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Continuous version of
the Choquet integral representation theorem

by

Piotr Puchała (Częstochowa)

Abstract. Let E be a locally convex topological Hausdorff space, K a nonempty
compact convex subset of E, µ a regular Borel probability measure on E and γ > 0.
We say that the measure µ γ-represents a point x ∈ K if sup‖f‖≤1 |f(x) −

�
K
f dµ| < γ

for any f ∈ E∗. In this paper a continuous version of the Choquet theorem is proved,
namely, if P is a continuous multivalued mapping from a metric space T into the space
of nonempty, bounded convex subsets of a Banach space X, then there exists a weak∗

continuous family (µt) of regular Borel probability measures on X γ-representing points
in P (t). Two cases are considered: in the first case the values of P are compact, while in
the second they are closed. For this purpose it is shown (using geometrical tools) that the
mapping t 7→ extP (t) is lower semicontinuous. Continuous versions of the Krein–Milman
theorem are obtained as corollaries.

1. Introduction. The classical Minkowski–Carathéodory representa-
tion theorem states that each point of a compact convex set K in Rn can be
written as a convex combination of at most n+ 1 extreme points of K. This
theorem was generalized by G. Choquet ([5]) who proved that each point k
of a compact, convex and metrizable subset K of a locally convex Hausdorff
topological space X is a barycenter of a regular Borel probability measure
µk on X, supported by the extreme points of K, i.e.

f(k) = �
K

f dµk

for any f ∈ X∗, where µk(extK) = 1 and extK stands for the set of extreme
points of K.

E. Bishop and K. de Leeuw ([3]) removed the metrizability assumption.
G. A. Edgar ([7]) proved a noncompact version of the Choquet theorem.
His result stated that the assertion of Choquet–Bishop–de Leeuw remained
true for K being a nonempty bounded, closed, convex and separable sub-
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set of a Banach space X having the Radon–Nikodym property (RNP for
short). In [8] he improved this result by removing the separability condi-
tion. P. Mankiewicz [11] modified it by introducing a “separable extremal
ordering”, more natural and easier to use than the partial order defined by
Edgar (see [4, p. 174]).

The purpose of this paper is to show that an analogue of the Choquet
theorem holds for “moving” sets, which are values of a multivalued mapping
from a metric space T into suitable subsets of a Banach space X. We shall
consider two cases.

In the first case the multivalued mapping P : T ; X is continuous with
compact convex values in a separable Banach space X. In the second case
X is a separable, reflexive Banach space and P : T ; X is continuous
with bounded closed convex values (recall that a reflexive Banach space
has RNP). By the celebrated Michael theorem there exists a continuous se-
lection p: T → X of P , that is, p(t) ∈ P (t) for all t ∈ T . It will be shown
that each p(t) is then an “almost barycenter” of a regular Borel probabil-
ity measure µt on X such that µt(extP (t)) = 1. In other words, for any
continuous selection p of the multifunction P there exists a continuous (in
the weak∗ topology) family (µt)t∈T of measures “almost representing” the
points p(t). In both cases it is crucial that the multifunction t 7→ extP (t) is
lower semicontinuous. As obvious corollaries we obtain continuous versions
of the Krein–Milman theorem.

All the necessary information about multifunctions can be found in [9];
for the Choquet theorem see [1], [13] and [4] (noncompact case); Banach
spaces with the Radon–Nikodym property are subject of the classics [4], [6];
properties of measures on metric spaces are investigated in [2] (where one
can also find a chapter devoted to multivalued mappings).

2. Preliminaries. In this section we state several definitions and facts
needed.

Definition 2.1. Let X and Y be topological spaces and P : X ; Y
a set-valued map with nonempty values. We say that

(a) P is lower semicontinuous (lsc) if the set

P−(U) := {x ∈ X : P (x) ∩ U 6= ∅}
is open whenever U ⊂ Y is open;

(b) P is upper semicontinuous (usc) if the set

P−(V ) := {x ∈ X : P (x) ⊂ U}
is closed whenever V ⊂ Y is closed;

(c) P is continuous if it is both lower and upper semicontinuous.
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Theorem 2.1 (Michael). Let X be a paracompact space, Y a Banach
space, and P : X ; Y a lower semicontinuous multifunction with convex
values. Then:

(a) for any ε > 0 there exists a continuous function pε: X → Y such
that d(pε(x), P (x)) < ε for all x ∈ X; this function is called an
ε-selection of P ;

(b) if in addition the values of P are closed , then there exists a continu-
ous function p: X → Y such that p(x) ∈ P (x); this function is called
a continuous selection of P .

Now let X be a locally convex topological Hausdorff space, and let K be
a compact convex subset of X. If µ is a regular Borel probability measure
on X, we say that it is supported by the set A ⊂ X (not necessarily closed)
if µ(A) = 1.

Definition 2.2. Let X, K and µ be as above, and let γ > 0. We say
that:

(a) µ represents a point x ∈ K if

f(x) = �
K

f dµ for all f ∈ X∗.

This point, denoted by r(µ), is called the barycenter of µ;
(b) µ γ-represents x ∈ K if

sup
‖f‖≤1

∣∣∣f(x)− �
K

f dµ
∣∣∣ < γ for all f ∈ X∗.

Theorem 2.2 (Choquet). Let X, K and µ be as above and assume ad-
ditionally that K is metrizable. Then for any x ∈ K there exists a regular
Borel probability measure µx representing x and such that µx(extK) = 1.

Recall that if the set extK is closed then the Choquet theorem is equiv-
alent to the Krein–Milman theorem.

Theorem 2.3 (Edgar–Mankiewicz noncompact version of the Choquet
theorem). Let K be a (nonempty) closed bounded convex subset of a Banach
space X and suppose that K has RNP. Then every point of K is a barycenter
of a regular Borel probability measure on K supported by the set extK.

3. Compact case. In this section we deal with multifunctions P from
T into compact convex subsets of X.

We first establish the lower semicontinuity of the map whose values are
the sets of extreme points of the compact convex sets which are values of P .
Recall that an exposed point of a compact convex subset of a Banach space
is a strongly exposed point of this subset.
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Proposition 3.1. Let T be a metric space, X a Banach space, and
P : T ; X a continuous multifunction with compact convex values. Then
the multifunction t 7→ extP (t) is lower semicontinuous.

Proof. Let (tn) be a sequence in T , convergent to a point t0 ∈ T . It is
enough to show that for any a0 ∈ extP (t0) there exists a sequence (an),
n ∈ N, such that an ∈ extP (tn) and an → a0 as n→∞.

Let e0 be any exposed (in fact strongly exposed) point of P (t0). Then
there exists a functional f0 ∈ X∗, with unit norm, strongly exposing e0.
The lower semicontinuity of P yields a sequence (xn) ⊂ X, convergent to
e0, with xn ∈ P (tn). Fix a number γ > 0 and define the slice

Rγ(tn) := {x ∈ P (tn) : f0(x) > c(f0, P (tn))− γ},
where c(·, A) stands for the support function of the set A. Then there exists
n0 ∈ N such that Rγ(tn) ∩ extP (tn) 6= ∅ for every n ≥ n0. Indeed, suppose
not. Then for each n0 ∈ N there exists n ≥ n0 for which extP (tn) ⊂
X \ Rγ(tn). Hence there exists a subsequence nk → ∞ such that for each
e ∈ extP (tnk),

f0(e) < c(f0, P (tnk))− γ.
By the Krein–Milman theorem the set P (tnk) coincides with the closed con-
vex hull of its extreme points, so in particular we have

f0(xnk) ≤ c(f0, P (tnk))− γ, k = 1, 2, . . . .

Passing to the limit we obtain the inequality

f0(e0) ≤ c(f0, P (t0))− γ,
contradicting the fact that e0 is strongly exposed.

Now let γ = 1/m, m = 1, 2, . . ., and consider the slices R1/m(·). Then
for each m there exists nm such that for n ≥ nm we have

R1/m(tn) ∩ extP (tn) 6= ∅.
We can assume that nm ≤ n < nm+1. For such n choose en ∈ R1/m(tn) ∩
extP (tn), so that

f0(en) ≥ c(f0, P (tn))− 1/m for nm ≤ n < nm+1.

By the upper semicontinuity of P there exists a subsequence of (en)
(still denoted (en)) convergent to a point e0 ∈ P (t0). As the values of P are
convex, we can use the relationship between the Hausdorff distance h(A,B)
of convex sets A, B and their support functions:

sup
‖f‖≤1

{|c(f, P (tn))− c(f, P (t0))|} = h(P (tn), P (t0)).

The compactness of P (t), t ∈ T , yields the continuity of P in the Hausdorff
metric, which gives us h(P (tn), P (t0))→ 0 as n→∞, which in turn implies
that c(f, P (tn)) → c(f, P (t0)) for any f ∈ X∗. But for nm ≤ n ≤ nm+1 we
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have f0(en) ≥ c(f0, P (tn))−1/m. Taking into account that f0(en) converges
to f0(e) we finally get e = e0.

Now by the Lindenstrauss–Troyanski result ([10], [15], see also [4]) the
set P (t0) equals the closed convex hull of its (strongly) exposed points, and
by Milman’s partial converse of the Krein–Milman theorem those points are
dense in extP (t0).

We are now ready to construct a desired sequence of extreme points. So
let a0 be any extreme point of P (t0). Fix n1 ∈ N and en1

0 ∈ (st)expP (t0).
There exists a sequence (b1

n) of extreme points of P (t0) convergent to en1
0 .

Then there exists n2 > n1 such that ‖en1
0 − b1n‖ < 1/n1 for all n ≥ n2.

Now take en2
0 ∈ (st)expP (t0) with ‖en2

0 − a0‖ < 1/n2 and a sequence (b2
n)

of extreme points of P (tn) convergent to en2
0 . Then there exists n3 > n2

such that ‖en2
0 − b2n‖ < 1/n1 for all n ≥ n3. Repeating this procedure we

obtain sequences (bin), bin ∈ extP (tn). Setting an := bin we obtain the desired
sequence.

Remark. Tolstonogov and Finogenko proved (under the same assump-
tions) in [14] the lower semicontinuity of the map t 7→ cl extP (t), where “cl”
stands for “closure”. This result is equivalent to the above, but the method
of proof presented here is of geometrical nature, in contrast to the topo-
logical methods they used. Incidentally, it seems that considering the map
t 7→ extP (t) instead of t 7→ cl extP (t) is “in the spirit” of the Choquet
theorem.

Now let T be a metric space, and X a separable Banach space. We
denote byM(X) the regular Borel probability measures on X. We consider
a continuous multifunction P : T ; X with (nonempty) compact convex
values. The Michael selection theorem ensures the existence of a continuous
selection p of P . Fix such a p, and γ > 0, and define the set-valued map
L: T ;M(X) by setting

L(t) :=
{
µ ∈ M(X) : µ(extP (t)) = 1,

sup
‖f‖≤1

∣∣∣f(p(t))− �
P (t)

f dµ
∣∣∣ < γ for all f ∈ X∗

}
.

The Choquet theorem guarantees that L(t) is nonempty for all t ∈ T .

Proposition 3.2. The multifunction L is lower semicontinuous.

Proof. It is enough to show that for any sequence (tn) ⊂ T convergent
to t0 ∈ T and for any nonempty, weak∗ closed subset F of M(X), we have
the implication L(tn) ⊂ F ⇒ L(t0) ⊂ F .

Take any element µ0 of L(t0). The set of discrete measures on cl extP (t0)
is dense in the set of measures supported by that set, so there exists a se-
quence (mk) of discrete measures (i.e. convex combinations of Dirac mea-
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sures), weak∗ convergent to µ0. Hence there exists k0 such that for all k ≥ k0
the measure mk γ-represents the point p(t0). Each measure mk, k ≥ k0, is
a convex conbination

mk =
m∑

i=1

λiδai ,

where ai ∈ extP (t0). As extP (·) is lower semicontinuous, for any i =
1, . . . ,m there exists a sequence (bin), bin ∈ extP (tn), convergent to ai. This
means that for fixed k the measures µkn =

∑m
i=1 λiδbin converge to mk as

n→∞. For f ∈ X∗ we also have∣∣∣f(p(tn))− �
P (tn)

f dµkn

∣∣∣

≤ |f(p(tn))− f(p(t0))|+
∣∣∣f(p(t0))− �

P (t0)

f dµ0

∣∣∣

+
∣∣∣ �
P (t0)

f dµ0 − �
P (t0)

f dmk

∣∣∣+
∣∣∣ �
P (t0)

f dmk − �
P (tn)

f dµkn

∣∣∣.

The first and the last terms on the right converge to zero. Since there exists
M > 0 such that sup{‖y‖ : y ∈ P (t0)} ≤ M , for x ∈ P (t0) we have
|f(x)| ≤M |f(M−1x)| ≤M . Taking into account that the sets suppmk and
suppµ0 are subsets of P (t0) we obtain

sup
‖f‖≤1

∣∣∣ �
P (t0)

f dmk − �
P (t0)

f dµ0

∣∣∣ = sup
‖f‖≤1

∣∣∣ �
P (t0)

fd(mk − µ0)
∣∣∣(1)

≤M |(mk − µ0)(1)| −→
k→∞

0.

For fixed k ≥ k0 and for all n ≥ n0 we then have∣∣∣f(p(tn))− �
P (tn)

fdµkn

∣∣∣ < γ.

By construction, the measure µkn is supported by the set of extreme points of
P (tn), so for n ≥ n0 it belongs to L(tn) and thus to F . Passing to the limit
gives µ0 ∈ F , proving the lower semicontinuity of the multifunction L.

Corollary 3.1. The multifunction

clL(t) =
{
µ ∈M(X) : µ(cl extP (t)) = 1,

sup
‖f‖≤1

∣∣∣f(p(t))− �
P (t)

f dµ
∣∣∣ < γ for all f ∈ X∗

}

is lower semicontinuous.

Corollary 3.2. There exists a continuous selection l: T → M(X) of
the multifunction clL.
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The set of extreme points of a compact convex set need not be closed,
so in general the values of the multifunction L are not closed. In particu-
lar we cannot expect L to have continuous selections. However, there exist
approximate continuous selections, as stated in the next result.

We denote by H the Hilbert cube, and M(H) stands for the regular
Borel probability measures on H; this is a compact separable metric space.

Theorem 3.1 (continuous version of the Choquet theorem). Let T be a
metric space, X a separable Banach space, and P : T ; X a continuous
multifunction with compact convex values. Let p be a continuous selection
of P , and γ > 0. Define L: T ;M(X) by

L(t) :=
{
µ ∈M(X) : µ(extP (t)) = 1,

sup
‖f‖≤1

∣∣∣f(p(t))− �
P (t)

f dµ
∣∣∣ < γ for all f ∈ X∗

}
.

Then for any δ > 0, L admits a continuous δ-selection.

Proof. We adopt Michael’s classical method. There exists a continuous
mapping φ̂: M(X)→M(H) (see [2, pp. 483–485]). The Polish spaceM(X)
is metrizable by

d(µ1, µ2) = %H(φ̂(µ1), φ̂(µ2)) =
∞∑

j=1

1
2j
|(φ̂(µ1)− φ̂(µ2))(ζj)|,

where ζj , j = 1, 2, . . ., are from a dense set in C(H), the space of continu-
ous functions on the Hilbert cube. We start by fixing: a dense set (ζn)∞n=1
in C(H), numbers δ > 0 and N ∈ N with

∑∞
j=N+1 1/2j < δ/4, a point

t0 ∈ T and a measure µ0 ∈ L(t0). The mapping µ 7→ |(φ̂(µ)− φ̂(µ0))(ζj)| is
continuous for (any) µ0 and any fixed j ∈ N, so the set

V (µ0, ζ1, . . . , ζN , δ) :=
{
µ :

N∑

j=1

1
2j
|(φ̂(µ)− φ̂(µ0))(ζj)| <

δ

2

}

is open. The lower semicontinuity of L implies that

U(t0, µ0) := L−1(V ) = {t ∈ T : L(t) ∩ V 6= ∅}
is an open neighborhood of t0. Using the lower semicontinuity of L again
we obtain an open cover {U(tα, µα)}α∈I of T . Denote by eα(·) a locally
finite partition of unity subordinate to this covering. Our candidate for a
continuous δ-selection lδ of L is

lδ(t) :=
∑

α∈I
eα(t)µα.

Fix t ∈ T and set {α : eα(t) > 0} := {α1, . . . , αk}; then t ∈ supp eαi ⊂
U(tαi , µαi), so the intersection of L(t) with the ball of radius δ, centred at
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µαi , is nonempty. Let µi belong to this intersection, so d(µi, µαi) < δ. The
point lδ(t) :=

∑k
i=1 eαi(t)µi lies in the convex set L(t)∩ V . The assertion of

the theorem follows from the following sequence of inequalities:

d(lδ(t), L(t)) ≤ d(lδ(t), lδ(t)) = %H(φ̂(lδ(t)), φ̂(lδ(t)))

≤
∞∑

j=1

1
2j

∣∣∣
(∑

α∈I
eα(t)φ̂(µα)−

k∑

i=1

eαi(t)φ̂(µi)
)(
ζj

)∣∣∣

≤
∞∑

j=1

1
2j

k∑

i=1

eαi(t)|(φ̂(µαi)− φ̂(µi))(ζj)|

≤
N∑

j=1

1
2j

k∑

i=1

|(φ̂(µαi)− φ̂(µi))(ζj)|+
∞∑

j=N+1

1
2j

<

k∑

i=1

eαi(t)
( N∑

j=1

|(φ̂(µαi)− φ̂(µi))(ζj)|
)

+
δ

4

< δ/2 + δ/4 < δ.

Corollary 3.3 (continuous version of the Krein–Milman theorem). Let
X, P and p be as above. Then for any γ > 0 there exists a continuous family
(µt)t∈T of measures on X such that µt is supported by the closure of the set
of extreme points of P (t) and γ-represents the point p(t).

4. Noncompact case. In this section we consider the case when the
values of the multifunction are noncompact. We then have to impose more
assumptions on both the Banach space X and the multifunction P .

Recall that x ∈ K is a denting point if for each ε > 0 x 6∈ clcv(K\Uε(x)),
where Uε(x) denotes the ε-neighbourhood of x.

Theorem 4.1. Let T be a metric space, X a reflexive Banach space,
and P : T ; X a multifunction satisfying the following conditions:

(a) P is continuous;
(b) for each t ∈ T the set P (t) is bounded , closed and convex ;
(c) each extreme point of P (t) is its denting point.

Then the multifunction t 7→ extP (t) is lower semicontinuous.

Proof. Exactly as in the compact case we construct the slice Rγ(·) and
show that it is nonempty, replacing “Krein–Milman theorem” with “Krein–
Milman property”, obtaining in the same way a sequence (en) of extreme
points belonging for nn ≤ n ≤ nm+1 both to the set extP (tn) and the slice
R1/m(tn). By the upper semicontinuity of P this sequence is bounded and
has a subsequence (still denoted by (en)) convergent to a point e0 ∈ P (t0).
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The upper semicontinuity of P implies its Hausdorff upper semicontinuity,
so we can write

sup{c(f, P (tn))− c(f, P (t0)) : ‖f‖ ≤ 1} = h∗(P (tn), P (t0)) −→
n→∞

0,

where h∗(A,B) = sup{d(a,B) : a ∈ A}. Thus c(f, P (tn)) → c(f, P (t0)) as
n→∞ and (as in the compact case) we can conclude that e0 = e0.

We have thus constructed the sequence (en), en ∈ extP (tn), weakly
convergent to the point e0 ∈ stexpP (t0). Moreover, we have

d(en, P (t0)) ≤ h∗(P (tn), P (t0)) −→
n→∞

0,

so there exists a sequence (bn) ⊂ P (t0) with ‖bn−en‖ → 0. This yields weak
convergence of (bn) to e0, which in turn implies (as e0 is strongly exposed)
that (bn) converges to e0 in norm. Thus ‖en − e0‖ → 0 as n→∞.

It turns out that the set of strongly exposed points of P (t), t ∈ T , is
dense in extP (t). Indeed, suppose that this is not the case and consider a
slice of P (t) with norm diameter ε containing some e ∈ extP (t). None of
the strongly exposed points of P (t) belongs to the slice, so we have P (t) =
clcv stexpP (t). This contradicts the fact that e is a denting point.

The rest of the proof proceeds as in the compact case.

Now we are able to formulate a continuous version of the Choquet the-
orem and its corollary.

Theorem 4.2 (continuous version of the noncompact Choquet theo-
rem). Let T be a metric space, X a separable reflexive Banach space, and
P : T ; X a multifunction satisfying the following conditions:

(a) P is continuous;
(b) for each t ∈ T the set P (t) is bounded , closed and convex ;
(c) each extreme point of P (t) is its denting point.

Let p be a continuous selection of P , let γ > 0, and define L: T ; M(X)
by

L(t) :=
{
µ ∈M(X) : µ(extP (t)) = 1,

sup
‖f‖≤1

∣∣∣f(p(t))− �
P (t)

f dµ
∣∣∣ < γ for all f ∈ X∗

}
.

Then for any δ > 0 there exists a continuous function lδ: T →M(X) which
is a δ-selection of L.

Corollary 4.1 (continuous version of the noncompact Krein–Milman
theorem). Let T , X, P and p be as above. Then for any γ > 0 there exists a
continuous family (µt)t∈T of measures on X such that µt is supported by the
closure of the set of extreme points of P (t) and γ-represents the point p(t).
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The proofs of these results are identical to the ones given in the previous
section.
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