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Uniform convergence of
N-dimensional Walsh—Fourier series

by

U. GOGINAVA (Thilisi)

Abstract. We establish conditions on the partial moduli of continuity which guar-
antee uniform convergence of the N-dimensional Walsh—Fourier series of functions f from
the class Cy (IV) N ﬂfvzl BV; {p(n)}» where p(n) T oo as n — oo.

1. Definitions and notation. Let IV = [0,1)" be the unit cube in
the N-dimensional Euclidean space RY. The elements of R"V are denoted by
x = (x1,...,2znN). For any x = (z1,...,2y) and y = (y1,...,yn) the vector
(1 @ y1,...,zny Dyn) € RY is denoted by x @ y, where @ denotes dyadic
addition.

Let M ={1,...,N}, B={s1,...,8:}, Bt = {8ry,...,5, }, 5k < Skt1,
Spy < Spps k=1,...,r—=1,i=1,...,j—1,BiC BC M, B =M\ B,

! = M\ Bj. For an integer n the vector (n,...,n) € RY is denoted by
n. The cardinality of B is denoted by |B|. For any x = (z1,...,zy) and
B C M, let xp denote the vector in RY whose coordinates with indices from
B coincide with the corresponding coordinates of x, and the coordinates with
indices from B’ are zero. Note that x); = x and xg = 0.

For later convenience we introduce the following notation:

mp Msy Msy
E for E PEEEEY E s
ip=pB islzpsl isp =Dsp

a . (o av
2k 9k’ ok |7
du for duj---dup.

Denote by C(IV) the space of all real-valued functions continuous on IV
that can be extended to functions 1-periodic in each variable on RV, If f €
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C(I™) then the function
wi(67 f) = Suplsﬁpéhc(x—i_ h{z}) - f(X)|, = 1> s 7N7
X |hi|<
is called a partial modulus of continuity of f.
Denote by Cyy(IV) the space of all real-valued functions uniformly W-
continuous on IV that extend to functions 1-periodic in each variable, with
the norm

[fllow = sup [f(x)].

xeIN
Let

A{si}(faxa h{si}) = fx& h{si}) -fx), i=1...r
Successive application of such partial difference operators leads to the
definitions:
AP(f,x,hp) = A AP (£ hp, 0), %,y ),

and
WB((S’f) = sup ||AB(fa'ahB)||CW'
0<h;<6;,i€B
DEFINITION 1. Suppose that the function f is bounded on IV and ex-
tends to a function 1-periodic in each variable. Let 1 < p < co. We say that f
is of bounded partial p-variation (written f € PBV)) ifforanyi=1,..., N,

n—1
2k
Vi(f) = sup SUPSUPZ (@i, 2Pz, )
@j jeM\{i} n>1 z() 1o
2k+1
_f(xh' . '7xi—17$§ * )7xi+17- "7xN)‘p < 00,
where 7() is an arbitrary partition 0 < mgo) < xgl) < mEQ) < < x?n_g) <
22 <

i
Let f be a function defined on RY which is 1-periodic relative to each
variable. IT(™ is said to be a partition with period 1 if

a9 <t <t <t <o <t® <t <
satisfies tl(;)rml = tl(j) + 1 for k € Z, where m; is a positive integer.

DEFINITION 2. Let 1 < p(n) T p as n — oo, where 1 < p < co. We say
that a function f on R belongs to the class BV (pmyy it

Vip}(f) = sup  sup SuP{( |f(z1, .. 7$i—17t§i)»$i+1, o TN)
x5, seM\{i} n>1 709 =1
i 2 /P ; 1
Sl wen ) o) P )) Lo(I1Y) = Q_n} < o0,
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where
o(1) = inf [t — ).
For N =1 see [7].
When p(n) = p for all n, it is easy to see that ﬂf\il BV (p(n)y coincides
with PBV,,
Let rg be a function on R defined by
1 ifzel0,1/2),
ro(@) = { 1 ifze(1/2,1),
The Rademacher system is defined by
ro(z) =7r9(2"2), n>1, ze€l0,1).

Let wp, wy, ... represent the Walsh functions, i.e. wo(x) = 1 and if k =
2™ 4 ... 4 2™s is a positive integer with n; > --- > ng then

ro(x 4+ 1) = ro(x).

wi(x) = 1y (@) -+ 7, ().
The idea of using products of Rademacher functions to define the Walsh

system comes from Paley [9].
The Walsh—Dirichlet kernel is defined by

n—1
Dn(z) = wi(z).
k=0

The rectangular partial sums of the N-dimensional Walsh—Fourier series
are defined as follows:

m—1
Sm(fa X) = Z av H Wy, (xz)v
V0 ieM

where

ay = aV17---7VN(f) = S f(x) H Wy, (x;) dx.

w €M

2. Formulation of the problem. Getzadze [1, 2] considered the ques-
tion of uniform convergence for N-dimensional Walsh—Fourier series in terms
of partial moduli of continuity. He proved the following

THEOREM A. (a) Let f € C(IV). If there exists io € M such that
1 N
wio(é,f):0<<7log<1/6)> ) as & — 0+

1 \Y . oy
wz(cs,f):O((W) ) CLS(S—>0+,1§ZSN,Z7£Z0,

and
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then the N-dimensional Walsh—Fourier series of f converges uniformly in
the sense of Pringsheim (1).
(b) There exists a function fo € C(IN)such that

1 \N .
wi(é,fo):O<(m> ) asd — 0+, i=1,...,N,

and the N-dimensional Walsh—Fourier cubic partial sums of f diverge in
the metric of C.

In 1881 Jordan [6] introduced a class of functions of bounded variation
and, applying it to the theory of trigonometric Fourier series, he proved
that if a continuous function has bounded variation, then its trigonometric
Fourier series converges uniformly. In 1906 G. Hardy [5] generalized the Jor-
dan criterion to double Fourier series and introduced the notion of bounded
variation for functions of two variables. He proved that if a continuous func-
tion of two variables has bounded variation (in the sense of Hardy), then its
trigonometric Fourier series converges uniformly in the sense of Pringsheim.

Méricz [8] proved that if f € Cy (I%) and the function f is of bounded
variation in Hardy’s sense [5], then its two-dimensional Walsh—Fourier series
is uniformly convergent to f.

For N-dimensional Walsh-Fourier series the author [4] proved that if f €
Cw (IV) and the function f is of bounded partial p-variation (f € PBV,) for
some p € [1,00), then the N-dimensional Walsh-Fourier series is uniformly
convergent to f. The analogous result for the N-dimensional trigonometric
Fourier series was verifed by the author [3].

On the basis of the above facts we can formulate the following problem:

Let p(n) T 0o asn — oo and f € Cy (IV) N ﬂf\il BV tpn)y- What con-
ditions on the partial moduli of continuity ensure the uniform convergence
in the Pringsheim sense of the N-dimensional Walsh—Fourier series of the
function f?

A solution of this problem is given in Theorems 1 and 2.

3. Formulation of the main results. The main result of this paper
is

THEOREM 1. Let p(n)foo as n — oo and f€Cw (IN)N ﬂf\il BV (o)}
If there exists ig € M such that

N

win(1/25 ) =o L as k — oo
{io} ’ p(k+1)logp(k+1)

(*) An N-dimensional series is said to converge in the sense of Pringsheim if its
rectangular partial sums converge.




Walsh—Fourier series 5

and

Wy (1/28, f) = O(<p(k +1) ljgp(k + 1)>N>

as k — o0, 1 <i <N, i#ig,

then the N-dimensional Walsh—Fourier series of f converges uniformly in
Pringsheim’s sense.

COROLLARY 1. Let p(n)Too as n — oo and f€C(IN)N ﬂf\il BV, tp(n)}-
If there exists ig € M such that

a2 0= () ) ko

and

wi(1/2%, f) :O(<m>1\[) as k — 00, 1 <i <N, i # i,

then the N-dimensional Walsh—Fourier series of f converges uniformly in
Pringsheim’s sense.

COROLLARY 2. Let p(n)Too asn — oo and p(2m) < c¢p(m) for allm>1,
where ¢ > 0 is a constant, and let f € C(IN)ﬂﬂi]il BV tp(n)y- If there exists
19 € M such that

1

“iol,f) = O<<p<[log<1/5>]> logp<[1og<1/6>1>>N> w0 0%

and

wi(d, f) = 0<(p<[10g(1 /6)]) lig p([log(l/é)D)N)

as 6 — 04,1 <i < N, i # i,

then the N-dimensional Walsh—Fourier series of f converges uniformly in
Pringsheim’s sense.

THEOREM 2. Let p(n) T oo and p(n)logp(n) = o(n) as n — oo, and
p(2m) < cp(m) for all m > 1, where ¢ > 0 is a constant. Then for any
N > 2 there exists a function fo € C(IV)N ﬂf\il BV (p(n)} such that

1

N
wild: fo) = O<<p<[log<1/6>1>1ogp<uog<1/6>]>> )
as § — 0+,1=1,..., N,

and the N-dimensional Walsh—Fourier cubic partial sums of fo diverge at
some point.
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4. Auxiliary propositions. We shall need the following.
LEMMA 1. Let f € Cw (IN). Assume that for any nonempty B C M we

have
(2k-1)p ~
. 2q 1 1
Vi (fru) = ) AB(f,uee( ) < > ) [[-=-0
g okt1 ) 0\ gk+1 | P

(as k; — o0) uniformly with respect to u;,i € M. Then the N-dimensional
Walsh—Fourier series of f converges uniformly in Pringsheim’s sense.

For N = 2 the proof can be found in [8]. Using the method of [8], we can
easily extend this criterion to N-dimensional Walsh-Fourier series.

LEMMA 2. Let a;,,...,a;y and b;, . i\ be real numbers. Then
mps mp— iB
S (Meo)inn= X (M en) & T, —aen
iy=1y JEM BCM jeB’ ip=1p JE€EB
mB/

Y Y

kp= lB kB/—lB/

For N =1 this is the well known Abel transformation, and for N = 2
it is called the Hardy transformation. The validity of the above equality for
any N > 3 can be easily verified by induction.

LEMMA 3. We have

22’—2n—2

\ IDg,®)]dt=c>0, i=1,..2n+2,

9i—2n—3
where
gn =22l 930t 4 90 =12, ...
The proof can be found in [10].
5. Proofs of the main results

Proof of Theorem 1. By Lemma 1, it suffices to show that for all non-

empty B C M,
(2k—i)B ~
. 2 1 1
AB f’ ud q~ 3 T ——0
ZN okt1 ) 7\ gkt /) qj

qp=1p JjEB

uniformly with respect to w;, it € M, as k; — o0, © € B.
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From Lemma 2, we write

ar(fme (55) <2k+l>>

(2k71)3

m >

H_

ap=1p ]EB
(2 —231
- Y (Des) £ OG-75)
B1CB, B1#£0 iEB\Bl aB *lB JjEB]

ag, (2F-D)pp

<Ly (e (), (79),)

s _131 l13\131—113\31
1 (2¢-1)p
i B
+ H 2ki _ 1 Z A4 (f,u@ <2k+1>B <2k+1> )

i€B Ip=1p

- Z IB(f7B17u) +IB(f7®7u)
B1CB, B1#0
Since for all nonempty B C M,

. 21 1 1

B — _ < . .
o [ (20, () )
we have

(3) I5(f,0,u) = o(wB (%f))

It is evident that

k
(2 2 Bl aB,

(4)  Ip(f,Bi,u) = ( Z H sup Z 'ABl<f,u

q B!
qp,=1p, €81 7 ui A Yp, =1p,

69(231)51’ (2131)31) ’)

Since for all nonempty B; C M, and all j € B,

as,

. 21 1
0 m, 3 oo (), (),)
wi, i€B] 132 2K+ ) p o\ 2k+1 ) B

=1p,

qj T
. 2] 1
o I, £ (e (20, o), )
pis ui,iGM\{j}ljZ1 2H ) gy N2 gy

i€Bi\{j}
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we have

as,;

- 21 1
o m 2 (e (55), 0 (59),,)
() “i’ie%il Z ‘ f 2k+1 B 2k+1 B

B1=1py

as, ) o1
(o, 3 (e (2

. B p
ui,1€B] 131:131

N O( ITa "™ sw

jeB; —Ui7i6M\{j}lj:1

o(z),, (34,
2t )y N2k

)

By (4) and (6) we obtain

@ 1wr.Bw =0( I] ) w&[ wp 3

AU < fu
JE€B1 QJ—l ug, i€ M\{j} =1

21 1 L/1B1|
o(gm) o (5m) )
2 Gy \2 {5}

X(kj7B1) _ 4|Bl\p(k]~+1)log2 p(ijrl).

Define

If we apply Holder’s inequality, from (7) we get

x(k;,B1) 1 qj
(8) IB(f,Bl,u):O(H{ Z m[ sup Z

Al ( fu
JjE€EB1 q;=1 q] u;, €M\ {j} ;=1

(), (@),
21y N2k

g 1 G
+ 1+1/B1[ sup ) A{J}<f7u

gj=x(k;,B1)+1 9j ui, i€M\{5} | 2
]I/Bﬂ})

(z), (7))
2t )y \29 ) g

]1/31|
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= 0< 11 { (w{j} <2% f))l/Bll log x(k;, B1)

jE€EDB1

okji _9 qj

Y (], e Y

Al < fu
q;=x(k;,B1)+1 4 i €M} =

(Gt o), T ) )
2k+1 G 2k+1 T

J
By (8) and the assumption of the theorem we obtain

(9) Is(f, Br,u) = O( 11 {(w{j}(%aﬁ)l/mlogx(kijl)

JjEB1

< Wit (DY
LY {p(n)} })

1+1/(|1B1lp(kj+1))
a;=x(k;,B1)+1 9j

= O( 1T { (w{j} (2% J”>>1/|B1 log x(k;, B1)

Jj€B1

L\ Y(Bup(ki 1)
(k41 <7> })
Pk = D\ 5 B

oI (31) " e ).

j€B1

Let By = B = M. Then by (9) and the assumption of the theorem we
get

(10) JM(f, M, 11) ( 'Nl { < . o0 <2£j >f>>1/Np(k,j 1) logp(kj 1)
]_—

Let By C B C M and |By| < N. Then by (9) and the assumption of the
theorem we get

(11) IB(f,Bl,u)

= 0( H {(w{j} (2% f))l/Np(kj +1)logp(kj + 1)

Jj€B1

‘ 1 1/|B1|-1/N 1 _
(o0 (5-4)) e RLUNEL RS
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Owing to (1), (2), (10) and (11) the proof of the theorem is complete.
Proof of Theorem 2. Let 1 < p(l1)logp(l1) < 2l1+2. Define the following

closed intervals:

IR ES . 1) log p(l
Eyj = [2211+2’22lﬁ}’ j=1,..., 2P lgp()] _ 1

Denote by 1 ; the function equal to zero outside this interval, 1 at its center
and linear on each half-interval. Let
olp(l1) log p(l1)] _1
p1(x) = Y. o),
j=1
fi(z) =p1(x)sgn Dy (), filz+1) = fi(z), [€Z,
where
@, = 92+l L 92h-1 4 . 93 L ol L 90

Suppose that the integers Ii,...,lr_1 and l-periodic functions fi,...
..., fx—1 are already defined. Then we define [ to be an integer with the
following properties:

lg > lj—1,
9p(lk) log p(lx)] 1
920 +2 < 9201 +2”
(12) p(lk) logp(lk) <1,
Iy
k-1 1 N N
(13) Z( ) IV s
s—1 p(ls) logp(ls) i=1 [1/221k—1+271]
1
X Wy, —qr, ($i)Dlﬂk_l+l(xi) dz;| < 7
where
q, = 92U+l | 92h=1 4 . 4 93 4 ol | 90
Define

J Jg+1

Eyj= [W’W]’ j=1,..., 2P oeple)] _ 1

Denote by ¢y, ; the function equal to zero outside this interval, 1 at its center
and linear on each half-interval. Let
olp(lg) log p(lg)] 1
pr(z) = > ok, (),
j=1
fe(@) = op(x)sgn Dy, (z),  fulz +1) = fi(z), [€Z
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Define ~
=S gx),  fol0) =
k=1

where

gr(x) = <m) ka ;).

=1
It is evident that fy € C(IV). First we prove that f € BV (ptm)}, © =
LN.Let 1O ;... < t(z) < t(z) < tgi) < < t,(%)i < --- be any partition
with period 1 and Q(H(Z ) > 1/2". For n > 2l; + 2, we can choose integers
lp—1 and I, for which 22172 < 27 < 22%+2 Then

p(2lk—1 +2) < p(n) < p(2lk +2).
Let s > k. Then it is evident that

m;
(14) (Z’95(11717-~-,$i—17tj7117i+17~-.,$N)

1/p(n)
—gs(x1, .., i1, b1, T, - - ,-TUN)|p(n)>

: (m)N'

Let now s < k. Then from the construction of the function fy we obtain

m;
(15) (Z 9s(z1, ..+, $i—1,t§l)7$i+1, TN
=

,. I\ /el
—95(961,---7$¢—1,t§-,)1,9€z'+17---vHJN)’p( )>

N p
:<W> (Z’fs“ ot )P >/()H\fswq

q7i
: (W)NP{%}

1 N
= <m> p(ls) < oo.

It is evident that

m;
(16) <Z’gk;(ﬂf]_,...,$i_1,t§l),$i+l,...7$N)
j=1

; 1\ 1/p(n)
—gk(ﬂﬁh---7$¢—1,t§',)1,9€z'+17---7$N)’p( )>
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N my; 4 ' .
~ (i) (C 1) - ac2ore) " T )

logp(ly) ) N~ v

1 Nom 1/p(n)
< (st ) (g ewalptiosnt})

Let 211 +2 <n <l + 1. Then from (12) we get

n

(A7) = expo{p(l) logplie)}

2
_expo{n + p(lx) logp(lx) } < expol{ly + 1+ 1} 0
= 921y, = 921y, =
Let now I + 1 < n < 2l 4+ 2. Then we get
on 1/eln) p(k) log p(lx)
(18) <22—lk expo{p(lx) IOgP(lk)}> < 46XP2{W} < 4p(lk).

From (16)—(18) we have

(19) Vi tp(n)y (gr) < 0.
Owing to (14), (15) and (19) we obtain fo € BV ()}
Next we shall prove that

1 N
7 57 =0 o — )
600 = 0\ sgmpeemEaay) ) 0O
fori=1,...,N.
Let 1/2%k < h < 1/2%k-1. Then it is evident that
p(2lk—1) < p([logy(1/h)]) < p(2l) < cp(ly).
Let s > k. Then we get

1 N
21 s g ooy bg—1, 479 h; i1y — Us S TN Y

1

= (W )N - 0({p<[10g<1/h>]> logp([log(1/m)]) }N>

Let now s < k. Then from the assumption on f; we obtain

(22) gs(@r, oo @imn, @i+ By Tigs o 2N) = gs(@15- - 2|
1 N
= (srmogsmy) ites - LG

h22s 1 N
= Bl logpla)™ O<{p([10g(1/h)]) 10gp([10g(1/h)])} >
From (21) and (22) we obtain (20).
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Finally, we show that the N-dimensional Walsh-Fourier series of fo di-
verges at 0 = (0,...,0). Indeed,

N
(23) Sqlkv'”vqlk (va 6) - fO(a) = S fO(u) H Dqlk (UZ) du
[0,1]N i=1
N

= S fO(u)Hquk (us) du

[072—2lk—2]N =1

+ S fo(u) H Dy, (u;) du

[2—2lk—272*21k_1*2}N =1

+ | fo(w) ]| Py, () du

[272k—172 N i=1
=I1+I11+1I1.
From the construction of fy we obtain
(24) Il =0(1) ask — oo.

Since .
Dy () = {2” ?f x € [O,_Z_”),
0 ifze27™]1),
for x € [272%-172 1) we obtain
qu,c (z) = Wy, —qu,_, (@quk_ﬁrl(x)-
Then by (13) we get
(25) IIT =0(1) ask — oc.

From the construction of fy we have

N
(26) |11 =| | fo(w) [T Day, () du

[2—21,6—2’272%_172]1\7 =1

o—2l_1—2

1 N N
N (M) H‘ S fk(ui)Dqlk (u;) duy;

i=1 9-2lp—2

1 N N 2[p(lk)logp(lk)]72lk72
(L ()| Dy, ()| du
(P(lk)k)gp(lk)> 131 22§k2 e
[p(lg) log p(ly)]—21) —2

1 N N 2
> o imen) 11 O

9—20j—2
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From Lemma 3 we obtain

(27)

olp(ly) log p(1)] 21} —2

| | D, (ui)] du;

9—2lp—2
[p(lk) log p(1x)] 20— 21 —2
- Z S |quk (u;)] du; > ep(lx) log p(ly).

i=1 9i—21)—3

Combining (26) and (27) we have

(28)

o N
11| > C(m) (p(lk) log p(lk))™ = ¢ > 0.

Owing to (23), (24), (25) and (28) we obtain

.....

The proof of Theorem 2 is complete.

[10]
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