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The Banach–Saks property in rearrangement
invariant spaces

by

P. G. Dodds (Bedford Park), E. M. Semenov (Voronezh)
and F. A. Sukochev (Bedford Park)

Abstract. This paper studies the Banach–Saks property in rearrangement invariant
spaces on the positive half-line. A principal result of the paper shows that a separable
rearrangement invariant space E with the Fatou property has the Banach–Saks property
if and only if E has the Banach–Saks property for disjointly supported sequences. We
show further that for Orlicz and Lorentz spaces, the Banach–Saks property is equivalent
to separability although the separable parts of some Marcinkiewicz spaces fail the Banach–
Saks property.

1. Introduction. A Banach space X is said to have the Banach–Saks
property if every weakly null sequence contains a subsequence whose Cesàro
averages converge strongly to zero. This property has its roots in the classi-
cal work of Banach and Saks [BS] who established its validity in the func-
tion spaces Lp[0, 1] for 1 < p ≤ 2. The corresponding result for the case
2 < p < ∞ is due to Kadec and Pełczyński [KP]. Subsequently, it was
shown by Kakutani [Di] that every uniformly convex Banach space has the
Banach–Saks property. In contrast, it was shown by Szlenk [Sz] that the
(non-uniformly convex) space L1[0, 1) also has the Banach–Saks property.

The aim of the present paper is to study Banach–Saks type properties in
the setting of rearrangement invariant spaces on a finite (or infinite) interval.
We restrict our attention to separable spaces, as any rearrangement invariant
space with the Banach–Saks property is necessarily separable. Our approach
is partly based on a subsequence splitting property in rearrangement invari-
ant spaces (Proposition 3.2) which states that any norm bounded sequence
in a separable rearrangement invariant space with the Fatou property con-
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tains a subsequence which is a perturbation of the sum of an equimeasurable
sequence and a bounded, disjointly supported sequence which converges to
zero in measure.

The principal results of the paper are given in the fourth section. We
show (Theorem 4.5) that for separable rearrangement invariant spaces with
the Fatou property, the Banach–Saks property is equivalent to the Banach–
Saks property for disjointly supported sequences. It is readily seen that
each of the spaces Lp, 1 ≤ p < ∞, satisfies this latter condition and so
we recover the classical results of [BS] and [KP] in the case 1 < p < ∞
and of Szlenk [Sz] in the case p = 1. We show further (Corollary 4.6) that
any separable rearrangement invariant space with the Fatou property which
satisfies an upper p-estimate for some p > 1 has the Banach–Saks property.
This complements a result of Rakov [Ra] who showed that any Banach space
with non-trivial type has the Banach–Saks property.

In the fifth section, we show (Theorems 5.5, 5.7) that each separable
Orlicz and Lorentz space on an interval has the Banach–Saks property, and
that the separable parts of non-separable Orlicz and Lorentz spaces (on an
interval) do not have the Banach–Saks property. This contrasts markedly
with the results of Rakov [Ra] where it is shown that not only does every
separable Orlicz sequence space have the Banach–Saks property but so also
does the separable part of every non-separable Orlicz sequence space.

In the case of Orlicz function spaces, our results considerably strengthen
earlier results of Alexopoulos [Al]. As well, we show that the separable parts
of some Marcinkiewicz spaces fail the Banach–Saks property (Theorem 5.9).
Further, we show that if E is a separable rearrangement invariant space, then
each weakly null sequence which in addition is E-equi-integrable contains a
subsequence for which the Cesàro means of each further subsequence con-
verge in norm to zero (Theorem 4.10). Finally, we give an example of a
reflexive rearrangement invariant space E on [0, 1) with non-trivial Boyd
indices, and having an equivalent rearrangement invariant locally uniformly
convex norm, but which does not have the Banach–Saks property. This com-
plements the classical result of Kakutani cited above.

Some of the results of this paper were announced in [DFSS].

2. Definitions and preliminaries. A Banach space (E, ‖ ·‖E) of real-
valued Lebesgue measurable functions on the interval [0, α), 0 < α ≤ ∞,
(with identification λ-a.e.) will be called rearrangement invariant if

(i) E is an ideal lattice, that is, if y ∈ E, and if x is any measurable
function on [0, α) with 0 ≤ |x| ≤ |y| then x ∈ E and ‖x‖E ≤ ‖y‖E ;

(ii) E is rearrangement invariant in the sense that if y ∈ E, and if x is any
measurable function on [0, α) with x∗ = y∗, then x ∈ E and ‖x‖E = ‖y‖E.
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Here, λ denotes Lebesgue measure and x∗ denotes the non-increasing,
right-continuous rearrangement of x given by

x∗(t) = inf{s ≥ 0 : λ({|x| > s}) ≤ t}, t > 0.

For basic properties of rearrangement invariant spaces, we refer to the mono-
graphs [BeS], [KPS], [LT2]. We note that for any rearrangement invariant
space E = E[0, α),

L1[0, α) ∩ L∞[0, α) ⊆ E[0, α) ⊆ L1[0, α) + L∞[0, α)

with continuous embeddings.
The Köthe dual E× of a rearrangement invariant space E on the interval

[0, α) consists of all measurable functions y for which

‖y‖E× := sup
{ α�

0

|x(t)y(t)| dt : x ∈ E, ‖x‖E ≤ 1
}
<∞.

Basic properties of Köthe duality may be found in [KPS], [BeS] (where the
Köthe dual is called the associate space). If E∗ denotes the Banach dual of
E, it is known that E× ⊂ E∗ and E× = E∗ if and only if the norm ‖ · ‖E is
order continuous, i.e. from {xn} ⊆ E, xn ↓n 0, it follows that ‖xn‖E → 0. We
note that the norm ‖ ·‖E of the rearrangement invariant space E on [0, α) is
order continuous if and only if E is separable, in which case limt→∞ x∗(t) = 0
for all x ∈ E. We denote by L0[0,∞) the closure of L1[0,∞) ∩ L∞[0,∞)
in L1[0,∞) + L∞[0,∞). The space L0[0,∞) is separable and is the largest
separable rearrangement invariant subspace of L1[0,∞)+L∞[0,∞). Further,
x ∈ L0[0,∞) if and only if limt→∞ x∗(t) = 0.

If E is a rearrangement invariant space on [0, α), then E is said to have
the Fatou property if from {fn}n≥1 ⊆ E, f ∈ L1[0, α) + L∞[0, α), fn → f
a.e. on [0, α) and supn ‖fn‖E < ∞ it follows that f ∈ E and ‖f‖E ≤
lim infn→∞ ‖fn‖E . It is well known that the rearrangement invariant space
E has the Fatou property if and only if the natural embedding of E into its
Köthe bidual E×× is a surjective isometry. Such spaces are called maximal.
We note that if E is separable but not maximal, then E contains a Banach
sublattice isomorphic to c0. See, for example, [MN, Theorem 2.4.12].

If x, y ∈ L1[0, α) +L∞[0, α), we will say that x is submajorized by y and
write x ≺≺ y if

t�

0

x∗(s) ds ≤
t�

0

y∗(s) ds for all t > 0.

We shall need the following criterion for weak compactness in rearrange-
ment invariant spaces. See [DSS, Proposition 2.1(v)].

Proposition A. Let E be a rearrangement invariant space on [0, α),
0 < α ≤ ∞, such that E,E× ⊆ L0[0,∞). If E has the Fatou property or is
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separable, and if K ⊂ E× is bounded , then K is relatively σ(E×, E)-compact
if and only if for every f ∈ E and sequence {fn} ⊆ E with fn ≺≺ f, n ∈ N
and fn → 0 in measure, we have

sup
{ �

[0,α)

f∗n(t)g∗(t) dt : g ∈ K
}
→n 0.

Denote by Ψ the set of increasing concave functions on [0,∞) with ψ(0) =
ψ(+0) = 0. If ψ ∈ Ψ , then the Lorentz space (Λψ[0, α), ‖ · ‖Λψ[0,α)) on [0, α)
is the space of all measurable functions x on [0, α) for which

‖x‖Λψ[0,α) :=
α�

0

x∗(t) dψ(t) <∞.

The rearrangement invariant space Λ×ψ [0, α) associated with the Lorentz
space Λψ[0, α) is the Marcinkiewicz space Mψ[0, α) consisting of those mea-
surable functions x for which

‖x‖Mψ[0,α) := sup
0<s<α

1
ψ(s)

s�

0

x∗(t) dt <∞.

The space Λψ[0, α), 1 ≤ α < ∞, is always separable. The space Λψ[0,∞),
is separable if and only if ψ(∞) = limt→∞ ψ(t) = ∞, and, in this case, the
simple functions are dense in Λψ[0,∞) [KPS, II.5.3]. The space Mψ[0, α) is
non-separable. The closure of L1[0, α) ∩ L∞[0, α) in Mψ[0, α) is separable
and is denoted by M0

ψ[0, α).
By [KPS, Section 2.5.4], the Banach dual M 0

ψ[0, α)∗ may be identified
with Λψ[0, α) and every linear functional f ∈ M 0

ψ[0, α)∗ can be written in
the form

f(x) =
�

[0,α)

x(t)y(t) dt, x ∈M0
ψ[0, α),

where y ∈ Λψ[0, α) and ‖f‖M0
ψ[0,α)∗ = ‖y‖Λψ[0,α).

Let Φ be an Orlicz function on [0,∞), that is, Φ is a continuous convex
increasing function on [0,∞) satisfying Φ(0) = 0 and Φ(∞) =∞. The Orlicz
space LΦ = LΦ[0, α), 0 < α ≤ ∞, is the space of all Lebesgue measurable
functions f on [0, α) for which

α�

0

Φ

( |f(t)|
%

)
dt <∞

for some % > 0. The (Luxemburg) norm in LΦ = LΦ[0, α) is defined by

‖f‖Φ = inf
{
% > 0 :

α�

0

Φ

( |f(t)|
%

)
dt ≤ 1

}
.
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The Orlicz space LΦ[0, α) is maximal. In the case of α < ∞, LΦ[0, α) is
separable if and only if Φ satisfies the ∆2-condition at∞. The space LΦ[0,∞)
is separable if and only if Φ satisfies the ∆2-condition both at ∞ and at 0
(see, for example, [LT2]). We shall denote by L0

Φ[0, α) the separable part of
the Orlicz space LΦ[0, α), that is, L0

Φ[0, α) is the closure in LΦ[0, α) of the
linear subspace L1[0, α) ∩ L∞[0, α).

3. Subsequence splitting of bounded sequences. In this section,
we study bounded sequences in a rearrangement invariant space E. In our
variant of the subsequence splitting property we follow the approach of [Su1,
Lemma 1.1] (see also [KP] and [We, Corollary 2.6]). We shall need the fol-
lowing result, given in [BeS, Corollary 2.7.6]. See also [KPS, Theorem II.2.1].

Lemma 3.1. If x ∈ L1[0, α) + L∞[0, α) and if limt→∞ x∗(t) = 0, then
there exists a surjective measure-preserving transformation σ : [0, α) →
[0, α) such that |x(t)| = x∗(σ(t)), t ∈ [0, α).

Combining the measure-preserving transformation from Lemma 3.1 with
multiplication by a unimodular function, we see that if the rearrangement
invariant space E[0,∞) is separable and if x ∈ E then there exists a
rearrangement-preserving transformation Tx : E → E such that Tx(x∗) = x.

The first part of the following proposition was established in [Su1, Lem-
ma 1.1] under the additional assumption that α <∞.

Proposition 3.2. Let E be a separable rearrangement invariant space
on the interval [0, α), 0 < α ≤ ∞, with the Fatou property.

(i) For any sequence {xn}∞n=1 ⊂ E with

sup
n∈N
‖xn‖E = C <∞

there exists a subsequence {x′n}∞n=1 ⊆ {xn}∞n=1 which admits the splitting

(3.1) x′n = yn + zn + dn, n ≥ 1,

where {yn}∞n=1, {zn}∞n=1, {dn}∞n=1 ⊆ E are bounded sequences satisfying

(a) y∗1(t) = y∗n(t), ∀n ∈ N, ∀t ∈ [0,∞) and ‖y1‖E ≤ C;
(b) znzm = 0 for n,m ∈ N, n 6= m, zn → 0 in measure and

supn∈N ‖zn‖E ≤ 2C;
(c) ‖dn‖E → 0.

(ii) If , in addition, the sequence {xn}∞n=1 is weakly null and E× ⊆
L0[0,∞), then the sequences {yn}∞n=1, {zn}∞n=1 from (3.1) may be chosen
to be weakly null as well.

Proof. (i) It follows from the inequalities

sup
n
x∗n(t) ≤ C/‖χ[0,t)‖E , t > 0,
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that the sequence {x∗n}∞n=1 is uniformly bounded on every interval of the
form [a, b] for all 0 < a < b < ∞. By Helly’s selection theorem, we choose
a subsequence of {x∗n} (which we again denote by {x∗n}) such that x∗n → f
almost everywhere on [0, α) for some right-continuous, non-increasing func-
tion f : (0, α) → [0,∞). Since E has the Fatou property, it follows that
f ∈ E and that ‖f‖E ≤ C. We set

an(t) := (x′n)∗(t)− f(t), ∀t > 0, ∀n ∈ N.
Since limt→∞ f(t) = limt→∞(x′n)∗(t) = 0 for all t > 0, and since f, x∗n are
non-increasing for all n ∈ N, it follows that an → 0 in measure.

Since limt→∞(x′n)∗(t) = 0, it follows from Lemma 3.1 that there ex-
ists a rearrangement-preserving transformation Tn : E → E such that
Tn((x′n)∗) = x′n for all n ∈ N. We now set

yn = Tnf, wn = Tn(an) = Tn((x′n)∗ − f), n ∈ N.
It follows immediately that

x′n = yn + wn, y∗n = f

for all n ∈ N. In particular, it follows that

‖yn‖E = ‖f‖E ≤ C, ‖wn‖E ≤ 2C

for all n ∈ N. Since an → 0 in measure, we also have wn = Tn(an) → 0
in measure. Finally, since E is separable, the commutative specialization of
[CDS, Theorem 2.5] shows that, by passing to a subsequence if necessary and
relabelling, there exists a sequence of mutually disjoint elements {zn}∞n=1 ⊆
E such that ‖zn‖E ≤ 2C and ‖zn − wn‖E → 0.

(ii) From part (i), we may assume that the decomposition (3.1) holds for
{xn}∞n=1. We set f = y∗1 and let

Ω(f) := {x ∈ E : x ≺≺ f}.
Using the assumption that E× ⊆ L0[0,∞) and the separability of E, it fol-
lows from [DSS, Proposition 2.1(v)] (see also [Fr, Section 28], or [CSS])
that Ω(f) is sequentially compact for the weak topology on E induced
by E×. Passing again to a subsequence if necessary, we may assume that the
sequence {yn}∞n=1 is σ(E,E×)-convergent, and using the assumption that
{xn}∞n=1 is weakly null, we may assume further that the disjoint sequence
{zn}∞n=1 is weakly convergent. To complete the proof of (ii), it will suffice
to show that

(3.2)
�

[0,α)

zn(s)g(s) ds→ 0

for every 0 ≤ g ∈ E×. We observe first that weak compactness of the
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sequence {zn}∞n=1 together with [DSS, Proposition 2.1(iii)] implies that

lim
N→∞

sup
n∈N

�

[0,α)

χ[N,∞)(s)zn(s)g(s) ds = 0.

Accordingly, it suffices to show that
�

[0,N)

zn(s)g(s) ds→ 0

for each N = 1, 2, . . . To this end, let

An = {s : zn(s) 6= 0} ∩ [0, N), n ∈ N.
Disjointness of the sequence {zn}∞n=1 implies that

∑∞
n=1 λ(An) < ∞ and

this implies in turn that

Ek :=
⋃

n≥k
An ↓k ∅.

Again using the weak compactness of the sequence {zn}∞n=1 together with
[DSS, Proposition 2.1(iii)] shows that

lim
k→∞

sup
n∈N

�

[0,N)

χEk(s)zn(s)g(s) ds = 0.

In particular, it follows that

lim
k→∞

�

[0,N)

zk(s)g(s) ds = lim
k→∞

�

[0,N)

χEk(s)zk(s)g(s) ds = 0,

and this suffices to complete the proof.

Definition 3.3. LetE be a rearrangement invariant space on [0, α), 0 <
α ≤ ∞. A bounded set M ⊆ E is said to be E-equi-integrable if

lim
n→∞

sup
x∈M
‖xχAn‖E = 0

for all sequences {An}∞n=1 of measurable subsets of [0, α) for which An ↓n ∅.
We make the simple remark that if the bounded set M ⊆ E is E-equi-

integrable, and if {An}∞n=1 is any sequence of measurable subsets of [0, α)
for which λ(An)→ 0, then necessarily

lim
n→∞

sup
x∈M
‖xχAn‖E = 0.

Proposition 3.4. Let (E, ‖·‖E) be a separable rearrangement invariant
space on [0, α), 0 < α ≤ ∞, with the Fatou property and let {xn}∞n=1 ⊂ E
be a bounded sequence. If {xn}∞n=1 is E-equi-integrable, and if

x′n = yn + zn + dn, n ∈ N,
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is the decomposition (3.1) then

(3.3) lim
n→∞

‖zn‖E = 0.

If α < ∞, and if in the decomposition (3.1) we have limn→∞ ‖zn‖E = 0,
then the sequence {x′n}∞n=1 is E-equi-integrable.

Proof. Assume that {xn}∞n=1 is E-equi-integrable, and observe that since
‖dn‖E → 0, it follows immediately that {x′n − dn}∞n=1 is also E-equi-inte-
grable. Making a simple change of notation, we suppose that {xn}∞n=1 is
E-equi-integrable and admits the decomposition

xn = yn + zn, n ∈ N,
with {zn}∞n=1 pairwise disjoint and convergent to 0 in measure, and y∗n = y∗1
for all n ∈ N. We note first that if en, n = 1, 2, . . . , is any sequence of
measurable subsets of [0,∞) for which m(en)→ 0, then it follows from the
inequalities

‖zmχen‖E ≤ ‖xmχen‖E + ‖ymχen‖E ≤ ‖xmχen‖E + ‖y∗1χ[0,m(en))‖E
and from the remark following Definition 3.3 that

(3.4) lim
n→∞

sup
m∈N
‖zmχen‖E = 0.

Using the fact that the sequence {zn}∞n=1 is pairwise disjoint, it follows
immediately that if e ⊆ [0,∞) is any measurable subset for which λ(e) <∞,
then ‖znχe‖E → 0. In particular, this establishes the first assertion of the
proposition in the case of α < ∞ by taking e to be χ[0,α). We may now
assume that α =∞. If the proposition fails, then we may assume that there
exists ε > 0 such that

‖zn‖E > ε, n ∈ N.
From the first part of the proof and by suitable relabelling, we may assume
that there exists a sequence tn ↑ ∞ such that

‖znχ[tn,∞)‖E ≥ ε, n ∈ N.
Since

lim
n→∞

sup
m∈N
‖xmχ[tn,∞)‖E = 0,

we may assume further that

(3.5) ‖ynχ[tn,∞)‖E ≥ 7ε/8, n ∈ N.
Since E is separable the norm on E is order continuous and so there exist
numbers 0 < s1 < s2 such that

(3.6) max{‖y∗1χ[0,s1)‖E , ‖y∗1χ[s2,∞)‖E} < ε/16.
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It follows from Lemma 3.1 that for each n ∈ N, there exist measurable sets
ein, i = 1, 2, 3, with λ(e2

n) = s2 − s1 such that

(ynχe1n)∗ = (y∗1χ[0,s1))
∗, (ynχe2n)∗ = (y∗1χ[s1,s2))

∗,

(ynχe3n)∗ = (y∗1χ[s2,∞))
∗.

By (3.6), this implies that

max{‖ynχe1n∩[tn,∞)‖E, ‖ynχe3n∩[tn,∞)‖E} ≤ ε/16, n ∈ N,
and consequently, it follows from (3.5) that

(3.7) ‖ynχe2n∩[tn,∞)‖E ≥ 3ε/4, n ∈ N.
We now observe that

‖znχe2n∩[tn,∞)‖E → 0.

In fact, if this is not so, we may assume that there exists δ > 0 such that

‖znχe2n‖E > δ, n ∈ N.
Since zn → 0 in measure and since λ(e2

n) = s2 − s1 for all n ∈ N, we may
assume further that there exist measurable sets en ⊆ e2

n, n = 1, 2, . . . , with
λ(en)→ 0 and such that

‖znχen‖E > δ/2

for all n = 1, 2, . . . , and this contradicts the assertion of (3.4). Accordingly,
there exists N ∈ N such that

‖znχe2n∩[tn,∞)‖E ≤ ε/4
for all n ≥ N . From (3.7) it now follows that

‖xnχ[tn,∞)‖E ≥ ‖xnχe2n∩[tn,∞)‖E ≥ ‖ynχe2n∩[tn,∞)‖E − ‖znχe2n∩[tn,∞‖E
≥ ‖ynχe2n∩[tn,∞)‖E − ε/4 ≥ ε/2

for all n ≥ N . This contradicts the E-equi-integrability of the sequence
{xn}∞n=1, and suffices to establish the first assertion of the proposition.

The final assertion of the proposition is an immediate consequence of the
observation that, if α < ∞, then the sequence {yn}∞n=1, being equimeasur-
able, is necessarily E-equi-integrable.

4. The Banach–Saks property. It will be convenient to adopt the
following terminology.

Definition 4.1. Let X be a Banach space.

(a) If {xn}∞n=1 is a weakly null sequence in X, then the sequence {xn}∞n=1
is called a Banach–Saks sequence if
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lim
n→∞

n−1
∥∥∥

n∑

j=1

yj

∥∥∥ = 0

for all subsequences {yj}∞j=1 ⊆ {xn}∞n=1.
(b) X is said to have the Banach–Saks property if every weakly null

sequence in X has a Banach–Saks subsequence.

We remark that the classical formulation of the Banach–Saks property
requires that each bounded sequence contain a Cesàro summable subse-
quence, and any Banach space enjoying this property is necessarily reflex-
ive. See, for example, [Di]. In reflexive spaces, the classical Banach–Saks
property is easily seen to be equivalent to the (so-called) weak Banach–
Saks property which requires that each weakly null sequence should contain
a Cesàro summable subsequence. That the apparent strengthening of the
weak Banach–Saks property given in Definition 4.1(b) is, in fact, equivalent
to the weak Banach–Saks property is due to Erdős and Magidor [EM]. See
also [FS] and [Ro].

If X is a Banach lattice and the elements of the sequence {xn}∞n=1 ⊆ X
are pairwise disjoint, then the preceding definitions yield the corresponding
definitions of a Banach–Saks d-sequence and the Banach–Saks d-property.

We remark that any rearrangement invariant space E which has the
Banach–Saks property is necessarily separable. In fact, if E is rearrange-
ment invariant and not separable, then E contains a copy of l∞, by [LT2,
Proposition 1.a.7]. Since l∞ is universal for separable Banach spaces, it fol-
lows that E contains a copy of the separable Banach space which fails the
Banach–Saks property given by Baernstein [Ba]. Consequently, E also fails
the Banach–Saks property.

Proposition 4.2. Let E be a separable rearrangement invariant Banach
function space on the interval [0, α), 0 < α ≤ ∞, with the Fatou property.
If an, y ∈ E satisfy an ≺≺ y, n ∈ N, and if an → 0 in measure, then
‖an‖E → 0.

Proof. Without loss of generality, it may be assumed that a∗n = an for
all n ∈ N. Suppose first that E× ⊆ L0[0,∞) and let K be the unit ball
of E×. Since K is σ(E×, E)-sequentially compact, Proposition A yields

‖an‖E = sup
{ �

[0,∞)

an(t)g∗(t) dt : g ∈ K
}
→ 0

as n→∞. We may therefore suppose that E× 6⊆ L0[0,∞) or, equivalently,
that L∞[0,∞) ⊆ E×. By the maximality of E, it follows that

E = E×× ⊆ (L∞[0,∞))× = L1[0,∞).

Since an ≺≺ y, n ∈ N, it follows from [DSS, Proposition 2.1(v)] that the
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sequence {an}n∈N is relatively σ(L1, L∞)-compact, and since an → 0 in
measure, it follows from the well known Vitali convergence theorem that

(4.1) ‖an‖L1 → 0.

Let ε > 0 be given. For each α > 0, it follows from the submajorization

anχ[0,α) ≺≺ yχ[0,α), n ∈ N,
that

‖anχ[0,α)‖E ≤ ‖yχ[0,α)‖E , n ∈ N.
By order continuity of the norm on E, it follows that there exists α > 0
such that

(4.2) sup
n∈N
‖anχ[0,α)‖E < ε.

Now observe that, for all n,m ∈ N, the submajorizations

an(m)χ[0,m) ≺≺ anχ[0,m) ≺≺ yχ[0,m)

imply that
man(m) ≤ ‖y‖L1 .

We denote by C > 0 any constant for the continuous embedding of
L1 ∩ L∞ into E. Setting M = C‖y‖L1/ε, we find that, for all m ≥M ,

sup
n∈N

an(m) ≤ ε/C

or, equivalently,

(4.3) sup
n∈N
‖anχ[m,∞)‖L∞ ≤ ε/C, m ≥M.

From (4.1), it follows that there exists N ∈ N such that

(4.4) sup
m∈N
‖anχ[m,∞)‖L1 ≤ ε/C, n ≥ N.

Combining (4.3) and (4.4) shows that

‖anχ[m,∞)‖E ≤ C max
{
‖anχ[m,∞)‖L1 , ‖anχ[m,∞)‖L∞

}
≤ ε

for all n ≥ N , m ≥ M . Finally, using the fact that an → 0 in measure we
obtain

‖anχ(α,M ]‖E ≤ an(α)‖χ(α,M ]‖E → 0

as n→∞, and, together with (4.2), this suffices to complete the proof.

The proposition which follows is an analogue of the well known theorem
of Komlós [Ko]. For convenience, we denote the norm on L1[0,∞)+L∞[0,∞)
by ‖ · ‖+ and note that (see, for example, [LT2, Proposition 2.a.2])

‖x‖+ =
1�

0

x∗(s) ds, x ∈ L1[0,∞) + L∞[0,∞).
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We note that the space L0[0,∞) does not have the Banach–Saks prop-
erty. See the remark following Corollary 5.8 below. Nonetheless, the follow-
ing proposition shows that each equimeasurable sequence in L0[0,∞) is a
Banach–Saks sequence.

Proposition 4.3. Suppose that {xn}∞n=1 ⊆ L1[0,∞) + L∞[0,∞) satis-
fies x∗n = x∗1, n ∈ N. If limt→∞ x∗1(t) = 0, then there exists a subsequence
{xn(k)}∞k=1 ⊂ {xn}∞n=1 and there exists x ∈ L1[0,∞) + L∞[0,∞) such that

1
N

N∑

k=1

xm(k) → x

in L1[0,∞)+L∞[0,∞) for all further subsequences {xm(k)}∞k=1⊂{xn(k)}∞k=1.

Proof. Since x∗n = x∗1, n ∈ N, and by Lemma 3.1, there exist measurable
sets e(i)

n ⊆ [0,∞) with e
(i)
n ∩ e(j)

n = ∅ for i 6= j and such that

(xnχe(i)n )∗ = (x∗1χ[1/i,1/(i−1))∪[i−1,i))
∗

for all n, i ∈ N, i ≥ 2. Since

sup
n
‖xnχe(i)n ‖L2[0,∞) ≤ ‖x∗1χ[1/i,1/(i−1))∪[i−1,i)‖L2[0,∞)

and since L2[0,∞) has the Banach–Saks property, it follows from a diagonal
argument that there exists a subsequence {xn(k)}∞k=1 ⊂ {xn}∞n=1 such that,
for all 2 ≤ i ∈ N, there exists x(i) ∈ L2[0,∞) such that

(4.5) lim
N→∞

1
N

N∑

j=1

xm(j)χe(i)m(j)
= x(i)

holds in L2[0,∞), and hence also in L1[0,∞) + L∞[0,∞), for all further
subsequences {xm(j)}∞j=1 ⊂ {xn(k)}∞k=1. We let {xm(j)}∞j=1 ⊂ {xn(k)}∞k=1 be
a fixed subsequence, set

wN :=
1
N

N∑

k=1

xm(k), N = 1, 2, . . . ,

and let ε > 0 be given. We observe that, for every m = 1, 2, . . . and
M,N ∈ N,

‖wN − wM‖+ ≤
∥∥∥∥

1
N

N∑

k=1

(
xm(k) −

m∑

i=1

xm(k)χe(i)m(k)

)∥∥∥∥
+

+
∥∥∥∥

1
M

M∑

k=1

(
xm(k) −

m∑

i=1

xm(k)χe(i)m(k)

)∥∥∥∥
+
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+
∥∥∥∥

m∑

i=1

x(i) − 1
N

N∑

k=1

m∑

i=1

xm(k)χe(i)m(k)

∥∥∥∥
+

+
∥∥∥∥

m∑

i=1

x(i) − 1
M

M∑

k=1

m∑

i=1

xm(k)χe(i)m(k)

∥∥∥∥
+
.

Choose m ∈ N such that

(4.6) 1/m < ε, x∗1(m) < ε,

1/m�

0

x∗1(s) ds < ε.

Observe that
(
xm(k) −

m∑

i=1

xm(k)χe(i)m(k)

)∗
(t) =

{
x∗1(t) if 0 < t < 1/m,

x∗1(t+m) if t ≥ 1/m.

It follows that
∥∥∥xm(k) −

m∑

i=1

xm(k)χe(i)m(k)

∥∥∥
+

=
1�

0

(
xm(k) −

m∑

i=1

xm(k)χe(i)m(k)

)∗
(s) ds

≤
1/m�

0

x∗1(s) ds+
1�

1/m

ε ds ≤ 2ε.

Since

1
N

N∑

k=1

(
xm(k) −

m∑

i=1

xm(k)χe(i)m(k)

)
≺≺ 1

N

N∑

k=1

(
xm(k) −

m∑

i=1

xm(k)χe(i)m(k)

)∗
,

it follows further that

(4.7)
∥∥∥∥

1
N

N∑

k=1

(
xm(k) −

m∑

i=1

xm(k)χe(i)m(k)

)∥∥∥∥
+
≤ 2ε,

and similarly
∥∥∥∥

1
M

M∑

k=1

(
xm(k) −

m∑

i=1

xm(k)χe(i)m(k)

)∥∥∥∥
+
≤ 2ε,

for all M,N ∈ N. Now if we observe that
∥∥∥∥

m∑

i=1

x(i) − 1
N

N∑

k=1

m∑

i=1

xm(k)χe(i)m(k)

∥∥∥∥
+

=
∥∥∥∥

m∑

i=1

(
x(i) − 1

N

N∑

k=1

xm(k)χe(i)m(k)

)∥∥∥∥
+

together with the same equality with N replaced by M , and use (4.5), it
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follows that there exists N0 ∈ N such that
∥∥∥∥

m∑

i=1

x(i) − 1
N

N∑

k=1

m∑

i=1

xm(k)χe(i)m(k)

∥∥∥∥
+

+
∥∥∥∥

m∑

i=1

x(i) − 1
M

M∑

k=1

m∑

i=1

xm(k)χe(i)m(k)

∥∥∥∥
+
≤ ε

for all M,N ≥ N0. We obtain

‖wN − wM‖+ ≤ 5ε

for all M,N ≥ N0. Consequently, there exists x ∈ L1[0,∞)+L∞[0,∞) such
that

1
N

N∑

k=1

xm(k) → x.

To show that x is independent of the subsequence {xm(k)}∞k=1, let ε > 0 be
given and suppose that m satisfies (4.6). From (4.7), it follows that
∥∥∥∥

1
N

N∑

k=1

xm(k) −
m∑

i=1

(
1
N

N∑

k=1

xm(k)χe(i)m(k)

)∥∥∥∥
+

=
∥∥∥∥

1
N

N∑

k=1

(
xm(k) −

m∑

i=1

xm(k)χe(i)m(k)

)∥∥∥∥
+
≤ 2ε

for all N ∈ N. Letting N →∞, we obtain
∥∥∥x−

m∑

i=1

x(i)
∥∥∥

+
< 2ε

for all sufficiently large m ∈ N. This shows that the equality

x =
∞∑

i=1

x(i)

holds in L1[0,∞) + L∞[0,∞), which suffices to complete the proof of the
proposition.

The following lemma is given in [PSW, Lemma 5.3].

Lemma 4.4. Let 0 < α ≤ ∞ and let {yn}∞n=1 be a sequence in L1[0, α) +
L∞[0, α). If x is measurable and y ∈ L1[0, α)+L∞[0, α) are such that yn → x
locally in measure and yn → y for the weak topology on L1[0, α) + L∞[0, α)
induced by L1[0, α) ∩ L∞[0, α), then x = y.

The following theorem is the principal result of this section concerning
the Banach–Saks property.
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Theorem 4.5. If E is a separable rearrangement invariant space E on
[0, α), 0 < α ≤ ∞, with the Fatou property then the following conditions are
equivalent.

(i) E has the Banach–Saks property ;
(ii) E has the Banach–Saks d-property.

Proof. We only need to prove that (ii) implies (i). Let {xn}∞n=1 ⊆ E be a
weakly null sequence. By Proposition 3.2(ii), and passing to a subsequence if
necessary, there exist weakly null sequences {yn}∞n=1 ⊆ E and {zn}∞n=1 ⊆ E
and a null sequence {dn}∞n=1 ⊆ E such that

xn = yn + zn + dn

and such that

y∗n = y∗1 , znzm = 0 for all n,m ∈ N, n 6= m,

with zn → 0 in measure. Since E has the Banach–Saks d-property, we may
assume that {zn}∞n=1 is a Banach–Saks sequence. Using Proposition 4.3,
Lemma 4.4 and passing to a further subsequence and relabelling if necessary,
we may assume that

1
N

N∑

n=1

wn → 0

in measure as N →∞ for every subsequence {wn}∞n=1 ⊆ {yn}∞n=1. Suppose
then that {wn}∞n=1 ⊆ {yn}∞n=1 is an arbitrary subsequence. Set

aN :=
1
N

N∑

n=1

wn, N ∈ N.

Since
w∗n = y∗1 , n ∈ N,

it follows from [KPS, Chapter II.2] (see also [BeS, Chapter 2, Theorem 3.4])
that

aN ≺≺ y∗1 , N ∈ N.
Since aN → 0 in measure as N → ∞, it now follows from Proposition
4.3 that ‖aN‖E → 0 as N → ∞. This implies that the sequence {yn}∞n=1
is a Banach–Saks sequence and this suffices to complete the proof of the
Theorem.

We recall ([LT2, Definition 1.f.4]) that, if 1 < p < ∞, then the Banach
lattice X is said to satisfy an upper p-estimate if there exists a positive
constant M < ∞ such that, for every choice of pairwise disjoint elements
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{xi}ni=1 ⊆ X, it follows that

∥∥∥
n∑

i=1

xi

∥∥∥ ≤M
( n∑

i=1

‖xi‖p
)1/p

.

We obtain the following immediate consequence of Theorem 4.5.

Corollary 4.6. Let E be a separable rearrangement invariant space
on [0, α), 0 < α ≤ ∞, with the Fatou property. If E satisfies an upper
p-estimate for some p > 1, then E has the Banach–Saks property.

It is a trivial remark that each Lp-space, 1 < p <∞, satisfies an upper p-
estimate. Consequently, the preceding corollary implies that each Lp-space,
1 < p < ∞, has the Banach–Saks property, thus recovering the seminal
results of [BS] in the case of 1 < p ≤ 2 and those of [KP] in the case of
2 < p <∞.

Before proceeding, we observe that for uniformly bounded sequences in
a separable rearrangement invariant space E on [0, 1), the notion of weak
convergence does not depend on the space E.

Lemma 4.7. Let {xn}∞n=1 ⊆ L∞[0, 1) with supn ‖xn‖L∞ = C < ∞, and
let E1, E2 be separable rearrangement invariant spaces on [0, 1). If xn →n 0
weakly in E1, then xn →n 0 weakly in E2.

The proof of the lemma is straightforward and therefore omitted.
We denote by {rn}∞n=1 the usual Rademacher system on [0, 1) defined by

setting
rn(t) = sgn sin(2nπt), t ∈ [0, 1).

We shall need the following result of S. V. Astashkin [A] which asserts
that each uniformly bounded, weakly null sequence in L2[0, 1) contains a
subsequence majorized in distribution by the Rademacher system. More
precisely, if {xn}∞n=1 is uniformly bounded in L∞[0, 1) and weakly null in
L2[0, 1), then there exists a constant C > 0 depending only on the uniform
bound of the sequence {xn}∞n=1 and there exists a subsequence {yn}∞n=1 ⊆
{xn}∞n=1 such that

λ
{
t :
∣∣∣
∞∑

k=1

akyk(t)
∣∣∣ ≥ Cτ

}
≤ Cλ

{
t :
∣∣∣
∞∑

k=1

akrk(t)
∣∣∣ ≥ τ

}

for every sequence {ak}∞k=1 ∈ l2, τ > 0.

Lemma 4.8. Let E be a separable rearrangement invariant space on
[0, 1), let {xn}∞n=1 ⊆ E be uniformly bounded with supn ‖xn‖L∞ = C <∞,
and suppose that {xn}∞n=1 is weakly null. Then there exists a sequence
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an ↓n 0 and a subsequence {yn}∞n=1 ⊂ {xn}∞n=1 such that

sup
{

1
m

∥∥∥
∑

n∈B
yn

∥∥∥
E

: B ⊂ N, |B| = m

}
≤ am

for each m ∈ N.

Proof. By Lemma 4.7, the sequence {xn}∞n=1 tends to 0 weakly in L2.
By Astashkin’s theorem, there exists a constant C > 0 which depends only
on the uniform bound of the sequence {xn} such that for all m ∈ N and any
set B ⊂ N with |B| = m, we have

(4.8) λ
{
t :
∣∣∣
∑

n∈B
yk(t)

∣∣∣ ≥ Cτ
}
≤ Cλ

{
t :
∣∣∣
∑

n∈B
rk(t)

∣∣∣ ≥ τ
}
.

It is well known that the value

λ
{
t :
∣∣∣
∑

n∈B
rk(t)

∣∣∣ ≥ τ
}
,

where |B| = m, depends on m only. Using this statement, [KPS, Corollary 2
of Section 2.4.5], and (4.8), we obtain

∥∥∥
∑

k∈B
yk

∥∥∥
E
≤ C2

∥∥∥
m∑

k=1

rk

∥∥∥
E
,

and consequently

sup
{

1
m

∥∥∥
∑

n∈B
yn

∥∥∥
E

: B ⊂ N, |B| = m

}
≤ C2

∥∥∥∥
1
m

m∑

n=1

rn

∥∥∥∥
E

.

The sequence

am :=
∥∥∥∥

1
m

m∑

n=1

rn

∥∥∥∥
E

, m ∈ N,

tends to 0 for any rearrangement invariant space E 6= L∞[0, 1) ([LT, 2.c.10]),
and this completes the proof of the lemma.

We remark that the subsequence {yn}∞n=1 given in the preceding lemma
does not depend on the space E and the sequence {an} depends only on E
and the uniform bound of {xn}∞n=1.

Lemma 4.9. Let E be a separable rearrangement invariant space on
[0,∞). If {xn}∞n=1 is an E-equi-integrable, weakly null sequence and if ε > 0,
then there exists M > 0, a subsequence {yn}∞n=1 ⊆ {xn}∞n=1 and weakly null
sequences {un}∞n=1, {vn}∞n=1 ⊆ E such that

yn = un + vn, sup ‖un‖L∞ ≤M, ‖vn‖E < ε,

and supp(un) ⊆ [0,M), for all n ∈ N.
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Proof. For any k, n ∈ N, set

e(k)
n := {|xn| > k}

and observe that
‖xn‖L1+L∞ ≥ kmin{1, λ(e(k)

n )}
for all n, k ∈ N. Since {xn}∞n=1 is bounded in E and hence in L1 + L∞, it
follows that

(4.9) lim
k→∞

sup
n∈N

λ(e(k)
n ) = 0.

We now show that for all ε > 0, there exists k ∈ N such that

(4.10) sup
n∈N
‖xnχe(k)

n
‖E < ε/4.

If this is not the case, then by a change of notation if necessary, we may
assume that there exists ε > 0 such that

(4.11) ‖xnχe(n)
n
‖E ≥ ε, n ∈ N.

Using (4.9), and passing to a subsequence and relabelling if necessary, we
may assume further that

(4.12)
∞∑

n=1

λ(e(n)
n ) <∞.

Set
En =

⋃

k≥n
e

(k)
k , n ∈ N,

and observe that (4.12) implies that En ↓n ∅. It now follows from the E-equi-
integrability of the sequence {xn}∞n=1 that

‖xnχe(n)
n
‖E ≤ ‖xnχE(n)

n
‖E → 0

as n → ∞, and this clearly contradicts (4.11) and establishes (4.10). If
Fk = [k,∞), k ∈ N, noting that Fk ↓k ∅, and again using the E-equi-
integrability of the sequence {xn}∞n=1, we may assume further that

(4.13) sup
n∈N
‖xnχFk‖E < ε/4.

We now set
x(k)
n = xn − xnχe(k)

n ∪Fk , n ∈ N.

It follows from (4.10) and (4.13) that the sequence {x(k)
n }∞n=1 is supported

by the interval [0, k) and satisfies

‖xn − x(k)
n ‖E < ε/2, ‖x(k)

n ‖L∞ ≤ k, n ∈ N.
In particular, the sequence {x(k)

n }∞n=1 is order bounded in E and conse-
quently is relatively weakly compact in E, since separability of E implies
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that the norm on E is order continuous, and this implies that order intervals
in E are weakly compact. Let {wn}∞n=1 ⊆ {x(k)

n }∞n=1 be a weakly convergent
subsequence, with weak limit w ∈ E, and let {yn}∞n=1 be the corresponding
subsequence of {xn}∞n=1. In particular note that

‖wn − yn‖E < ε/2, n ∈ N.
Set

un = wn − w, vn = yn − un = yn − wn + w, n ∈ N.
It is clear that un, vn → 0 weakly in E. Since

‖w‖L∞ ≤ lim inf
n→∞

‖wn‖L∞ ≤ k,

it follows that
sup
n
‖un‖L∞ ≤ 2k.

Further, since wn − yn→n w weakly in E, it follows that

‖w‖E ≤ lim inf
n→∞

‖wn − yn‖E < ε/2.

This yields
‖vn‖E ≤ ‖wn − yn‖E + ‖w‖E < ε

for all n ∈ N. Since it is clear that supp(wn) ⊆ [0, k) for all n ∈ N implies
that supp(w) ⊆ [0, k), it also follows that supp(un) ⊆ [0, k) for all n ∈ N.
The assertion of the lemma now follows by taking M = 2k.

Theorem 4.10. Let E be a separable rearrangement invariant space on
[0,∞). If {xn}∞n=1 is weakly null and E-equi-integrable, then it contains a
Banach–Saks subsequence.

Proof. It may be assumed that ‖xn‖E ≤ 1 for all n ∈ N. We prove
first that given ε > 0, we can choose a subsequence {zn}∞n=1 ⊂ {xn}∞n=1
depending on ε such that

lim
m→∞

1
m

sup
|B|=m

∥∥∥
∑

n∈B
zn

∥∥∥
E
≤ ε.

By Lemma 4.9, there exist a subsequence {yn}∞n=1 ⊆ {xn}∞n=1 and weakly
null sequences {un}∞n=1, {vn}∞n=1 ⊆ E such that yn = un + vn, supn ‖un‖L∞
<∞, supn ‖vn‖E ≤ ε, and supp(un) ⊂ [0,M ] for some M > 0 and all n ∈ N.
By Lemma 4.8, we can choose a subsequence {ukn} ⊂ {un} such that

am =
1
m

sup
|B|=m

∥∥∥
∑

n∈B
ukn

∥∥∥
E
↓m 0.

It follows that
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lim sup
m→∞

1
m

sup
|B|=m

∥∥∥
∑

n∈B
ykn

∥∥∥
E

≤ lim sup
m→∞

1
m

sup
|B|=m

(∥∥∥
∑

n∈B
ukn

∥∥∥
E

+
∑

n∈B
‖vkn‖E

)

≤ lim sup(am + ε) = ε.

We now complete the proof of the theorem by a diagonal argument. Given
an integer k, there exist an integer Nk and a subsequence {z(k)

n } such that

{xn} ⊃ {z(1)
n } ⊃ {z(2)

n } ⊃ . . . ⊃ {z(k)
n } ⊃ . . .

and

(4.14)
1
m

sup
|B|=m

∥∥∥
∑

n∈B
z(k)
n

∥∥∥
E
≤ 1
k

for each m ≥ Nk. Without loss of generality we may assume that N1 <
N2 < . . . Now we shall prove that

lim
m→∞

1
m

sup
|B|=m

∥∥∥
∑

n∈B
z(n)
n

∥∥∥
E

= 0.

Let k be an integer, let {wn} ⊂ {z(n)
n }, and let the integer m satisfy

(4.15) m ≥M(k) = max(k2, Nk + k).

Since z(n)
n ∈ {z(k)

n }∞n=1 for every n ≥ k, we have wn ∈ {z(k)
n } for n ≥ k. From

(4.15), it is clear that

|{k + 1, k + 2, . . . ,m}| = m− k ≥ Nk.
Using (4.14) and (4.15), we obtain

1
m

∥∥∥
m∑

n=1

wn

∥∥∥
E
≤ 1
m

( k∑

n=1

‖wn‖E +
∥∥∥

m∑

n=k+1

wn

∥∥∥
E

)
≤ k

m
+
m− k
mk

≤ 2
k

for all m ≥M(k), and this completes the proof of the theorem.

The assumption in the preceding theorem that the sequence {xn}∞n=1 is
E-equi-integrable cannot be omitted. This is shown in Theorem 5.9 below.

5. The Banach–Saks property in Orlicz, Lorentz and Marcin-
kiewicz spaces. In this section, we show that an Orlicz space on any in-
terval [0, α) has the Banach–Saks property if and only if it is separable,
and that the same result holds also for Lorentz spaces. As noted earlier,
any rearrangement invariant space with the Banach–Saks property is nec-
essarily separable. However, we show further that the separable parts of
non-separable Orlicz and Lorentz spaces on an arbitrary interval do not
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have the Banach–Saks property. That contrasts with the sequence space
setting: it has been shown by Rakov [Ra] that the separable part of any
Orlicz sequence space always has the Banach–Saks property.

We shall need the following theorem which is stated in [Ad] for the
Bochner space L2(c0). We let {rn}∞n=1 denote the sequence of Rademacher
functions and let (ei) denote the unit vector basis of c0. We define the
sequence {xn}∞n=1 ⊆ Lp(c0), 1 ≤ p <∞, by setting

xn :=
2n∑

i=1

r2n+iei, n ∈ N.

Theorem 5.1. For every 1 ≤ p < ∞, the sequence {xn}∞n=1 is a nor-
malized , weakly null sequence in Lp(c0) such that

(5.1)
∥∥∥

m∑

n=1

xkn

∥∥∥
Lp(c0)

≥ m(e− 1)
2e

for any subsequence {xkn}∞n=1 of {xk}.

Proof. That the sequence {xn}∞n=1 is normalized and weakly null in
Lp(c0), 1 < p < ∞, follows from [Ad, Lemma 7(a)]. The proof of the same
assertion in the case of L1(c0) follows easily from the same result, by ob-
serving that the sequence {xn}∞n=1 is obviously bounded in L1(c0) and that
L1(c0)∗ = L∞(l1) ⊆ L2(l1) (see, for example, [DU, p. 98]). It remains to be
shown that (5.1) holds for every subsequence {xkn}∞n=1 ⊆ {xn}∞n=1.

For notational simplicity, we assume that kn = n for all n ∈ N and let
1 ≤ m ∈ N be given. We have

m∑

n=1

xn =
m∑

n=1

2n∑

i=1

r2n+iei =
2m∑

i=1

( ∑

n∈Qi
rn

)
ei,

where Qi ⊆ {1, . . . , 2m+1}, Qi ∩ Qj = ∅ for all i 6= j and |Qi| ≤ m for all
i = 1, . . . , 2m. It is important to note that

(5.2) m/2 ≤ |Qi| ≤ m, ∀1 ≤ i ≤ 2m/2.

We shall make use of the following (elementary and well known) inequality

(5.3) λ
{
t :
∣∣∣
n∑

k=1

rk(t)
∣∣∣ ≥ m/2

}
≥ 2−m/2,

which is valid for m/2 ≤ n ≤ m. Since the system {∑n∈Qi rn}2
m

i=1 consists
of independent functions, it follows from (5.2) and (5.3) that
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λ

{
t : max

1≤i≤2m/2

∣∣∣
∑

n∈Qi
rn(t)

∣∣∣ < m

2

}

=
∏

1≤i≤2m/2

λ

{
t :
∣∣∣
∑

n∈Qi
rn(t)

∣∣∣ < m

2

}

=
∏

1≤i≤2m/2

(
1−m

{
t :
∣∣∣
∑

n∈Qi
rn(t)

∣∣∣ ≥ m

2

})

≤ (1− 2−m/2)2m/2 ≤ 1/e.

It follows immediately that

λ
{
t : max

1≤i≤2m/2

∣∣∣
∑

n∈Qi
rn(t)

∣∣∣ ≥ m/2
}
> 1− 1/e.

Consequently, for all 1 ≤ p <∞, we have
∥∥∥

m∑

n=1

xn

∥∥∥
Lp(c0)

≥
∥∥∥

m∑

n=1

xn

∥∥∥
L1(c0)

≥ m

2
λ
{
t : max

1≤i≤2m/2

∣∣∣
∑

n∈Qi
rn(t)

∣∣∣ ≥ m/2
}

≥ m(e− 1)
2e

.

Let E be a rearrangement invariant space on [0, α), 0 < α ≤ ∞, and let
E be the (isometrically isomorphic) space of measurable functions on the
rectangle [0, 1)× [0, α) given by

E := {f ∈ (L1 + L∞)([0, 1)× [0, α)) : f∗ ∈ E}, ‖f‖E := ‖f∗‖E.
Here, the decreasing rearrangement f ∗ is calculated with respect to product
Lebesgue measure on the rectangle [0, 1)× [0, α).

Lemma 5.2. Suppose that E is separable but not maximal and let
{en}∞n=1 ⊆ E be (order) equivalent to the unit vector basis of c0. If the
sequence {yn}∞n=1 ⊆ E is defined by setting

yn :=
2n∑

i=1

r2n+i ⊗ ei, n ∈ N,

then {yn}∞n=1 is weakly null in E.

Proof. Note that order continuity of the norm on E implies order conti-
nuity of the norm on E, and so the Banach dual E∗ may be identified with
the Köthe dual E×. Consequently, if F ∈ E∗ then there exists a uniquely
determined f ∈ E× such that

F (x) =
�

[0,1)×[0,α)

f(s, t)x(s, t) ds dt, x ∈ E.
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We set

yn :=
2n∑

i=1

r2n+i ⊗ ei, n ∈ N,

and suppose that the sequence {yn}∞n=1 is not weakly null in E. We may
assume, therefore, that there exists η > 0, f ∈ E′ and an increasing sequence
n(j), j ∈ N, of natural numbers such that

(5.4)
�

[0,1)×[0,α)

f(s, t)
( 2n(j)∑

i=1

r2n(j)+i(s)ei(t)
)
ds dt > η

for all j = 1, 2, . . . It follows from Fubini’s theorem that the function

s 7→
�

[0,α)

f(s, t)ei(t) dt, s ∈ [0, 1),

is integrable on [0, 1). Consequently, by the fact that the Rademacher se-
quence is a uniformly bounded, orthonormal sequence, it follows that

lim
n→∞

�

[0,1)×[0,α)

f(s, t)r2n+i(s)ei(t) ds dt

= lim
n→∞

�

[0,1)

( �

[0,α)

f(s, t)ei(t) dt
)
r2n+i(s) ds = 0

for all i ∈ N. We may therefore assume further that

(5.5)
�

[0,1)×[0,α)

f(s, t)
( 2n(j−1)∑

i=1

r2n(j)+i(s)ei(t)
)
ds dt ≤ η/2

for all j ≥ 1. We set

Ij = {2n(j−1) + 1, . . . , 2n(j)}, j ∈ N.
From (5.4) and (5.5), it follows that

(5.6)
�

[0,1)×[0,α)

f(s, t)
(∑

i∈Ij
r2n(j)+i(s)ei(t)

)
dt ds ≥ η/2

for all j ∈ N. We set

xk :=
k∑

j=1

∑

i∈Ij
r2n(j)+i ⊗ ei, k ∈ N.

Noting that the sequence {ei}∞i=1 is disjointly supported and that Ij∩Ik = ∅
whenever j 6= k, we deduce that

|xk| =
k∑

j=1

∑

i∈Ij
1⊗ |ei|, k ∈ N,
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where 1 denotes the indicator function of the interval [0, 1). Since {ei}∞i=1 is
equivalent to the unit vector basis of c0, this implies that

(5.7) sup
j∈N
‖xj‖E <∞.

However, it follows from (5.6) that

F (xk) =
k∑

j=1

�

[0,1)×[0,α)

f(s, t)
(∑

i∈Ij
r2n(j)+i(s)ei(t)

)
dt ds ≥ kη/2

for all k ∈ N. This contradicts (5.7) and suffices to complete the proof of
the lemma.

We shall need the following notion introduced in [Su2]. We denote by
χ

(n)
j the indicator function of the interval [j · 2−n, (j+ 1) · 2−n), 1 ≤ j ≤ 2n.

Definition 5.3. The rearrangement invariant space E on the interval
[0, α), 1 < α ≤ ∞, is said to have the L1-embedding property , in symbols
E ∈ (EP1), if there exists a positive constant KE such that for any natural
number n and family {yi}2

n

i=1 ⊆ L1[0, α) ∩ L∞[0, α),

2−n
2n∑

i=1

‖yi‖E =
∥∥∥

2n∑

i=1

χ
(n)
i (·)yi

∥∥∥
L1([0,1],E)

≤ KE

∥∥∥
2n∑

i=1

χ
(n)
i ⊗ yi

∥∥∥
E
.

We note that if {wj}nj=1 ⊆ L1[0, α) ∩ L∞[0, α) is any finite family, then
there exists a finite family {yi}2

n

i=1 ⊆ L1[0, α) ∩ L∞[0, α) such that

n∑

j=1

rj(·)wj =
2n∑

i=1

χ
(n)
i (·)yi and

n∑

j=1

rj ⊗ wj =
2n∑

i=1

χ
(n)
i ⊗ yi.

Consequently, if E ∈ (EP1), and if {wj}nj=1 ⊆ L1[0, α) ∩ L∞[0, α) is any
finite family, then

∥∥∥
n∑

j=1

rj(·)wj
∥∥∥
L1([0,1),E)

≤ KE

∥∥∥
n∑

j=1

rj ⊗ wj
∥∥∥

E
.

Proposition 5.4. Let E be a separable rearrangement invariant space
on [0, α). If E is not maximal , and if E ∈ (EP1), then E does not have the
Banach–Saks property.

Proof. Using the fact that E is not maximal, let {e′i}∞i=1 ⊆ E be a
mutually disjoint sequence which is K-equivalent to the standard unit vector
basis {ei}∞i=1 of c0 for someK <∞. Since the norm on E is order continuous,
it is easy to see that we may assume, in addition, that e′i ∈ L1[0, α)∩L∞[0, α)
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for all i ∈ N. We set

yn :=
2n∑

i=1

r2n+i ⊗ e′i, xn :=
2n∑

i=1

r2n+i ⊗ ei, n ≥ 1.

Using now Theorem 5.1, together with the assumption that E ∈ (EP1) and
the remark following Definition 5.3, we find that

KE

∥∥∥
m∑

n=1

ykn

∥∥∥
E
≥
∥∥∥

m∑

n=1

( 2kn∑

i=1

r2kn+ie
′
i

)∥∥∥
L1(E)

≥ K−1
∥∥∥

m∑

n=1

xkn

∥∥∥
L1(c0)

≥ K−1 m(e− 1)
2e

for all m ≥ 1, for any subsequence {ykn}∞n=1 of {yk}∞k=1. It now follows from
Lemma 5.2 that E does not have the Banach–Saks property. Consequently
E, being isometrically isomorphic to E, does not have the Banach–Saks
property, and this completes the proof of the proposition.

Theorem 5.5. Let LΦ be an Orlicz space on [0, α), 0 < α ≤ ∞.

(i) If LΦ is separable, then LΦ has the Banach–Saks property.
(ii) If LΦ is not separable, then the separable part L0

Φ does not have the
Banach–Saks property.

Proof. (i) By Theorem 4.5, it suffices to show that LΦ has the Banach–
Saks d-property. To this end, suppose that {xn}∞n=1 ⊆ LΦ is a normalized,
weakly null, disjointly supported sequence. Applying [LT3, Proposition 3] in
the case of α <∞ and [Ni, Theorem 1.1] in the case of α =∞, and passing
to a subsequence if necessary, we may assume that there exists an Orlicz
function G such that the sequence {xn}∞n=1 is equivalent to the unit vector
basis {en}∞n=1 of the Orlicz sequence space lG. In particular, it follows that
there exists C > 0 such that

1
C

∥∥∥
n∑

k=1

ek

∥∥∥
lG
≤
∥∥∥

n∑

k=1

xk

∥∥∥
LΦ
≤ C

∥∥∥
n∑

k=1

ek

∥∥∥
lG

for every m ∈ N. It is well known that
∥∥∥

n∑

k=1

ek

∥∥∥
lG

= 1/G−1(1/m)

so that

(5.8)
∥∥∥

n∑

k=1

xk

∥∥∥
LΦ
≤ C/G−1(1/m)

for all m ∈ N. Here G−1 denotes the function inverse to G.
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Let us now suppose that

(5.9) lim inf
m→∞

mG−1(1/m) <∞.

Since the function G−1 is concave, it follows that {mG−1(1/m)}∞m=1 is in-
creasing and (5.9) then implies that (G−1)′(0+) < ∞. Consequently, there
exist constants c1, c2 > 0 such that

c1t ≤ G(t) ≤ c2t
for all t ∈ [0, 1). From this it follows that the sequence {xn}∞n=1 is equivalent
to the unit vector basis of l1. This contradicts the fact that {xn}∞n=1 is weakly
null, and consequently (5.9) is not valid. It then follows that there exists a
sequence βm ↑m ∞ such that

G−1(1/m) = βm/m

for all m ∈ N. Now, (5.8) entails that

lim
n→∞

1
n

∥∥∥
n∑

k=1

xk

∥∥∥
LΦ
≤ lim

n→∞
C/βn = 0

and this suffices to establish the assertion of (i).
(ii) If LΦ is not separable, then it follows that L0

Φ is not maximal. Since
LΦ has property (EP1) by [Su2, Proposition 2.4], it follows also that L0

Φ has
property (EP1). Since L0

Φ is separable, it now follows from Proposition 5.4
that L0

Φ does not have the Banach–Saks property, and this completes the
proof of the theorem.

Corollary 5.6. The Orlicz space LΦ has the Banach–Saks property if
and only if it is separable.

We remark that if an Orlicz space LΦ[0, 1) is simultaneously a Marcinkie-
wicz spaceMψ[0, 1), then it follows from Theorem 5.5 that the separable part
M0
ψ[0, 1) of the Marcinkiewicz spaceMψ[0, 1) does not have the Banach–Saks

property. This is the case, for example, if the Orlicz function Φ is given by
setting

Φ(t) := (et
p − 1)/(e− 1), t ≥ 0,

for some 1 ≤ p <∞. See, for example, [Lo]. This remark also serves to show
that there are separable rearrangement invariant Banach function spaces on
[0, 1) for which the Banach–Saks property and the Banach–Saks d-property
are not equivalent. Indeed, it is a simple exercise to show that the separable
part of any Marcinkiewicz space on [0, 1) always has the Banach–Saks d-
property.

We remark that the preceding Corollary 5.6 substantially extends [Al,
Corollary 2.10].
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The following theorem extends a well known result of Szlenk [Sz] that
L1-spaces have the Banach–Saks property.

Theorem 5.7. Let Λψ be a Lorentz space on [0, α), 0 < α ≤ ∞.

(i) If Λψ is separable, then Λψ has the Banach–Saks property.
(ii) If Λψ is not separable, then its separable part Λ0

ψ does not have the
Banach–Saks property.

Proof. (i) It is sufficient to check that Λψ has the Banach–Saks d-pro-
perty. Consider an arbitrary weakly null sequence {xn}∞n=1 ⊆ Λψ of pairwise
disjoint elements. If the sequence {xn}∞n=1 is not norm convergent to 0 then
{xn}∞n=1 contains a basic sequence. However, it is well-known that any basic
sequence of pairwise disjoint elements in Λψ contains a subsequence equiv-
alent to the standard unit vector basis of the space l1. This is shown, for
example in [CD1, Lemma 3.1] (see also [CD2, Lemma 2.1]) in the special
setting of the Lorentz Lp,1-spaces and the proof in the more general case
is similar. It follows that the sequence {xn}∞n=1 cannot converge weakly to
0. Consequently, the sequence {xn}∞n=1 converges in norm to 0 and so is
trivially a Banach–Saks sequence.

(ii) The proof is identical to that of Theorem 5.5(ii), by using [Su2,
Proposition 2.5] instead of [Su2, Proposition 2.4].

Corollary 5.8. The Lorentz space Λψ has the Banach–Saks property
if and only if it is separable.

We remark that the space L1[0,∞)+L∞[0,∞) is a non-separable Lorentz
space, with Lorentz function ψ given by

ψ(t) = min{t, 1}, t ≥ 0.

Consequently, it follows from Theorem 5.7 that its separable part, which con-
sists of those elements x ∈ L1[0,∞)+L∞[0,∞) for which limt→∞ x∗(t) = 0,
does not have the Banach–Saks property. This is in contrast to the situation
on the unit interval where the Lorentz space L1[0, 1) + L∞[0, 1) coincides
with the (separable) space L1[0, 1), which has the Banach–Saks property via
Szlenk’s theorem.

Theorem 5.9. If ψ ∈ Ω, ψ(∞) =∞ and

lim inf
t→0

ψ(2t)
ψ(t)

= 1,

then the separable part M0
ψ of the Marcinkiewicz space Mψ on the interval

[0,∞) does not have the Banach–Saks property. Moreover , given η ∈ (0, 1),
there exists a disjointly supported , weakly null sequence {xn}∞n=1 ⊆M0

ψ such
that
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(5.10)
∥∥∥
∑

n∈B
xn

∥∥∥
Mψ

≥ ηm

for any B ⊆ N with |B| = m.

Proof. We observe first that the function τ 7→ ψ(tτ)/ψ(t), τ > 0, is
concave and increasing for each t > 0 and set

α(τ) := lim inf
t→0

ψ(tτ)
ψ(t)

, τ > 0.

The function α is concave and increasing, and from the assumption on ψ, it
follows that α(1) = α(2) = 1. Consequently,

(5.11) α(τ) = lim inf
t→0

ψ(tτ)
ψ(t)

= 1

for all τ ≥ 1. Let qn = [n(1−√η)] and note that

1− qn/n ≥
√
η.

It follows from (5.11) that there exists a sequence 1 > tn ↓n 0 such that

ψ(tqn) ≥ √η ψ(ntqn)

for all n ∈ N. For each n ∈ N, let xn be any element of M0
ψ with ‖xn‖Mψ

= 1
which is supported by the interval (n, n+ 1) and which satisfies

s�

0

x∗n(t) dt = ψ(s), tn ≤ s ≤ 1.

It follows that
∥∥∥

n∑

k=1

xk

∥∥∥
Mψ

≥
∥∥∥

n∑

k=qn

xk

∥∥∥
Mψ

≥
∑n

k=qn � tqn0 x∗k(t) dt

ψ((n− qn + 1)tqn)

≥ (n− qn)ψ(tqn)
ψ(ntqn)

= n

(
1− qn

n

)
ψ(tqn)
ψ(ntqn)

≥ n√η√η = nη

for all n ∈ N. Since
n∑

k=1

xk ≺≺
∑

k∈B
xk

for any B ⊂ N with |B| = n, it follows that
∥∥∥
∑

k∈B
xk

∥∥∥
Mψ

≥
∥∥∥

n∑

k=1

xk

∥∥∥
Mψ

≥ ηn

for all n ∈ N whenever |B| = n and this establishes (5.10).
To show that the sequence {xn}∞n=1 is weakly null in M0

ψ, it suffices to
show that



The Banach–Saks property 291

�

[0,∞)

y(t)xn(t) dt→ 0

for every y ∈ Λψ = (M0
ψ)∗. Let y ∈ Λψ. By the assumption that ψ(∞) =∞,

the space Λψ is separable and consequently

lim
n→∞

‖yχ(n,∞)‖Λψ = 0

for each y ∈ Λψ. Since

�

[0,∞)

y(t)xn(t) dt =
∣∣∣
n+1�

n

y(t)xn(t) dt
∣∣∣ ≤ ‖xn‖M0

ψ
‖yχ(n,n+1)‖Λψ

≤ ‖yχ(n,∞)‖Λψ ,
it follows that �

[0,∞)

y(t)xn(t) dt→ 0

for every y ∈ Λψ and this completes the proof of the theorem.

6. Final remarks. In this section we point out that the Banach–Saks
property is not, in general, preserved by interpolation. Our discussion relies
on the existence of a reflexive Banach space Z with unconditional basis
which does not have the Banach–Saks property. Such an example has been
constructed by A. Baernstein II [Ba].

Let us recall briefly a special case of the K-method of interpolation. For
details we refer to [LT2]. Let (E1, E2) be an interpolation pair of Banach
spaces, that is, E1, E2 are continuously embedded in some Hausdorff topo-
logical space. For every choice of positive scalars a, b, let k(·, a, b) denote the
equivalent norm on the Banach sum E1 +E2 defined by setting

k(x, a, b) = inf{a‖x1‖E1 + b‖x2‖E2 : x = x1 + x2, xi ∈ Ei, i = 1, 2}
for all x ∈ E1+E2. Let Y be a Banach space with a normalized unconditional
basis {yn}∞n=1 whose unconditional constant is one, and let {an}∞n=1, {bn}∞n=1
be sequences of positive numbers such that

∞∑

n=1

min(an, bn) <∞.

The space K(E1, E2, Y, {an}, {bn}) is defined to be the space of all elements
x ∈ E1 + E2 such that

∑∞
n=1 k(x, an, bn)yn converges, normed by setting

‖x‖ = sup
m

∥∥∥
m∑

n=1

k(x, an, bn)yn
∥∥∥
Y
.

For any rearrangement invariant space E on [0, 1), we denote the upper
and lower Boyd indices by qE , pE respectively. For basic definitions and
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properties, we refer to [LT2]. We note that if 1 ≤ p <∞ and if E = Lp[0, 1),
then pE = qE = p.

Proposition 6.1. Let {mn} be an increasing sequence of numbers sat-
isfying the conditions

m−1
n

n−1∑

i=1

mi +mn

∞∑

i=n+1

m−1
i < 2−n−1, n = 1, 2, . . .

Let Z be a reflexive Banach space with normalized unconditional basis
{yn}∞n=1 but without the Banach–Saks property. If 1 < p < q < ∞ then
the space

W := K(Lq[0, 1), Lp[0, 1), Z, {m−1
n }, {mn})

is a reflexive rearrangement invariant space on [0, 1), has an unconditional
basis, and admits an equivalent rearrangement invariant , locally uniformly
convex norm, but does not have the Banach–Saks property.

Proof. We remark that the second part of the proof of [LT2, Theorem
2.g.11] shows that the interpolation space K(X1,X, l2, {an}, {bn}) is reflex-
ive, provided X1 is continuously and weakly compactly embedded in X,∑∞

n=1 an < ∞ and bn ↑n ∞. Noting that Lp[0, 1) is weakly compactly em-
bedded in Lr[0, 1) if r < p, and using the fact that reflexivity of Z implies
that the basis in Z is shrinking (see [LT1, Proposition 1.b.1 and Theorem
1.b.5]), it is not difficult to adapt the proof of [LT2, Theorem 2.g.11] to
show that W is reflexive. It follows from [LT2, Proposition 2.g.4] that W
has non-trivial Boyd indices. Consequently, [LT2, Theorem 2.c.6] implies
that the Haar system is an unconditional basis in W . The proof of [LT2,
Theorem 2.g.5] now shows that W contains a complemented subspace iso-
morphic to Z. Since Z fails to have the Banach–Saks property, it follows as
well that W fails to have the Banach–Saks property. Finally, that W admits
an equivalent rearrangement invariant, locally uniformly convex norm fol-
lows from the fact thatW is rearrangement invariant and separable, together
with [DGL, Corollary 1.2].

We note that the preceding proposition complements the well known
theorem of Kakutani [Di] that every uniformly convex Banach space has the
Banach–Saks property.
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[DSS] P. G. Dodds, G. Schlüchtermann and F. A. Sukochev, Weak compactness in
rearrangement invariant operator spaces, Math. Proc. Cambridge Philos. Soc.
131 (2001), 363–384.
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