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On coefficients of vector-valued Bloch functions
by

OscAR Brasco (Valencia)

Abstract. Let X be a complex Banach space and let Bloch(X) denote the space
of X-valued analytic functions on the unit disc such that sup,_, (1 — [2[*)[| /' (2)]| < oo.
A sequence (T},), of bounded operators between two Banach spaces X and Y is said to
be an operator-valued multiplier between Bloch(X) and ¢, (Y") if the map "7 zn2" —
(T (zn))n defines a bounded linear operator from Bloch(X) into ¢1(Y’). It is shown that
if X is a Hilbert space then (7,,), is a multiplier from Bloch(X) into ¢;(Y’) if and only if

k+1
supy, ook [ Tnl|* < co. Several results about Taylor coefficients of vector-valued Bloch
functions depending on properties on X, such as Rademacher and Fourier type p, are
presented.

1. Introduction. Throughout the paper X stands for a complex Banach
space and we write Bloch(X) for the space of X-valued analytic functions on
the unit disc such that || f||Biocn(x) = £ (0)l|+8up|. <1 (L= [2[*)[1f'(2)]| < oo
We write Bloch instead of Bloch(C).

Clearly, f € Bloch(X) if and only if z* f(z) = (f(2),2*) € Bloch for all
z* € X* and | f[|Bloch(x) & SUP|jg=|=1 [|" f || Bloch-

For 1 < p,q < oo we denote by #(p,q, X) the spaces of sequences (x,),
in X such that (||(||n|)ner, lle, )k € €q, Where I, = {n € N: 2"1 < < 2k}
for k € N and Iy = {0}. We write £,(X) for {(p, p, X).

For 1 < p,q < oo we write [|(2a)llpg = | (1(2alner, e, el - As usual,
when X = C we simply write £(p, q). These classes were first introduced for
the scalar-valued case by C. N. Kellogg in [20].

Let us recall the following well known fact on Taylor coeflicients of Bloch
functions. There exist C1, Cy > 0 such that

(1) Cill(@n)lloe < [If IB10ch(x) < Call(zn)ll1,00
for any f(z) =>," jxp2" with z, € X.
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Indeed, for each n and r € (0, 1),
1 o
Tpr" = — S f(re®ye=m0 qg.
ﬂ- j—
Hence nHa:nHr " < supp, [|[f/(2)] for all n € N and 0 < r < 1. Now

selecting r = 1 — 1/n we obtain [|(zn)llcc < C|fllBloch(x)- For the other
inequality, observe that

I EI< DD allzall 121" < ll(@n)nl

k nely

H(fvn) 11,00

]22 oL
— 2|

The reader is referred to [1, 2, 6] for the general theory of Bloch functions.
Let 1 < p,q < oco. It is easy to see that (¢(p,q, X))* = ¢(p', ¢, X*) for
1/p+1/p' =1/q+1/¢' =1, under the natural pairing

(2) ((zn), (@) = D (wn,z},)
n

(where we also use (-, -) for the dual pairing in X). Due to the fact that we
would like to identify the analytic functions with the sequences corresponding
to their Taylor coefficients, it is convenient to find a predual of Bloch(X*)
under the previous pairing.

We shall be denoting by J;(X) the space of X-valued analytic functions
f on the disc D such that S(I) M (f’,r)dr < oo, where

2w

My(fir) = ( S

Endowing the space with the norm || f[| 7, (x) = [[f(0)[| + S(l) M (f’,r)dr one
gets (J1(X))* = Bloch(X™) under the pairing
o
(3) (f,9) = (@}, wn)
n=0
for any g(z) =32 252" € Bloch(X*) and f(2) = >_,2 jxzn2" € Ji1(X).
The reader is referred to [1] for this duality result in the scalar-valued case
and to [7, 8] for its vector-valued extension. Another predual can be obtained
in terms of Bergman spaces, namely (A;(X))* = Bloch(X™) (see [27, 5]),
where A;(X) denotes the space of X-valued analytic functions f on the disc
D such that {; || f(2)|| dA(z) < oo and dA(z) stands for the normalized area
measure on [, although in this duality the pairing is different from (2).
Hence from (1) and (3) we can conclude that there exist Cy, Cy > 0 such
that

(4) Cill@n)lloor < fllnx) < Coll(zn) |1
for any f € Ji(X) with Taylor coefficients (zy,).

1/p
7P o ) for 1< p < oo.
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Vector-valued Bloch functions have been used in different papers and for
different reasons (see [3, 4, 7-12]). We refer the reader to [5, 13| for new
results on the subject.

In this paper we shall deal with the vector-valued analogues of the fol-
lowing result on multipliers due to J. M. Anderson and A. L. Shields (see
[2]):

(5) (Bloch, ¢1) = ¢(2,1),

where (Bloch, ¢1) stands for the space of sequences A = (\;) such that the
operator Th(f) = (Apan)n for f(z) = >, a,2" is bounded from Bloch
into £;.

As a consequence of (5) one gets the following improvement of (1): There
exists a constant C' > 0 such that

(6) [(@n)nll2.00 < Cl|0]B10ch

for any ¢(z) = >0, anz"™. We first observe that (6) does not hold in the
vector-valued situation. Note that if e, stands for the canonical basis of ¢
then f(z) = > o2 enz™ = (2™), is a bounded cp-valued analytic function.
In particular f € Bloch(cy), and (e,,) ¢ ¢(p, 00, ¢p) for any p < co. Hence (5)
does not hold for general Banach spaces.

The aim of this paper is to understand whether (6) and (5) have natural
extensions to vector-valued functions and how their vector-valued analogues
depend on some geometrical properties of the Banach space X.

PROBLEM 1. For which Banach spaces X does the following hold:

(7) f(z) =) an2" € Bloch(X) = (2a)n € (2,00, X)?
n=0
Let us give the following definition.

DEFINITION 1.1. Let X be a complex Banach space. Define Agjoch ¢, (X)
as the space of scalar-valued sequences A = (\,), such that the opera-
tor T\(f) = (Apxp)n for f(z) = >..° xnz" is bounded from Bloch(X)
into 61 (X)

Obviously, taking f(z) = xz¢(z) where z € X and ¢ € Bloch one gets
ABloch,Zl (X) - (BlOCh, 51) = 5(2, 1).

A dual argument shows that, for 1 < p < 2, the inequality

1(@n)nllpr o < CIY 202" l|Bloch(x)
is equivalent to
£(p,1) C ABloch,e, (X).

Hence Problem 1 can be rephrased as follows: For which Banach spaces X,
ABloch e, (X) = £(2,1)7
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The example given after (6) shows that ¢(p,1) in not contained in
ABloch,r, (co) for any p > 1. This actually leads to a more general question.

PROBLEM 2. Find Agjoch ¢, (X) for a given Banach space X.

Similar problems and descriptions for vector-valued Hardy and Bergman
spaces were considered in previous papers by the author (see [4, 14, 15]).

Another possible generalization of (5) is to consider sequences of bounded
operators (1), in L£(X,Y) between two Banach spaces X and Y and to
define operator-valued multipliers. This approach for different spaces of an-
alytic functions and multipliers can be found in [3, 4, 9, 10, 12, 13].

DEFINITION 1.2. A sequence (T},), in £(X,Y) is said to be a multiplier
between Bloch(X) and ¢1(Y"), written (7},) € (Bloch(X), ¢1(Y)), if (T (zn))n
belongs to ¢1(Y) whenever f(z) = 2 xnz" belongs to Bloch(X). This is
equivalent to the existence of a constant C' > 0 such that

N N
(®) D [T} < € sup (1~ 2P)| 3 ne |
n=0 z|< n=1

for any N € N and zg,x1,...,25y € X.

The infimum of the constants C' satisfying (8) is the multiplier norm,
which coincides with the norm of &7 (> z,2") = (T,,(z,)) as the operator
from Bloch(X) and ¢;(Y").

We shall address in the paper some partial answers to the more general
problem of finding conditions on the Banach spaces X and Y to have

(9) (Bloch(X), 1(Y)) = £(2, 1, L(X,Y)).

Let us now collect several definitions of properties of Banach spaces to
be used in what follows.

DEFINITION 1.3. Let 1 < p < 2 < ¢ < oo and let X be a complex
Banach space. X is said to have Fourier type p if there exists a constant C'
such that

o

N A 1/p
(10) (> 1) <l

n=—oo

for all functions f € LP(T, X).
X is said to have Rademacher type p, resp. Rademacher cotype q, if there
exists a constant C' such that

{32 om0 < ()
0 j=1 j=1
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resp.
n 1/q 1 n
(Zl\ﬂfjl\q) SCSHZ%U(t)Hdt,
j=1 0 j=1
for any finite family xi,...,x, of vectors in X where r; stand for the

Rademacher functions on [0, 1].

The notion of Fourier type was first introduced by J. Peetre ([23]) and
we refer the reader to the survey [18] for a complete study and references
about this property. We just mention here that X has Fourier type p if and
only if X* does. In particular, if X has Fourier type p then

SN /
(1) ey < (3 IFmIP) "

n=—oo

The notions of Rademacher type and cotype were introduced by B. Mau-
rey and G. Pisier (see [16, 22, 26]) and were shown to be rather important
in Banach space theory. Let us simply recall that Fourier type p implies
Rademacher type p and that if X* has type p then X has cotype p'.

The main examples of spaces of Fourier type p are L"(u) for any p < r
< p/ or interpolation spaces [Xp, X1]g between any Banach space X and
any Hilbert space X where 1/p=1—0/2.

Recall also that L"(u) has Rademacher type min{p, 2} and Rademacher
cotype max{p,2}.

2. Taylor coefficients. We start by mentioning a couple of examples
of vector-valued Bloch functions to be used later on.

EXAMPLE 2.1 (see [13, Example 3.1]). Let 1 < p < oo and define f), :
D — £, by fo(z) =302, n~1/Pe, 2" where e, stands for the canonical basis.
Then f,, € Bloch(¢,).

Note that f,(z) = Y.0°, 2,2" with [|z,|| = n~'/? and that (z,) €
0(2,00,¢,) if and only if p > 2.

EXAMPLE 2.2 (see [13, Example 3.2]). Let 1 < p < oo and define F), :
D — LP(T) by F,(2)(¢) = (1 — £2)7'/P. Then F, € Bloch(LP(T)).

Note that Fj(z) = S20° 2/ 2" with ||2/| ~ n~'/?" and that (z,) €

n=1*n

£(2,00, LP(T)) if and only if p < 2.
These examples show that
ABloch,Zl (fp) g 5(2, 1) for p < 2, ABloch,Zl (LP(T)) g 6(2, 1) for p > 2.

We now show that (7) holds for Hilbert spaces. The proof that we shall
present is based upon Grothendieck’s inequality.
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THEOREM 2.1. Let H be a Hilbert space. Then there exists a constant
C > 0 such that

[(@n)nll2,00 < CHfHBloch(H)
for all f(z) => 0" gxn2"™ € Bloch(H). Hence Agioche, (H) = £(2,1).
Proof. Given f € Bloch(H) we start by defining Ty : Ay — H by the

formula T (u,) = xy, where u,(z) = (n+1)z", and extending the definition
to all polynomials by linearity. That is,

Tp(¢) = Y 222 = [ 6(2) f(2) dA(=)

—~n+1 B s
for ¢(z) = ZT]LO anz™.
Using the fact that
(12) (6,00 =3 20 — [0 dA(),
n=0 D

for any ¢(z) = Zflvzo anz™and P(z) = > 07 Bn2", gives the duality (A4;)* =
Bloch (see [27]), together with the facts that (T¢(¢),2*) = (z*f,¢) and
polynomials are dense in A;, we can continuously extend Ty to A; as a
bounded operator and [|T¢|| < C|| f{|Bioch(m)-

On the other hand it is known (see [26] or [27]) that A; is isomorphic
to £1. Hence by invoking the Grothendieck theorem (see [16]) we deduce that
T is absolutely summing.

Let ||(An)]]21 < 1. It follows from (5) that

sup Z |<)‘nunvg>| <C.
llgllay*<17
This leads to
S Al 1T (un)l < C
n

for all ||(An)[/2,1 < 1. Or in other words (x,,) € ¢(2, 00, X ) and

[(@n)nll2.00 < ClITr] = CllfIB10cn () - =
We shall try to see how some geometrical properties of the space X help
to describe Apjoeh ¢, (X).
We first improve the estimates in (4) under some assumptions on the
Banach space X. To do that we use the following lemma.

LEMMA 2.2 (see [11] or [21]). Let (o) be a sequence of nonnegative
numbers and 0 < q, 3 < co. Then
1 o9 q 00 o q
— /8 -1 n ~ _’I’L
(13) (1) (Zanr)dr,vz(Znﬁ).
n=1

0 k=1 “nely
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THEOREM 2.3. Let1 < p <2 and X be a Banach space of Fourier type p.

(i) There ezists a constant C > 0 such that

1f L) < Cll(@n)lp.1
for all (zy,) € €(p,1,X) and f(z) = > o0, zp2".
(ii) There exists a constant C > 0 such that
[(@n)llpr,00 < Cllf IBloch(x)
for all f(z) =>"07 x,2" € Bloch(X).
Proof. (i) Note that, by (11),

1 1
/
17y < 17O+ M (7 ) dr < C(UF O] (S lealpre) ).

0 0

Now apply Lemma 2.2 for 3 = p and ¢ = 1/p to get ||f[|;,(x) < Cll(xn)][pa-
(ii) Using the fact that Bloch(X) is isometrically included in (J;(X*))*
together with (i) and the fact that X™* also has Fourier type p one gets, for

f(z) = 2?21 zn2",
p,1 — 1}

[ (zn)lp,00 = sup { > Awn, )« ()]
< Osup{(f,9) : llgll.,(x+) =1} < C|flBioch(x)- =

n
THEOREM 2.4. Let 1 < p < 2 and let X be a Banach space.

(i) If L(p,1) C Agioch,e, (X) then X has cotype p'.

(i) If £(2,1) = ABiochr, (X) then X has Orlicz property, i.e. there exists
€ >0 50 that (5, lanll)? < Csupjyeyr T a7}

Proof. We shall see in both cases that £(p, 1) C Apjoch ¢, (X ) implies that
if SUP g =1 D (T, )| < 0O then > |[2n]|P" < oc. This, in the case p < 2,
is equivalent to X having cotype p’ (see [24, 25]).

Let 1,...,2n € X be such that supj,«—; Zfl\[:l |(zp,x*)| = 1. Take k
such that 251 < N < 2F and construct f(z) = Zi:givﬂajn_%z". Hence
f Dbelongs to Bloch(X) (because z*f € Bloch for all z* € X*). There-
fore Zszl Anzyn| < C for all (A,) such that ||[(Ay)ner.|lp, = 1. Hence

Yooz ]l < C.
COROLLARY 2.5. Let X be a Banach space and 1 < p < 2. Then
X has Fourier type p = £(p,1) C Apioche, (X) = X has cotype p'.
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3. Multipliers. Now we analyze the interplay between geometry of Ba-
nach spaces and questions (7) and (9).

Repeating the argument in Theorem 2.4 with T,, = A\, T for a fixed
operator 1" we obtain the following result.

PROPOSITION 3.1. Let 1 < p <2 and let X and Y be Banach spaces. If
Up,1,£(X,Y)) C (Bloch(X), £4(Y)
then ITy 1(X,Y)=L(X,Y), where II,y 1(X,Y") stands for the space of (p’,1)-
summing operators (see [16]).

PROPOSITION 3.2. Let X and Y be Banach spaces and assume that X
has Fourier type p. Then

Up,1,L(X,Y)) C (Bloch(X), £1(Y)).

Proof. This follows easily from Theorem 2.3, since

D I Ta(@a)ll < 1T llpall(zn)
n=1
for f(z) =00 22" =

PROPOSITION 3.3. Let X* be a complex Banach space of Rademacher
cotype p' and Y be any Banach space. Then
(Bloch(X),¢1(Y)) Cc £(p',1,L(X,Y)).

Proof. Let (T},) be a sequence of operators in (Bloch(X),¢;(Y)). Using
a simple duality argument we get

|5z

for all £, € {—1,1} and HynH =1
Now writing &, = 7,(t) for ¢t € [0,1] and fi(z) = > o2, ra(t) T () 2",
we have
1

SHftHJl(X*

0

< O flIBloch(x)

J1 (X*) -

1
=\V1pa () drdt
0
2

3

O ) = O ey

oo
‘ann T*yn nlznl ‘dt dr

n=1

(S Iz r) " ar.

n

O ey

C

AV

Ot . O =

Applying Lemma 2.2 for § = p’ and ¢ = 1/p/, we obtain (T (y})) €
0(p', 1, X*) uniformly for ||y}| = 1. Hence (T,,) € (p/,1,£(X,Y)). =

Combining now Propositions 3.2 and 3.3 we get our final corollary:
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COROLLARY 3.4. Let H be a Hilbert space and let Y be a Banach space.

Then

(1]
2]
(3]
[4]
[5]
[6]
[7]
(8]
[9]
[10]

[11]
[12]

[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]

[21]

(Bloch(H), £1(Y)) = £(2,1, L(X,Y)).
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