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Uniform convergence of
N-dimensional Walsh–Fourier series

by

U. Goginava (Tbilisi)

Abstract. We establish conditions on the partial moduli of continuity which guar-
antee uniform convergence of the N -dimensional Walsh–Fourier series of functions f from
the class CW (IN ) ∩⋂Ni=1BVi,{p(n)}, where p(n) ↑ ∞ as n→∞.

1. Definitions and notation. Let IN = [0, 1)N be the unit cube in
the N -dimensional Euclidean space RN . The elements of RN are denoted by
x = (x1, . . . , xN ). For any x = (x1, . . . , xN ) and y = (y1, . . . , yN ) the vector
(x1 ⊕ y1, . . . , xN ⊕ yN ) ∈ RN is denoted by x⊕ y, where ⊕ denotes dyadic
addition.

Let M = {1, . . . , N}, B = {s1, . . . , sr}, B1 = {sr1 , . . . , srj}, sk < sk+1,
sri < sri+1 , k = 1, . . . , r − 1, i = 1, . . . , j − 1, B1 ⊂ B ⊂ M , B′ = M \ B,
B′1 = M \ B1. For an integer n the vector (n, . . . , n) ∈ RN is denoted by
ñ. The cardinality of B is denoted by |B|. For any x = (x1, . . . , xN ) and
B ⊂M , let xB denote the vector in RN whose coordinates with indices from
B coincide with the corresponding coordinates of x, and the coordinates with
indices from B′ are zero. Note that xM = x and x∅ = 0̃.

For later convenience we introduce the following notation:
mB∑

iB=pB

for
ms1∑

is1=ps1

· · ·
msr∑

isr=psr

,

q
2k for

(
q1

2k1
, . . . ,

qN
2kN

)
,

du for du1 · · · duN .

Denote by C(IN ) the space of all real-valued functions continuous on IN

that can be extended to functions 1-periodic in each variable on RN . If f ∈
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C(IN ) then the function

ωi(δ, f) = sup
x

sup
|hi|≤δ

|f(x + h{i})− f(x)|, i = 1, . . . , N,

is called a partial modulus of continuity of f.
Denote by CW (IN ) the space of all real-valued functions uniformly W -

continuous on IN that extend to functions 1-periodic in each variable, with
the norm

‖f‖CW = sup
x∈IN
|f(x)|.

Let

∆̇{si}(f,x,h{si}) = f(x⊕ h{si})− f(x), i = 1, . . . , r.

Successive application of such partial difference operators leads to the
definitions:

∆̇B(f,x,hB) = ∆̇{sr}(∆̇B\{sr}(f, ·,hB\{sr}),x,h{sr}),
and

ω̇B(δ, f) = sup
0≤hi<δi, i∈B

‖∆̇B(f, ·,hB)‖CW .

Definition 1. Suppose that the function f is bounded on IN and ex-
tends to a function 1-periodic in each variable. Let 1 ≤ p <∞. We say that f
is of bounded partial p-variation (written f ∈ PBVp) if for any i = 1, . . . , N ,

Vi(f) = sup
xj ,j∈M\{i}

sup
n≥1

sup
π(i)

n−1∑

k=0

|f(x1, . . . , xi−1, x
(2k)
i , xi+1, . . . , xN )

− f(x1, . . . , xi−1, x
(2k+1)
i , xi+1, . . . , xN )|p <∞,

where π(i) is an arbitrary partition 0 ≤ x(0)
i < x

(1)
i ≤ x

(2)
i < · · · ≤ x(2n−2)

i <

x
(2n−1)
i ≤ 1.

Let f be a function defined on RN which is 1-periodic relative to each
variable. Π(i) is said to be a partition with period 1 if

Π(i) : · · · < t
(i)
−1 < t

(i)
0 < t

(i)
1 < · · · < t(i)mi < t

(i)
mi+1 < · · ·

satisfies t(i)k+mi
= t

(i)
k + 1 for k ∈ Z, where mi is a positive integer.

Definition 2. Let 1 ≤ p(n) ↑ p as n → ∞, where 1 ≤ p ≤ ∞. We say
that a function f on RN belongs to the class BVi,{p(n)} if

Vi,{p(n)}(f) = sup
xs, s∈M\{i}

sup
n≥1

sup
Π(i)

{( mi∑

j=1

|f(x1, . . . , xi−1, t
(i)
j , xi+1, . . . , xN )

− f(x1, . . . , xi−1, t
(i)
j−1, xi+1, . . . , xN )|p(n)

)1/p(n)
: %(Π(i)) ≥ 1

2n

}
<∞,
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where
%(Π(i)) = inf

k
|t(i)k − t

(i)
k−1|.

For N = 1 see [7].
When p(n) = p for all n, it is easy to see that

⋂N
i=1BVi,{p(n)} coincides

with PBVp.
Let r0 be a function on R defined by

r0(x) =
{

1 if x ∈ [0, 1/2),

−1 if x ∈ [1/2, 1),
r0(x+ 1) = r0(x).

The Rademacher system is defined by

rn(x) = r0(2nx), n ≥ 1, x ∈ [0, 1).

Let w0, w1, . . . represent the Walsh functions, i.e. w0(x) = 1 and if k =
2n1 + · · ·+ 2ns is a positive integer with n1 > · · · > ns then

wk(x) = rn1(x) · · · rns(x).

The idea of using products of Rademacher functions to define the Walsh
system comes from Paley [9].

The Walsh–Dirichlet kernel is defined by

Dn(x) =
n−1∑

k=0

wk(x).

The rectangular partial sums of the N -dimensional Walsh–Fourier series
are defined as follows:

Sm(f,x) =
m−1̃∑

ν=0̃

aν
∏

i∈M
wνi(xi),

where
aν = aν1,...,νN (f) =

�

IN

f(x)
∏

i∈M
wνi(xi) dx.

2. Formulation of the problem. Getzadze [1, 2] considered the ques-
tion of uniform convergence for N -dimensional Walsh–Fourier series in terms
of partial moduli of continuity. He proved the following

Theorem A. (a) Let f ∈ C(IN ). If there exists i0 ∈M such that

ωi0(δ, f) = o

((
1

log(1/δ)

)N)
as δ → 0+

and

ωi(δ, f) = O

((
1

log(1/δ)

)N)
as δ → 0+, 1 ≤ i ≤ N, i 6= i0,
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then the N -dimensional Walsh–Fourier series of f converges uniformly in
the sense of Pringsheim (1).

(b) There exists a function f0 ∈ C(IN )such that

ωi(δ, f0) = O

((
1

log(1/δ)

)N)
as δ → 0+, i = 1, . . . , N,

and the N -dimensional Walsh–Fourier cubic partial sums of f diverge in
the metric of C.

In 1881 Jordan [6] introduced a class of functions of bounded variation
and, applying it to the theory of trigonometric Fourier series, he proved
that if a continuous function has bounded variation, then its trigonometric
Fourier series converges uniformly. In 1906 G. Hardy [5] generalized the Jor-
dan criterion to double Fourier series and introduced the notion of bounded
variation for functions of two variables. He proved that if a continuous func-
tion of two variables has bounded variation (in the sense of Hardy), then its
trigonometric Fourier series converges uniformly in the sense of Pringsheim.

Móricz [8] proved that if f ∈ CW (I2) and the function f is of bounded
variation in Hardy’s sense [5], then its two-dimensional Walsh–Fourier series
is uniformly convergent to f.

For N -dimensional Walsh–Fourier series the author [4] proved that if f ∈
CW (IN ) and the function f is of bounded partial p-variation (f ∈ PBVp) for
some p ∈ [1,∞), then the N -dimensional Walsh–Fourier series is uniformly
convergent to f. The analogous result for the N -dimensional trigonometric
Fourier series was verifed by the author [3].

On the basis of the above facts we can formulate the following problem:

Let p(n) ↑ ∞ as n → ∞ and f ∈ CW (IN ) ∩⋂N
i=1BVi,{p(n)}. What con-

ditions on the partial moduli of continuity ensure the uniform convergence
in the Pringsheim sense of the N -dimensional Walsh–Fourier series of the
function f?

A solution of this problem is given in Theorems 1 and 2.

3. Formulation of the main results. The main result of this paper
is

Theorem 1. Let p(n)↑∞ as n→∞ and f ∈CW (IN ) ∩⋂N
i=1BVi,{p(n)}.

If there exists i0 ∈M such that

ω̇{i0}(1/2
k, f) = o

((
1

p(k + 1) log p(k + 1)

)N)
as k →∞

(1) An N -dimensional series is said to converge in the sense of Pringsheim if its
rectangular partial sums converge.



Walsh–Fourier series 5

and

ω̇{i}(1/2
k, f) = O

((
1

p(k + 1) log p(k + 1)

)N)

as k →∞, 1 ≤ i ≤ N, i 6= i0,

then the N -dimensional Walsh–Fourier series of f converges uniformly in
Pringsheim’s sense.

Corollary 1. Let p(n)↑∞ as n→∞ and f ∈C(IN )∩⋂N
i=1BVi,{p(n)}.

If there exists i0 ∈M such that

ωi0(1/2k, f) = o

((
1

p(k) log p(k)

)N)
as k →∞

and

ωi(1/2k, f) = O

((
1

p(k) log p(k)

)N)
as k →∞, 1 ≤ i ≤ N, i 6= i0,

then the N -dimensional Walsh–Fourier series of f converges uniformly in
Pringsheim’s sense.

Corollary 2. Let p(n)↑∞ as n→∞ and p(2m) ≤ cp(m) for all m≥1,
where c > 0 is a constant , and let f ∈ C(IN )∩⋂N

i=1BVi,{p(n)}. If there exists
i0 ∈M such that

ωi0(δ, f) = o

((
1

p([log(1/δ)]) log p([log(1/δ)])

)N)
as δ → 0+

and

ωi(δ, f) = O

((
1

p([log(1/δ)]) log p([log(1/δ)])

)N)

as δ → 0+, 1 ≤ i ≤ N, i 6= i0,

then the N -dimensional Walsh–Fourier series of f converges uniformly in
Pringsheim’s sense.

Theorem 2. Let p(n) ↑ ∞ and p(n) log p(n) = o(n) as n → ∞, and
p(2m) ≤ cp(m) for all m ≥ 1, where c > 0 is a constant. Then for any
N ≥ 2 there exists a function f0 ∈ C(IN ) ∩⋂N

i=1BVi,{p(n)} such that

ωi(δ, f0) = O

((
1

p([log(1/δ)]) log p([log(1/δ)])

)N)

as δ → 0+, i = 1, . . . , N,

and the N -dimensional Walsh–Fourier cubic partial sums of f0 diverge at
some point.
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4. Auxiliary propositions. We shall need the following.

Lemma 1. Let f ∈ CW (IN ). Assume that for any nonempty B ⊂M we
have

VkB(f,u) =
(2k−1̃)B∑

qB=1̃B

∣∣∣∣∆̇B

(
f,u⊕

(
2q

2k+1̃

)

B

,

(
1̃

2k+1̃

)

B

)∣∣∣∣
∏

j∈B

1
qj
→ 0

(as ki → ∞) uniformly with respect to ui, i ∈ M. Then the N -dimensional
Walsh–Fourier series of f converges uniformly in Pringsheim’s sense.

For N = 2 the proof can be found in [8]. Using the method of [8], we can
easily extend this criterion to N -dimensional Walsh–Fourier series.

Lemma 2. Let ai1 , . . . , aiN and bi1,...,iN be real numbers. Then

mM∑

iM=1̃M

(∏

j∈M
aij

)
bi1,...,iN =

∑

B⊂M

(∏

j∈B′
amj

)mB−1̃B∑

iB=1̃B

∏

j∈B
(aij − aij+1)

×
iB∑

kB=1̃B

mB′∑

kB′=1̃B′

bk1,...,kN .

For N = 1 this is the well known Abel transformation, and for N = 2
it is called the Hardy transformation. The validity of the above equality for
any N ≥ 3 can be easily verified by induction.

Lemma 3. We have
2i−2n−2�

2i−2n−3

|Dqn(t)| dt ≥ c > 0, i = 1, . . . , 2n+ 2,

where

qn = 22n+1 + 22n−1 + · · ·+ 23 + 21 + 20, n = 1, 2, . . . .

The proof can be found in [10].

5. Proofs of the main results

Proof of Theorem 1. By Lemma 1, it suffices to show that for all non-
empty B ⊂M ,

(2k−1̃)B∑

qB=1̃B

∣∣∣∣∆̇B

(
f,u⊕

(
2q

2k+1̃

)

B

,

(
1̃

2k+1̃

)

B

)∣∣∣∣
∏

j∈B

1
qj
→ 0

uniformly with respect to ui, i ∈M , as ki →∞, i ∈ B.
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From Lemma 2, we write

(1)
(2k−1̃)B∑

qB=1̃B

∣∣∣∣∆̇B

(
f,u⊕

(
2q

2k+1̃

)

B

,

(
1̃

2k+1̃

)

B

)∣∣∣∣
∏

j∈B

1
qj

=
∑

B1⊂B,B1 6=∅

( ∏

i∈B\B1

1
2ki − 1

) (2k−2̃)B1∑

qB1=1̃B1

∏

j∈B1

(
1
qj
− 1
qj + 1

)

×
qB1∑

lB1=1̃B1

(2k−1̃)B\B1∑

lB\B1
=1̃B\B1

∣∣∣∣∆̇B

(
f,u⊕

(
2l

2k+1̃

)

B

,

(
1̃

2k+1̃

)

B

)∣∣∣∣

+
∏

i∈B

1
2ki − 1

(2k−1̃)B∑

lB=1̃B

∣∣∣∣∆̇B

(
f,u⊕

(
2l

2k+1̃

)

B

,

(
1̃

2k+1̃

)

B

)∣∣∣∣

=
∑

B1⊂B,B1 6=∅
IB(f,B1,u) + IB(f, ∅,u).

Since for all nonempty B ⊂M ,
∣∣∣∣∆̇B

(
f,u⊕

(
2l

2k+1̃

)

B

,

(
1̃

2k+1̃

)

B

)∣∣∣∣ ≤ ω̇B
(

1
2k
, f

)
,(2)

we have

IB(f, ∅,u) = O

(
ω̇B

(
1
2k
, f

))
.(3)

It is evident that

(4) IB(f,B1,u) = O

( (2k−2̃)B1∑

qB1=1̃B1

∏

j∈B1

1
q2
j

sup
ui,i∈B′1

qB1∑

lB1=1̃B1

∣∣∣∣∆̇B1

(
f,u

⊕
(

2l

2k+1̃

)

B1

,

(
1̃

2k+1̃

)

B1

)∣∣∣∣
)
.

Since for all nonempty B1 ⊂M , and all j ∈ B1,

(5) sup
ui, i∈B′1

qB1∑

lB1=1̃B1

∣∣∣∣∆̇B1

(
f,u⊕

(
2l

2k+1̃

)

B1

,

(
1̃

2k+1̃

)

B1

)∣∣∣∣

= O

( ∏

i∈B1\{j}
qi sup
ui, i∈M\{j}

qj∑

lj=1

∣∣∣∣∆̇{j}
(
f,u,⊕

(
2l

2k+1̃

)

{j}
,

(
1̃

2k+1̃

)

{j}

)∣∣∣∣
)
,
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we have

(6) sup
ui, i∈B′1

qB1∑

lB1=1̃B1

∣∣∣∣∆̇B1

(
f,u⊕

(
2l

2k+1̃

)

B1

,

(
1̃

2k+1̃

)

B1

)∣∣∣∣

=
[(

sup
ui, i∈B′1

qB1∑

lB1=1̃B1

∣∣∣∣∆̇B1

(
f,u⊕

(
2l

2k+1̃

)

B1

,

(
1̃

2k+1̃

)

B1

)∣∣∣∣
)|B1|]1/|B1|

= O

(∏

j∈B1

q
1−1/|B1|
j

[
sup

ui, i∈M\{j}

qj∑

lj=1

∣∣∣∣∆̇{j}
(
f,u

⊕
(

2l

2k+1̃

)

{j}
,

(
1̃

2k+1̃

)

{j}

)∣∣∣∣
]1/|B1|)

By (4) and (6) we obtain

(7) IB(f,B1,u) = O

( ∏

j∈B1

2ki−2∑

qj=1

1

q
1+1/|B1|
j

[
sup

ui, i∈M\{j}

qj∑

lj=1

∣∣∣∣∆̇{j}
(
f,u

⊕
(

2l

2k+1̃

)

{j}
,

(
1̃

2k+1̃

)

{j}

)∣∣∣∣
]1/|B1|)

.

Define

χ(kj, B1) = 4|B1|p(kj+1) log2 p(kj+1).

If we apply Hölder’s inequality, from (7) we get

(8) IB(f,B1,u) = O

( ∏

j∈B1

{ χ(kj ,B1)∑

qj=1

1

q
1+1/|B1|
j

[
sup

ui, i∈M\{j}

qj∑

lj=1

∣∣∣∣∆̇{j}
(
f,u

⊕
(

2l

2k+1̃

)

{j}
,

(
1̃

2k+1̃

)

{j}

)∣∣∣∣
]1/|B1|

+
2kj−2∑

qj=χ(kj ,B1)+1

1

q
1+1/|B1|
j

[
sup

ui, i∈M\{j}

qj∑

lj=1

∣∣∣∣∆̇{j}
(
f,u

⊕
(

2l

2k+1̃

)

{j}
,

(
1̃

2k+1̃

)

{j}

)∣∣∣∣
]1/|B1|})
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= O

( ∏

j∈B1

{(
ω̇{j}

(
1

2kj
, f

))1/|B1|
logχ(kj, B1)

+
2kj−2∑

qj=χ(kj ,B1)+1

1

q
1+1/|B1|
j

([
sup

ui, i∈M\{j}

qj∑

lj=1

∣∣∣∣∆̇{j}
(
f,u

⊕
(

2l

2k+1̃

)

{j}
,

(
1̃

2k+1̃

)

{j}

)∣∣∣∣
p(kj+1)]1/p(kj+1)

q
1−1/p(kj+1)
j

)1/|B1|})
.

By (8) and the assumption of the theorem we obtain

(9) IB(f,B1,u) = O

( ∏

j∈B1

{(
ω̇{j}

(
1

2kj
, f

))1/|B1|
logχ(kj, B1)

+
2kj−2∑

qj=χ(kj ,B1)+1

(Vj,{p(n)}(f))1/|B1|

q
1+1/(|B1|p(kj+1))
j

})

= O

( ∏

j∈B1

{(
ω̇{j}

(
1

2kj
, f

))1/|B1|
logχ(kj, B1)

+ p(kj + 1)
(

1
χ(kj, B1)

)1/(|B1|p(kj+1))})

= O

(∏

j∈B1

{(
ω̇{j}

(
1

2kj
, f

))1/|B1|
p(kj + 1) log p(kj + 1) +

1
p(kj + 1)

})
.

Let B1 = B = M . Then by (9) and the assumption of the theorem we
get

(10) IM (f,M,u) = O

( N∏

j=1

{(
ω̇{j}

(
1

2kj
, f

))1/N

p(kj + 1) log p(kj + 1)

+
1

p(kj + 1)

})
= o(1) as kj →∞, j ∈M.

Let B1 ⊂ B ⊂M and |B1| < N . Then by (9) and the assumption of the
theorem we get

(11) IB(f,B1,u)

= O

( ∏

j∈B1

{(
ω̇{j}

(
1

2kj
, f

))1/N

p(kj + 1) log p(kj + 1)

×
(
ω̇{j}

(
1

2kj
, f

))1/|B1|−1/N

+
1

p(kj + 1)

})
= o(1) as kj →∞, j ∈M.
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Owing to (1), (2), (10) and (11) the proof of the theorem is complete.

Proof of Theorem 2. Let 1 < p(l1) log p(l1) ≤ 2l1+2. Define the following
closed intervals:

E1,j =
[

j

22l1+2 ,
j + 1
22l1+2

]
, j = 1, . . . , 2[p(l1) log p(l1)] − 1.

Denote by ϕ1,j the function equal to zero outside this interval, 1 at its center
and linear on each half-interval. Let

ϕ1(x) =
2[p(l1) log p(l1)]−1∑

j=1

ϕ1,j(x),

f1(x) = ϕ1(x) sgnDql1
(x), f1(x+ l) = f1(x), l ∈ Z,

where
ql1 = 22l1+1 + 22l1−1 + · · ·+ 23 + 21 + 20.

Suppose that the integers l1, . . . , lk−1 and 1-periodic functions f1, . . .
. . . , fk−1 are already defined. Then we define lk to be an integer with the
following properties:

lk > lk−1,

2[p(lk) log p(lk)]

22lk+2 ≤ 1
22lk−1+2 ,

(12)
p(lk) log p(lk)

lk
≤ 1,

(13)
k−1∑

s=1

(
1

p(ls) log p(ls)

)N N∏

i=1

∣∣∣∣
�

[1/22lk−1+2,1]

fs(xi)

×wqlk−qlk−1
(xi)Dqlk−1

+1(xi) dxi

∣∣∣∣ ≤
1
k
,

where
qlk = 22lk+1 + 22lk−1 + · · ·+ 23 + 21 + 20.

Define

Ek,j =
[

j

22lk+2 ,
j + 1
22lk+2

]
, j = 1, . . . , 2[p(lk) log p(lk)] − 1.

Denote by ϕk,j the function equal to zero outside this interval, 1 at its center
and linear on each half-interval. Let

ϕk(x) =
2[p(lk) log p(lk)]−1∑

j=1

ϕk,j(x),

fk(x) = ϕk(x) sgnDqlk
(x), fk(x+ l) = fk(x), l ∈ Z.
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Define

f0(x) =
∞∑

k=1

gk(x), f0(0̃) = 0,

where

gk(x) =
(

1
p(lk) log p(lk)

)N N∏

i=1

fk(xi).

It is evident that f0 ∈ C(IN ). First we prove that f0 ∈ BVi,{p(n)}, i =

1, . . . , N . Let Π(i) : · · · < t
(i)
−1 < t

(i)
0 < t

(i)
1 < · · · < t

(i)
mi < · · · be any partition

with period 1 and %(Π(i)) ≥ 1/2n. For n ≥ 2l1 + 2, we can choose integers
lk−1 and lk for which 22lk−1+2 ≤ 2n < 22lk+2. Then

p(2lk−1 + 2) ≤ p(n) ≤ p(2lk + 2).

Let s > k. Then it is evident that

(14)
( mi∑

j=1

|gs(x1, . . . , xi−1, tj , xi+1, . . . , xN )

− gs(x1, . . . , xi−1, tj−1, xi+1, . . . , xN )|p(n)
)1/p(n)

≤
(

1
p(lk) log p(lk)

)N
.

Let now s < k. Then from the construction of the function f0 we obtain

(15)
( mi∑

j=1

|gs(x1, . . . , xi−1, t
(i)
j , xi+1, . . . , xN )

− gs(x1, . . . , xi−1, t
(i)
j−1, xi+1, . . . , xN )|p(n)

)1/p(n)

=
(

1
p(ls) log p(ls)

)N( mi∑

j=1

|fs(t(i)j )− fs(t(i)j−1)|p(n)
)1/p(n)∏

q 6=i
|fs(xq)|

≤
(

1
p(ls) log p(ls)

)N
exp2

{
p(ls) log p(ls)
p(lk−1)

}

≤
(

1
p(ls) log p(ls)

)N
p(ls) <∞.

It is evident that

(16)
( mi∑

j=1

|gk(x1, . . . , xi−1, t
(i)
j , xi+1, . . . , xN )

− gk(x1, . . . , xi−1, t
(i)
j−1, xi+1, . . . , xN )|p(n)

)1/p(n)
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=
(

1
p(lk) log p(lk)

)N( mi∑

j=1

|fk(t(i)j )− fk(t(i)j−1)|p(n)
)1/p(n)∏

q 6=i
|fk(xq)|

≤ c
(

1
p(lk) log p(lk)

)N( 2n

22lk
exp2{p(lk) log p(lk)}

)1/p(n)

.

Let 2lk−1 + 2 ≤ n < lk + 1. Then from (12) we get

(17)
2n

22lk
exp2{p(lk) log p(lk)}

=
exp2{n+ p(lk) log p(lk)}

22lk
≤ exp2{lk + 1 + lk}

22lk
= 2.

Let now lk + 1 ≤ n < 2lk + 2. Then we get

(18)
(

2n

22lk
exp2{p(lk) log p(lk)}

)1/p(n)

≤ 4 exp2

{
p(lk) log p(lk)
p(lk + 1)

}
≤ 4p(lk).

From (16)–(18) we have
Vi,{p(n)}(gk) <∞.(19)

Owing to (14), (15) and (19) we obtain f0 ∈ BVi,{p(n)}.
Next we shall prove that

ωi(δ, f) = O

({
1

p([log(1/δ)]) log p([log(1/δ)])

}N)
as δ → 0+,(20)

for i = 1, . . . , N.
Let 1/22lk ≤ h < 1/22lk−1 . Then it is evident that

p(2lk−1) ≤ p([log2(1/h)]) ≤ p(2lk) ≤ cp(lk).
Let s ≥ k. Then we get

(21) |gs(x1, . . . , xi−1, xi + h, xi+1, . . . , xN )− gs(x)| ≤
(

1
p(ls) log p(ls)

)N

≤
(

1
p(lk) log p(lk)

)N
= O

({
1

p([log(1/h)]) log p([log(1/h)])

}N)
.

Let now s < k. Then from the assumption on fs we obtain

(22) |gs(x1, . . . , xi−1, xi + h, xi+1, . . . , xN )− gs(x1, . . . , xN )|

=
(

1
p(ls) log p(ls)

)N
|fs(xi + h)− fs(xi)|

∏

q 6=i
|fs(xq)|

≤ c h22ls

(p(ls) log p(ls))N
= O

({
1

p([log(1/h)]) log p([log(1/h)])

}N)
.

From (21) and (22) we obtain (20).
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Finally, we show that the N -dimensional Walsh–Fourier series of f0 di-
verges at 0̃ = (0, . . . , 0). Indeed,

Sqlk ,...,qlk (f0, 0̃)− f0(0̃) =
�

[0,1]N

f0(u)
N∏

i=1

Dqlk
(ui) du(23)

=
�

[0,2−2lk−2]N

f0(u)
N∏

i=1

Dqlk
(ui) du

+
�

[2−2lk−2,2−2lk−1−2]N

f0(u)
N∏

i=1

Dqlk
(ui) du

+
�

[2−2lk−1−2,1]N

f0(u)
N∏

i=1

Dqlk
(ui) du

= I + II + III.

From the construction of f0 we obtain

|I| = o(1) as k →∞.(24)

Since

D2n(x) =
{

2n if x ∈ [0, 2−n),

0 if x ∈ [2−n, 1),

for x ∈ [2−2lk−1−2, 1) we obtain

Dqlk
(x) = wqlk−qlk−1

(x)Dqlk−1
+1(x).

Then by (13) we get

III = o(1) as k →∞.(25)

From the construction of f0 we have

|II| =
∣∣∣

�

[2−2lk−2,2−2lk−1−2]N

f0(u)
N∏

i=1

Dqlk
(ui) du

∣∣∣(26)

=
(

1
p(lk) log p(lk)

)N N∏

i=1

∣∣∣
2−2lk−1−2�

2−2lk−2

fk(ui)Dqlk
(ui) dui

∣∣∣

=
(

1
p(lk) log p(lk)

)N N∏

i=1

2[p(lk) log p(lk)]−2lk−2�

2−2lk−2

ϕk(ui)|Dqlk
(ui)| dui

≥ c
(

1
p(lk) log p(lk)

)N N∏

i=1

2[p(lk) log p(lk)]−2lk−2�

2−2lk−2

|Dqlk
(ui)| dui.
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From Lemma 3 we obtain

(27)
2[p(lk) log p(lk)]−2lk−2�

2−2lk−2

|Dqlk
(ui)| dui

=
[p(lk) log p(lk)]∑

i=1

2i−2lk−2�

2i−2lk−3

|Dqlk
(ui)| dui ≥ cp(lk) log p(lk).

Combining (26) and (27) we have

|II| ≥ c
(

1
p(lk) log p(lk)

)N
(p(lk) log p(lk))N ≥ c > 0.(28)

Owing to (23), (24), (25) and (28) we obtain

lim
k→∞

|Sqlk,...,qlk (f0, 0̃)− f0(0̃)| = c > 0.

The proof of Theorem 2 is complete.
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