊂ (1− δ0)C and 3ε < δ1. Then for each n ∈ N define

Cn = N(Hn, ε/2n) = {x ∈ X : dist(x,Hn) ≤ ε/2n}.
It is easy to see that (Cn) has the three properties of the statement.

Proof of Proposition 2.3

Case I: X is nonreflexive. Let E be a bounded convex body with 0 ∈
int(E). By Lemma 2.7, we have (1/8)E ⊂d (1/4)E ⊂d (1/2)E. According
to Lemma 2.10, there exists a Cp smooth starlike body with respect to 0
such that (1/8)E ⊂ B ⊂ (1/4)E. This body B is the one we need.

Now take a weakly compact set K ⊂ X such that K ⊂ rB. Hence
K ⊂ rB ⊂ (r/4)E ⊂d (r/2)E. According to Lemma 2.12, there exists ε > 0
and a sequence (Cn) of convex bodies such that
∞⋂

n=1

Cn = ∅, [K,C1]+3εBX ⊂ (r/2)E, Cn+1 ⊂d Cn ⊂ rE for all n ∈ N.

Let us choose a sequence (cn) of points of X such that cn ∈ int(Cn) for every
n ∈ N. Set ∆ = diam((r/2)E) > 0. For each n ∈ N, define

Vn = [Cn,K].

By Lemma 2.5, Vn is a Lipschitz starlike body with respect to every point
in the interior of Cn. Let µn = µVn be the Minkowski functional of Vn with
respect to the point cn+1 ∈ int(Cn+1) ⊂ int(Cn). Note that µn is a Lipschitz
function.

Next we are going to inductively construct a sequence (δn) of positive
numbers such that, if we define

Pn := {x ∈ X : µn(x) ≤ 1 + δn}
for each n ∈ N, then (Pn) is a sequence of bounded starlike bodies such that

(i) Pn+1 ⊂d Pn ⊂ P1 ⊂ (r/2)E for all n ∈ N,
(ii)

⋂∞
n=1 Pn = K,

(iii) Pn is starlike with respect to cn+1 for all n ∈ N,
(iv) Cn+1 ⊂d Pn ∩ Cn for all n ∈ N.

Step 1. Choose δ1 > 0 with δ1 < min{ε/∆, 1}, and set P1 = {x ∈ X :
µ1(x) ≤ 1 + δ1}. By Lemma 2.6, there is δ′1 > 0 such that P1 ⊃ V1 + δ′1BX .

Step 2. Now choose δ2 > 0 such that δ2 < min{δ′1/2∆, 1/2}. Then
P2 = {x ∈ X : µ2(x) ≤ 1+δ2} ⊂ V2 +(δ′1/2)BX , and so dist(P2,X \P1) > 0.

Step (n+ 1). Assume δj and Pj are already defined for j = 1, . . . , n in
such a way that Pj+1 ⊂d Pj for j ≤ n − 1. By Lemma 2.6, there is δ′n > 0
such that Pn ⊃ Vn+δ′nBX . Pick δn+1 > 0 so that δn+1 < min{δ′n/2∆, 1/2n},
and set Pn+1 = {x ∈ X : µn+1(x) ≤ 1+δn+1}. Then Pn+1 ⊂ Vn+(δ′n/2)BX ,
hence dist(Pn+1,X \ Pn) > 0.
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By induction the sequence (Pn) is well defined and has properties (i) and
(iii) above. To see that P1 ⊂d (r/2)E, just note that P1 ⊂ V1 + δ1∆BX =
[C1,K] + δ1∆BX ⊂ [C1,K] + 3εBX ⊂ (r/2)E. On the other hand, since
Pn ∩ Cn = Cn, it is clear that Cn+1 ⊂d Pn ∩ Cn, that is, the sequence (Pn)
has property (iv).

Finally, let us check that condition (ii) holds as well. It is immediate
that K ⊂ ⋂∞n=1 Pn. Let us take q ∈ ⋂∞n=1 Pn and show that q ∈ K. For
each n ∈ N we have q ∈ Pn ⊂ Vn + δn∆BX = [Cn,K] + δn∆BX , so there
are xn ∈ Cn, yn ∈ K, tn ∈ [0, 1] with ‖q − (1− tn)xn − tnyn‖ ≤ δn∆, and in
particular limn→∞[(1 − tn)xn − tnyn] = q. Since K is weakly compact and
[0, 1] is compact, we may assume (passing to a subsequence if necessary) that
yn converges to some y0 ∈ K weakly, and tn → t0 ∈ [0, 1]. Then (1− tn)xn
converges to q − t0y0 weakly. If t0 6= 1 then xn converges weakly to x0 :=
(1−t0)−1(q−t0y0); but, since each Cn ⊃ (xj)j≥n is closed and convex, hence
weakly closed, we have x0 ∈ Cn for each n, and then x0 ∈

⋂∞
n=1Cn = ∅, a

contradiction. Therefore, t0 = 1, and q = y0 ∈ K.
Now we are going to define the bodiesAn, Bn,Dn, En, andQn. Fix n ∈ N.

Since Cn+2 and Cn+1 are bounded starlike bodies with respect to cn+2, and
Cn+2 ⊂d Cn+1, we can apply Lemma 2.11 to obtain two Cp smooth starlike
bodies Dn, En with respect to cn+2 such that

Cn+2 ⊂ Dn ⊂µ En ⊂d Cn+1.

Another application of Lemma 2.11 gives us a Cp smooth starlike body An
with respect to cn+2 such that

En ⊂µ An ⊂ Cn+1 = Cn+1 ∩ Pn+1.

Moreover, Pn+1 ⊂d Pn, and Pn+1 is starlike with respect to cn+1. Then,
applying Lemma 2.11 for the last time (now Pn acts as a mere set, it is
not necessary that Pn be starlike with respect to cn+2, only Pn+1 has to
satisfy this condition), we get Bn and Qn, two Cp smooth starlike bodies
with respect to cn+2, satisfying

Pn+1 ⊂µ Bn ⊂µ Qn ⊂ Pn.
Moreover, we also have En ⊂ Cn+1 ⊂ Pn+1 ⊂µ Bn. Summing up, we get

Cn+2 ⊂ Dn ⊂µ En ⊂µ An ⊂ Cn+1 ⊂ Pn+1 ⊂µ Bn ⊂µ Qn ⊂ Pn,
and now it is clear that the sequences of bodies we have just constructed
satisfy conditions (1)–(4) of Proposition 2.3. Finally, B is the required body
and satisfies condition (5). Indeed, notice that K ⊂ (r/2) int(E) ⊂ rB, and
P1 ⊂ (r/2)E ⊂ 4rB.

Case II: X is reflexive. In this case it is known that there exists a
continuous linear injection T : X → c0(Γ ) for some (infinite) set Γ (see
[14, p. 246], for instance). It is also well known that for an infinite set Γ ,
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the space c0(Γ ) is c0-saturated, that is, every infinite-dimensional closed
subspace of c0(Γ ) has a closed subspace which is isomorphic to c0. This
clearly implies that c0(Γ ) contains no closed infinite-dimensional reflexive
subspaces. Therefore Y := T (X) ⊂ c0(Γ ) is nonreflexive, and T (X) is not
a closed subspace of Y ⊂ c0(Γ ). On the other hand, the space c0(Γ ) has
a C∞ smooth equivalent norm (see [14, Chapter V, Theorem 1.5]), whose
restriction to Y defines a C∞ smooth equivalent norm | · |. Finally, it is well
known [14] that the space c0(Γ ) has C∞ smooth partitions of unity, hence
so does Y .

Summing up, we have a continuous linear injection T : X → Y , where
(Y, | · |) is a nonreflexive Banach space with a C∞ smooth norm and C∞

smooth partitions of unity, and T (X) is dense in Y .
Set B′ = {y ∈ Y : |y| ≤ 1}, which is a C∞ smooth bounded convex

body with 0 ∈ int(B′). Define B = T−1(B′). It is clear that B is a radially
bounded C∞ smooth convex body.

Let K be a weakly compact subset of X and r > 0 with K ⊂ rB. Since T
is continuous, T (K) is weakly compact. Moreover T (K) ⊂ T (rB) ⊂ rB ′ ⊂d
(r/2)(4B′). Now we may copy the above proof (nonreflexive case), with
4B′ = E and T (K) replacing K, in order to obtain sequences of C∞ smooth
starlike bodies, (P ′n), (C ′n), (A′n), (B′n), (Q′n), (D′n), (E′n), and a sequence (c′n)
of points of Y satisfying conditions (1)–(4) of the statement of Proposition
2.3 and P ′1 ⊂ (r/2)(4B′) = 2rB′. Ensure further that c′n ∈ T (X) ∩ int(C ′n)
for each n ∈ N (this is possible because T (X) is dense in Y , hence T (X) ∩
int(C ′n) 6= ∅ for all n).

Then, for each n ∈ N, define cn = T−1(c′n) ∈ X, and

Cn = T−1(C ′n), Bn = T−1(B′n), Pn = T−1(P ′n), An = T−1(A′n),

Qn = T−1(Q′n), Dn = T−1(D′n), En = T−1(E′n) ⊂ X.
By Lemma 2.8, these are radially bounded C∞ smooth starlike bodies with
respect to cn+2. On the other hand, Lemma 2.9 guarantees that

Cn+2 ⊂ Dn ⊂µ En ⊂µ An ⊂ Cn+1 ⊂ Pn+1 ⊂ Bn ⊂µ Qn ⊂ Pn.
Finally, it is immediately checked that

⋂∞
n=1Cn = ∅, ⋂∞n=1 Pn = K, P1 =

T−1(P ′1) ⊂ T−1(2rB′) = 2rB ⊂ 4rB.

Now we are in a position to finish the proof of the main result.

Proof of Theorem 1.1. We may assume that A is a bounded starlike body
with respect to the origin. Let B be the radially bounded Cp smooth starlike
body provided by Proposition 2.3. Choose r > 0 such that A ⊂µ rB. Bearing
in mind that K ⊂d A ⊂µ rB, it follows from Proposition 2.3 that there
are sequences (Pn), (Cn), (An), (Bn), (Qn), (Dn), (En) of subsets of X and a
sequence (cn) of points of X which satisfy the conditions of Proposition 2.1.
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Then we can apply this proposition to find a Cp diffeomorphism Ψ : X →
X \K such that Ψ is the identity on X \ P1 ⊃ X \ 4rB.

On the other hand, since K ⊂d A, Lemma 2.11 allows us to find two
Cp smooth starlike bodies U1, U2 with respect to 0 such that K ⊂ U1 ⊂µ
U2 ⊂ A. Now, by the Four Bodies Lemma 2.2, there is a Cp diffeomorphism
g : X → X such that g(U2) = 4rB and g is the identity on U1 ⊃ K; notice
in particular that g(K) = K.

Define then h = g−1 ◦ Ψ ◦ g. It is clear that h is a Cp diffeomorphism
from X onto X \K. Moreover, if x ∈ X \ A then x 6∈ U2, so g(x) 6∈ 4rB,
which implies that Ψ(g(x)) = g(x), hence h(x) = x; that is, h is the identity
off A.
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