Weak-type $(1,1)$ bounds for oscillatory singular integrals with rational phases

by
Magali Folch-Gabayet (México) and James Wright (Edinburgh)

Abstract

We consider singular integral operators on \mathbb{R} given by convolution with a principal value distribution defined by integrating against oscillating kernels of the form $e^{i R(x)} / x$ where $R(x)=P(x) / Q(x)$ is a general rational function with real coefficients. We establish weak-type $(1,1)$ bounds for such operators which are uniform in the coefficients, depending only on the degrees of P and Q. It is not always the case that these operators map the Hardy space $H^{1}(\mathbb{R})$ to $L^{1}(\mathbb{R})$ and we will characterise those rational phases $R(x)=P(x) / Q(x)$ which do map H^{1} to L^{1} (and even H^{1} to H^{1}).

1. Introduction. There has been considerable attention given to the study of the mapping properties of oscillatory integral operators of the form

$$
\begin{equation*}
T f(x)=\text { p.v. } \int_{\mathbb{R}} \frac{e^{i R(y)}}{y} f(x-y) d y \tag{1.1}
\end{equation*}
$$

as well as their nonconvolution and higher-dimensional analogues. See, for example, [9], 4], [5], [10], 2], 8] and [3]. Various L^{p}, weak-type $(1,1)$ and Hardy space estimates have been proved when $R(x)$ is a polynomial or behaves like a power $|x|^{a}$ for positive or negative exponents a. Here we would like to consider the class of rational functions which unifies in some sense previous known results while giving uniform estimates on L^{1}. Our main result is the following.

Theorem 1.1. Let $R(x)=P(x) / Q(x)$ be a rational function with real coefficients and consider the associated operator T given in (1.1). Then T is weak-type $(1,1)$ with bounds depending only on the degrees of P and Q. More precisely,

$$
\begin{equation*}
\alpha|\{x \in \mathbb{R}:|T f(x)| \geq \alpha\}| \leq C\|f\|_{L^{1}(\mathbb{R})} \tag{1.2}
\end{equation*}
$$

with a constant C depending only on the degrees of P and Q, and in particular, C can be taken to be independent of the coefficients.

[^0]From Theorem 1.1 in [6] one easily deduces that T is bounded on $L^{2}(\mathbb{R})$ with bounds which are uniform in the coefficients. Therefore by duality and interpolation with $\sqrt[1.2]{ }$, we obtain uniform $L^{p}, 1<p<\infty$, estimates for T.

We now state a result on the classical Hardy space $H^{1}(\mathbb{R})$. It is well known that when $R(x)=b x$ for some $b \in \mathbb{R} \backslash\{0\}$, then the associated operator T does not map H^{1} to L^{1}, and even more, $T: H^{1} \rightarrow L^{1, q}$ only for $q=\infty$. In fact if f is a smooth H^{1} atom supported on $(-1,1)$ such that the Fourier transform $\hat{f}(b)$ does not vanish, then for large x,

$$
T f(x)=\int_{\mathbb{R}} \frac{e^{i b(x-y)}}{x-y} f(y) d y=\frac{e^{i b x}}{x} \hat{f}(b)+O\left(|x|^{-2}\right) .
$$

Therefore any positive result establishing $T: H^{1} \rightarrow L^{1, q}$ for some $q<\infty$ for general rational phases will not be uniform in the coefficients. We make the following observation.

Theorem 1.2. Let $R(x)=P(x) / Q(x)$ be a real rational function with d equal to the degree of P and e equal to the degree of Q. Consider the associated operator T given in (1.1).
(1) If $d \neq e+1$, then $T: H^{1}(\mathbb{R}) \rightarrow H^{1}(\mathbb{R})$.
(2) If $d=e+1$, then $T: H^{1}(\mathbb{R}) \rightarrow L^{1, q}(\mathbb{R})$ if and only if $q=\infty$.

Notation. Let A, B be positive quantities. We use the notation $A \lesssim B$ or $A=O(B)$ to denote the estimate $A \leq C B$ where C depends only on the degrees of P and Q. We use $A \sim B$ to denote the estimates $A \lesssim B \lesssim A$.
2. Idea of the proof for Theorem 1.1. Here we sketch the main ideas for bounding the oscillatory singular integral operator T given by (1.1) when $R(x)=P(x) / Q(x)$ is a rational function with real coefficients. By factoring the polynomials P and Q into linear factors, it is easy to see that outside a bounded number of "dyadic" intervals, P and Q behave like various monomials on the complementary intervals (see Lemma 3.1 below). Hence we can reduce ourselves to bounding

$$
\begin{equation*}
T_{G} f(x)=\int_{|y| \in G} f(x-y) \frac{e^{i R(y)}}{y} d y \tag{2.1}
\end{equation*}
$$

where G is an interval of \mathbb{R}^{+}(possibly very long) on which the rational function $|R(y)|=|P(y) / Q(y)| \sim|c||y|^{j-k}$ behaves like a monomial for some nonnegative integers $j, k \geq 0$.

The main effort is to ensure that various derivatives of R have the expected behaviour on G. When this is the case and when $j \geq k$, say, then

$$
\int_{|y| \in G \cap[0,1]} f(x-y) \frac{e^{i R(y)}}{y} d y
$$

is a classical Calderón-Zygmund singular integral operator. Hence we obtain weak-type $(1,1)$ bounds for this part of the operator, and using a simple scaling argument, we can ensure that the bounds are uniform in the coefficients. For the part of the operator near infinity,

$$
\int_{|y| \in G \cap[1, \infty)} f(x-y) \frac{e^{i R(y)}}{y} d y
$$

we employ the arguments of Christ and Chanillo in [2] where weak-type $(1,1)$ estimates are obtained for general oscillatory singular integral operators with polynomial phases.

When $j<k$, the part of the operator near infinity is a classical CalderónZygmund singular integral operator and for the part near the origin, the operator is a strongly singular integral operator of the type treated by C. Fefferman in [4].
3. Preliminaries and reductions. The following lemmas are variants of results appearing in [1], 6] and [7]. We give the proofs for the convenience of the reader.

Lemma 3.1. Let $P(t)=a \prod_{j=1}^{d}\left(t-z_{j}\right)=\sum_{k=0}^{d} p_{k} t^{k}$ be a polynomial of degree d whose roots are ordered so that $\left|z_{1}\right| \leq \cdots \leq\left|z_{d}\right|$. For each $A>0$, we define the following intervals (possibly empty) on \mathbb{R}^{+}: for $1 \leq j \leq d-1$, we set $G_{j}=G_{j}(A):=\left[A\left|z_{j}\right|, A^{-1}\left|z_{j+1}\right|\right]$, and for $j=d$, we set $G_{d}:=\left[A\left|z_{d}\right|, \infty\right)$. Furthermore if $z_{1} \neq 0$, we set $G_{0}=G_{0}(A)=\left[0, A^{-1}\left|z_{1}\right|\right]$.

Then there exists a constant $C=C(d)>0$ such that for any $A \geq C(d)$ and $0 \leq j \leq d$ with G_{j} is nonempty,
(i) $|P(t)| \sim\left|p_{j}\right||t|^{j}$ for $|t| \in G_{j}$, and
(ii) $\left|p_{j}\right| \sim|a| \prod_{\ell=j+1}^{d}\left|z_{\ell}\right|$; in particular $p_{j} \neq 0$.

Proof. From the factorisation $P(t)=a \prod\left(t-z_{j}\right)$, we see that for $|t| \in G_{j}$ (and any $A>1$),

$$
(1-1 / A)^{d}|a|\left[\prod_{\ell=j+1}^{d}\left|z_{\ell}\right|\right] \leq|P(t)| /|t|^{j} \leq(1+1 / A)^{d}|a|\left[\prod_{\ell=j+1}^{d}\left|z_{\ell}\right|\right]
$$

which shows that (i) follows from (ii). To establish (ii) we write

$$
\begin{aligned}
p_{j} & =(-1)^{j} a \sum_{\ell_{1}<\cdots<\ell_{d-j}} z_{\ell_{1}} \cdots z_{\ell_{d-j}} \\
& =(-1)^{j} a \sum_{\substack{\ell_{1}<\cdots<\ell_{d-j} \\
\ell_{1} \leq j}} z_{\ell_{1}} \cdots z_{\ell_{d-j}}+(-1)^{j} a z_{j+1} \cdots z_{d}=\mathrm{I}+\mathrm{II}
\end{aligned}
$$

and hence since $\left|z_{\ell}\right| \leq(1 / A)\left|z_{\ell^{\prime}}\right|$ whenever $\ell \leq j \leq \ell^{\prime}-1$,

$$
A|I| \lesssim|a|\left|z_{j+1}\right| \cdots\left|z_{d}\right|=|\mathrm{II}| .
$$

Therefore if $A \geq 1$ is large enough,

$$
\left|p_{j}\right| \sim|\mathrm{II}|=|a| \prod_{\ell=j+1}^{d}\left|z_{\ell}\right|
$$

establishing (ii) and hence (i).
Remark 3.2. Lemma 3.1(i) shows that with respect to P, \mathbb{R}^{+}can be decomposed into disjoint intervals:

$$
\mathbb{R}^{+}=\bigcup_{\ell=0}^{M} G_{\ell} \cup \bigcup_{\ell=1}^{M-1} D_{\ell}
$$

($M=O(1)$), which depend on the choice of A, where the D_{ℓ} are dyadic in the sense that if $D_{\ell}=[a, b)$, then $b / a=O(1)$. On the complementary intervals G_{ℓ} (which we call gaps), if $|t| \in G_{\ell}$, then $|P(t)| \sim\left|p_{j_{\ell}}\right||t|^{j_{\ell}}$ for some $j_{\ell} \geq 0$ (and of course $p_{j_{\ell}} \neq 0$). See [1].

For a rational function $R=P / Q$, where $P(t)=a \prod_{\ell=1}^{d}\left(t-z_{\ell}\right), Q(t)=$ $b \prod_{\ell=1}^{e}\left(t-w_{\ell}\right)$ with $\left|z_{1}\right| \leq \cdots \leq\left|z_{d}\right|$ and $\left|w_{1}\right| \leq \cdots \leq\left|w_{e}\right|$, Lemma 3.1 tells us that $|R(t)| \sim\left|p_{j} / q_{k}\right||t|^{j-k}$ on a gap $G=\left[A\left|z_{j}\right|, A^{-1}\left|z_{j+1}\right|\right] \cap$ $\left[A\left|w_{k}\right|, A^{-1}\left|w_{k+1}\right|\right]$, if $A \geq 1$ is large enough. We now examine derivatives of R on G in the following two lemmas. We begin with the case $j \geq k$.

Lemma 3.3. Let $R=P / Q$ be a rational function and G a gap as described above. Then for any integer $n \geq 0, A \geq C_{n}$ can be chosen large enough so that on G, if $j \geq k$,

$$
\begin{equation*}
R^{(n)}(t)=R(t)\left[\sum_{k+1 \leq \ell_{1} \neq \cdots \neq \ell_{n} \leq j} \prod_{m=1}^{n} \frac{1}{t-z_{\ell_{m}}}+E_{n}(t)\right] \tag{3.1}
\end{equation*}
$$

where $\left|(d / d t)^{r} E_{n}(t)\right| \lesssim C_{n, r} A^{-1}|t|^{-n-r}$ on G for all $r \geq 0$.
Proof. We begin with the case $n=1$:

$$
R^{\prime}(t)=R(t)\left[P^{\prime}(t) / P(t)-Q^{\prime}(t) / Q(t)\right]=R(t)\left[\sum_{\ell=1}^{d} \frac{1}{t-z_{\ell}}-\sum_{\ell=1}^{e} \frac{1}{t-w_{\ell}}\right]
$$

We make the following two simple observations on G :

$$
\begin{equation*}
\left|\frac{1}{t-z_{\ell}}\right|,\left|\frac{1}{t-w_{\ell^{\prime}}}\right| \leq C[A|t|]^{-1}, \quad \ell>j, \ell^{\prime}>k \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{1}{t-z_{\ell}}-\frac{1}{t-w_{\ell^{\prime}}}\right|=\frac{\left|z_{\ell}-w_{\ell^{\prime}}\right|}{\left|t-z_{\ell}\right|\left|t-w_{\ell^{\prime}}\right|} \leq C[A|t|]^{-1}, \quad \ell, \ell^{\prime} \leq k \tag{3.3}
\end{equation*}
$$

Hence

$$
R^{\prime}=R\left[\sum_{\ell=k+1}^{j} \frac{1}{t-z_{\ell}}+E_{1}(t)\right]
$$

where

$$
E_{1}(t)=\sum_{\ell=1}^{k}\left[\frac{1}{t-z_{\ell}}-\frac{1}{t-w_{\ell}}\right]+\sum_{\ell=j+1}^{d} \frac{1}{t-z_{\ell}}-\sum_{\ell=k+1}^{e} \frac{1}{t-w_{\ell}}
$$

satisfies $\left|E_{1}^{(r)}(t)\right| \leq C A^{-1}|t|^{-r-1}$ for all $r \geq 0$ on G by (3.2) and (3.3), establishing (3.1) when $n=1$.

The proof now proceeds by induction on n; if (3.1) holds for derivatives up to order $n-1$, then

$$
\begin{aligned}
& R^{(n)}(t)=R^{\prime}(t)\left[\sum_{k+1 \leq \ell_{1} \neq \cdots \neq \ell_{n-1} \leq j} \prod_{m=1}^{n-1} \frac{1}{t-z_{\ell_{m}}}+E_{n-1}(t)\right] \\
& +R(t)\left[-\sum_{r=1}^{n-1} \sum_{k+1 \leq \ell_{1} \neq \cdots \neq \ell_{n-1} \leq j} \frac{1}{\left(t-z_{\ell_{1}}\right)} \cdots \frac{1}{\left(t-z_{\ell_{r}}\right)^{2}} \cdots \frac{1}{\left(t-z_{\ell_{n-1}}\right)}+E_{n-1}^{\prime}(t)\right] \\
& =R(t)\left[\sum_{\substack{k+1 \leq \ell_{1} \neq \cdots \neq \ell_{n-1} \leq j \\
k+1 \leq \ell \leq j}} \frac{1}{t-z_{\ell}} \prod_{m=1}^{n-1} \frac{1}{t-z_{\ell_{m}}}\right. \\
& -\sum_{r=1}^{n-1} \sum_{\substack{ }} \sum_{k+1 \leq \ell_{1} \neq \cdots \neq \ell_{n-1} \leq j} \frac{1}{\left(t-z_{\left.\ell_{r}\right)^{2}}{ }_{\substack{1 \leq m \leq n-1 \\
m \neq r}} \prod_{\substack{ }} \frac{1}{\left(t-z_{\ell_{m}}\right)}+E_{n}(t)\right]}
\end{aligned}
$$

where

$$
\begin{aligned}
E_{n}(t)= & E_{n-1}(t)\left(\sum_{\ell=k+1}^{j} \frac{1}{t-z_{\ell}}+E_{1}(t)\right) \\
& +E_{1}(t) \sum_{k+1 \leq \ell_{1} \neq \cdots \neq \ell_{n-1} \leq j} \prod_{m=1}^{n-1} \frac{1}{t-z_{\ell}}+E_{n-1}^{\prime}(t)
\end{aligned}
$$

is easily seen to satisfy the derivative bounds on G, proving (3.1) for general n.

Remarks 3.4.

- It will be important for us to keep track of the number of terms in the sum

$$
\begin{equation*}
\sum_{k+1 \leq \ell_{1} \neq \cdots \neq \ell_{n} \leq j} \prod_{m=1}^{n} \frac{1}{t-z_{\ell_{m}}} \tag{3.4}
\end{equation*}
$$

appearing in (3.1). The number of terms is

$$
(j-k)(j-k-1) \cdots(j-k-n+1)
$$

This shows in particular that (3.4) is empty (and hence equal to zero) if $0 \leq j-k \leq n-1$.

- Since the sum (3.4) is zero when $0 \leq j-k \leq n-1$, Lemma 3.3 only gives a bound from above on the nth derivative of R; namely, $\left|R^{(n)}(t)\right| \lesssim|R(t)||t|^{-n}$ for $|t| \in G$. For $j-k \geq n$, we can in fact bound $\left|R^{(n)}(t) / R(t)\right|$ from below.

When $j-k \geq n$, the sum (3.4) is nonempty and we have

$$
\begin{equation*}
\left|\sum_{k+1 \leq \ell_{1} \neq \cdots \neq \ell_{n} \leq j} \prod_{m=1}^{n} \frac{1}{t-z_{\ell_{m}}}\right| \sim|t|^{-n} \tag{3.5}
\end{equation*}
$$

The upper bound follows easily from (3.2). For the lower bound, we use the fact $|z| \geq \operatorname{Re}(z)$ to see that the left hand side is larger than

$$
\begin{array}{r}
\left|\sum_{k+1 \leq \ell_{1} \neq \cdots \neq \ell_{n} \leq j} \prod_{m=1}^{n} \frac{\operatorname{Re} \prod_{s=1}^{n}\left(t-\bar{z}_{\ell_{s}}\right)}{\prod_{s=1}^{n}\left|t-z_{\ell_{s}}\right|^{2}}\right| \\
=\left|\sum_{k+1 \leq \ell_{1} \neq \cdots \neq \ell_{n} \leq j} \frac{\operatorname{Re}\left[t^{n}+O\left(A^{-1} t^{n}\right)\right]}{|t|^{2 n}+O\left(A^{-1} t^{2 n}\right)}\right|
\end{array}
$$

which in turn is larger than $|t|^{-n}$ on G if $A \geq 1$ is large enough, since $\left|z_{\ell}\right| \lesssim A^{-1}|t|$ on G whenever $\ell \leq j$.

The bound (3.5), together with the error bound $\left|E_{n}(t)\right| \lesssim A^{-1}|t|^{-n}$, shows that if $j-k \geq n$, then

$$
\begin{equation*}
\left|R^{(n)}(t) / R(t)\right| \sim|t|^{-n} \tag{3.6}
\end{equation*}
$$

for $|t| \in G$ if $A \geq 1$ is large enough.
We now turn to the case $j<k$, which unfortunately is somewhat more involved. As in the case $k \leq j$ it will be important for us to keep track of the number of terms in various sums. To this end we associate to every strictly positive multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{r}\right), \alpha_{i}>0,1 \leq i \leq r$, a size $|\alpha|=\alpha_{1}+\cdots+\alpha_{r}$ and a length $l(\alpha)=r$.

Lemma 3.5. Let $R=P / Q$ and G be as in Lemma 3.3 but where now $j<k$. For any integer $n \geq 1, A \geq C_{n}$ can be chosen large enough so that on G,

$$
\begin{align*}
R^{(n)}(t)=R(t) & {\left[(-1)^{n} \sum_{m=1}^{n} \sum_{\substack{|\alpha|=n \\
l(\alpha)=m}} d(\alpha)\right.} \tag{3.7}\\
& \left.\times \sum_{j+1 \leq \ell_{1}, \ldots, \ell_{m} \leq k} \frac{1}{\left(t-w_{\ell_{1}}\right)^{\alpha_{1}}} \cdots \frac{1}{\left(t-w_{\ell_{m}}\right)^{\alpha_{m}}}+F_{n}(t)\right]
\end{align*}
$$

where $\left|(d / d t)^{r} F_{n}(t)\right| \lesssim C_{n, r} A^{-1}|t|^{-n-r}$ for all $r \geq 0$. Here $\{d(\alpha)\}$ are combinatorial numbers defined on strictly positive multi-indices α such that the sums

$$
c_{m}(n)=\sum_{|\alpha|=n, l(\alpha)=m} d(\alpha)
$$

are the well-known Stirling numbers of the second kind, i.e., $\left\{c_{m}(n)\right\}_{m=1}^{n}$ are the coefficients of the polynomial

$$
x(x+1) \cdots(x+n-1)=\sum_{m=1}^{n} c_{m}(n) x^{m}
$$

Proof. For $n=1$ we argue exactly as in Lemma 3.3, using (3.3) and (3.2) to obtain

$$
\begin{equation*}
R^{\prime}(t)=R(t)\left[-\sum_{\ell=j+1}^{k} \frac{1}{t-w_{\ell}}+F_{1}(t)\right] \tag{3.8}
\end{equation*}
$$

where F_{1} satisfies the appropriate derivative estimates on G. For general n we argue by induction; if 3.7 holds for all derivatives up to order n, then

$$
\begin{aligned}
R^{(n+1)}(t)= & R^{\prime}(t)\left[(-1)^{n} \sum_{m=1}^{n} \sum_{\substack{|\alpha|=n \\
l(\alpha)=m}} d(\alpha)\right. \\
& \left.\times \sum_{j+1 \leq \ell_{1}, \cdots, \ell_{m} \leq k} \frac{1}{\left(t-w_{\ell_{1}}\right)^{\alpha_{1}}} \cdots \frac{1}{\left(t-w_{\ell_{m}}\right)^{\alpha_{m}}}+F_{n}(t)\right] \\
& +R(t)\left[(-1)^{n+1} \sum_{m=1}^{n} \sum_{\substack{|\alpha|=n \\
(\alpha)=m}} d(\alpha) \sum_{r=1}^{m} \alpha_{r}\right. \\
& \left.\times \sum_{j+1 \leq \ell_{1}, \ldots, \ell_{m} \leq k} \frac{1}{\left(t-w_{\ell_{1}}\right)^{\alpha_{1}}} \cdots \frac{1}{\left(t-w_{\ell_{r}}\right)^{\alpha_{r}+1}} \cdots \frac{1}{\left(t-w_{\ell_{m}}\right)^{\alpha_{m}}}+F_{n}^{\prime}(t)\right] .
\end{aligned}
$$

Using (3.8 we obtain

$$
\begin{align*}
& \text { 9) } R^{(n+1)}(t)=R(t)\left[(-1)^{n+1} \sum_{m=1}^{n} \sum_{\substack{|\alpha|=n \\
l(\alpha)=m}} d(\alpha)\right. \tag{3.9}\\
& \times \sum_{j+1 \leq \ell_{1}, \ldots, \ell_{m}, \ell \leq k} \frac{1}{\left(t-w_{\ell_{1}}\right)^{\alpha_{1}}} \cdots \frac{1}{\left(t-w_{\ell_{m}}\right)^{\alpha_{m}}} \frac{1}{t-w_{\ell}} \\
& +(-1)^{n+1} \sum_{m=1}^{n} \sum_{|\alpha|=n, l(\alpha)=m} d(\alpha) \sum_{r=1}^{m} \alpha_{r} \\
& \times \sum_{j+1 \leq \ell_{1}, \ldots, \ell_{m} \leq k} \frac{1}{\left(t-w_{\ell_{1}}\right)^{\alpha_{1}}} \cdots \frac{1}{\left(t-w_{\left.\ell_{r}\right)^{\alpha_{r}+1}} \cdots \frac{1}{\left(t-w_{\ell_{m}}\right)^{\alpha_{m}}}+F_{n+1}(t)\right]}
\end{align*}
$$

where

$$
\begin{aligned}
F_{n+1}(t)= & F_{n}(t)\left[-\sum_{\ell=j+1}^{k} \frac{1}{t-w_{\ell}}+F_{n}^{\prime}(t)\right] \\
+ & {\left[(-1)^{n} F_{1}(t) \sum_{m=1}^{n} \sum_{|\alpha|=n, l(\alpha)=m} d(\alpha)\right.} \\
& \left.\quad \sum_{j+1 \leq \ell_{1}, \ldots, \ell_{m} \leq k} \frac{1}{\left(t-w_{\ell_{1}}\right)^{\alpha_{1}}} \cdots \frac{1}{\left(t-w_{\ell_{m}}\right)^{\alpha_{m}}}\right]
\end{aligned}
$$

satisfies the required derivative estimates on G.
Expressing $R^{(n+1)}(t)$ in the form 3.7 we see from (3.9) that the coefficients

$$
c_{m}(n+1)=\sum_{\substack{|\alpha|=n+1 \\ l(\alpha)=m}} d(\alpha)
$$

satisfy the recursive formulae

$$
c_{n+1}(n+1)=1, \quad c_{k}(n+1)=n c_{k}(n)+c_{k-1}(n), \quad k=1, \ldots, n
$$

where $c_{0}(n)=0$. These are the defining formulae for Stirling numbers of the second kind; the equivalent property for these numbers as the coefficients of the polynomial with roots at consecutive negative integers can be easily derived by induction:

$$
x(x+1) \cdots(x+n-1)=\sum_{k=1}^{n} c_{k}(n) x^{k}
$$

and so

$$
x(x+1) \cdots(x+n)=\sum_{k=1}^{n} c_{k}(n) x^{k+1}+\sum_{k=1}^{n} n c_{k}(n) x^{k}
$$

$$
=n c_{1}(n) x+\sum_{k=2}^{n}\left(n c_{k}(n)+c_{k-1}(n)\right) x^{k}+x^{n+1}=\sum_{k=1}^{n+1} c_{k}(n+1) x^{k}
$$

by the above recursive formulae, completing the proof of Lemma 3.5. -
REmark 3.6. The number of terms in the sum occurring in (3.7) is

$$
\begin{aligned}
\sum_{m=1}^{n} \sum_{\substack{|\alpha|=n \\
l(\alpha)=m}} d(\alpha)(k-j)^{m} & =\sum_{m=1}^{n} c_{m}(n)(k-j)^{m} \\
& =(k-j)(k-j+1) \cdots(k-j+n-1)
\end{aligned}
$$

Suppose that $\mathcal{A}=\{\alpha\}$ is an $O(1)$ collection of strictly positive multiindices of size n; that is, $|\alpha|=n$ for every $\alpha \in \mathcal{A}$. Furthermore, suppose for each $\alpha \in \mathcal{A}$ there is an associated collection $\left\{z_{\ell_{1}}, \ldots, z_{\ell_{m}}\right\}$ where $m=l(\alpha)$ and $\ell_{1}, \ldots, \ell_{m} \leq j$. Then the argument establishing (3.5) shows

$$
\left|\sum_{\alpha \in \mathcal{A}}\left(t-z_{\ell_{1}}\right)^{-\alpha_{1}} \cdots\left(t-z_{\ell_{m}}\right)^{-\alpha_{m}}\right| \sim|t|^{-n}
$$

Hence in the case $j<k$, Lemma 3.5 implies the bound

$$
\begin{equation*}
\left|R^{(n)}(t) / R(t)\right| \sim|t|^{-n} \tag{3.10}
\end{equation*}
$$

for $|t| \in G$ if $A \geq 1$ is large enough with no further restriction on $j<k$.
4. Proof of Theorem 1.1. Here we give the details of the weak-type estimate (1.2) for

$$
T f(x)=\text { p.v. } \int_{\mathbb{R}} f(x-t) e^{i P(t) / Q(t)} \frac{d t}{t}
$$

We first apply Lemma 3.1 to Q and decompose \mathbb{R}^{+}into an $O(1)$ collection of gaps and dyadic intervals with respect to Q. On a dyadic interval $D=[a, b]$,

$$
T_{D} f(x):=\int_{|t| \in D} f(x-t) e^{i P(t) / Q(t)} \frac{d t}{t}
$$

is bounded on L^{1} with $O(1)$ bounds since $b / a=O(1)$. Therefore we are reduced to establishing 1.2 for

$$
\begin{equation*}
T_{G} f(x):=\int_{|t| \in G} f(x-t) e^{i P(t) / Q(t)} \frac{d t}{t} \tag{4.1}
\end{equation*}
$$

where G is a gap on which $|Q(t)| \sim\left|q_{k}\right||t|^{k}$ for some $k \geq 0$. At this point we could use Lemma 3.1 again and decompose G into gaps and dyadic intervals with respect to P, reducing matters to an interval where $|P(t)| \sim\left|p_{j}\right||t|^{j}$ for some $j \geq 0$ as well and hence $|P(t) / Q(t)| \sim\left|p_{j} q_{k}^{-1}\right||t|^{j-k}$. It will be essential that we bound the second derivative of P / Q from below on this
interval. However, in order to do this when $k \leq j$, Lemma 3.3 requires that $j \neq k$ and $j \neq k+1$; see (3.6). Fortunately it turns out that we can prevent the situations $j=k$ and $j=k+1$ from arising by observing that the weak-type estimate (1.2) is unaffected if we perturb our rational phase $P(t) / Q(t)-a t-b$ by any linear polynomial. In fact

$$
T_{G} f(x)=e^{-i a x} e^{i b} \int_{|t| \in G} e^{i a(x-t)} f(x-t) e^{i[P(t) / Q(t)-a t-b]} \frac{d t}{t}
$$

and the L^{1} norm of f is not affected by modulations of the form $e^{i a y} f(y)$. We note that this is not the case for the Hardy space H^{1} norm.

The idea is to choose a and b appropriately so that in the difference

$$
P(t) / Q(t)-a-b t=N(t) / Q(t)
$$

the numerator $N(t)=P(t)-(a+b t) Q(t)=\sum_{j} n_{j} t^{j}$ has vanishing k th and $(k+1)$ th coefficients; that is, $n_{k}=n_{k+1}=0$, putting us in a position to use Lemma 3.1 with respect to $N(t)$, decomposing the interval G further into gaps and dyadic intervals so that on a gap, $|N(t)| \sim|t|^{j}$ for some $j \neq k$ or $k+1$. Hence we will be able to bound from below the second derivative of $N(t) / Q(t)$ on such an interval; see (3.6) and (3.10). A little linear algebra shows that we can choose a and b so that $n_{k}=n_{k+1}=0$ if and only if $q_{k}^{2} \neq q_{k-1} q_{k+1}$. In the cases $k=0$ and $k=\operatorname{degree}(Q)$, we interpret the right hand side as zero and so $q_{k}^{2} \neq q_{k-1} q_{k+1}$ holds in these trivial cases. One easily checks that an appropriate choice for a and b can be made to guarantee $n_{k}=n_{k+1}=0$ when either $k=0$ or $k=\operatorname{degree}(Q)$.

We will now see that $q_{k}^{2} \neq q_{k-1} q_{k+1}$ is indeed the case since G is a gap on which $|Q(t)| \sim\left|q_{k}\right||t|^{k}$. Specifically we will use the fact that the k th root w_{k} of Q is separated from the $(k+1)$ th root w_{k+1} if G is nonempty. The k th coefficient q_{k} of Q is related to the roots of Q by $\left|q_{k}\right| \sim|b| \prod_{\ell=k+1}^{n}\left|w_{\ell}\right|$; this is the content of part (ii) of Lemma 3.1. Hence

$$
\begin{equation*}
\left|q_{k}^{2}\right| \sim|b|^{2} \prod_{\ell=k+1}^{n}\left|w_{\ell}\right|^{2} \tag{4.2}
\end{equation*}
$$

For $q_{k-1} q_{k+1}$ we have

$$
\begin{aligned}
q_{k-1} q_{k+1} & =b^{2}\left[\sum_{\ell_{1}<\cdots<\ell_{n-k+1}} w_{\ell_{1}} \cdots w_{\ell_{n-k+1}}\right]\left[\sum_{\ell_{1}<\cdots<\ell_{n-k-1}} w_{\ell_{1}} \cdots w_{\ell_{n-k-1}}\right] \\
& =b^{2} \sum_{\substack{\ell_{1}<\cdots<\ell_{n-k+1} \\
\ell_{1}^{\prime}<\cdots<\ell_{n-k-1}^{\prime}}} w_{\ell_{1}} \cdots w_{\ell_{n-k+1}} w_{\ell_{1}^{\prime}} \cdots w_{\ell_{n-k-1}^{\prime}} .
\end{aligned}
$$

Since in each summand defining $q_{k-1},\left|w_{\ell_{1}}\right| \leq\left|w_{k}\right| \leq(1 / A)\left|w_{k+1}\right|$, we have

$$
\left|w_{\ell_{1}} \cdots w_{\ell_{n-k+1}} w_{\ell_{1}^{\prime}} \cdots w_{\ell_{n-k-1}^{\prime}}\right| \leq \frac{1}{A} \prod_{\ell=k+1}^{n}\left|w_{\ell}\right|^{2}
$$

Therefore by (4.2),

$$
\left|q_{k-1} q_{k+1}\right| \leq \frac{1}{A}|b|^{2} \prod_{\ell=k+1}^{n}\left|w_{\ell}\right|^{2} \lesssim \frac{1}{A}\left|q_{k}\right|^{2}
$$

and hence $q_{k}^{2} \neq q_{k-1} q_{k+1}$ if $A \geq 1$ is chosen large enough.
So in order to prove the weak-type $(1,1)$ estimate in Theorem 1.1 it suffices to bound the integral operator T_{G} defined in 4.1) where on G we have $|R(t)|=|P(t) / Q(t)| \sim\left|p_{j} q_{k}^{-1}\right||t|^{j-k}$ and $j \neq k, k+1$. Before proceeding, we make a simple scaling by changing variables $t \mapsto c t$ in 4.1) (the bound in the weak-type estimate (1.2) is unaffected). Choosing the constant c appropriately, we may assume that $|R(t)| \sim|t|^{j-k}$ for $|t| \in G$. Hence on G we have $\left|R^{(n)}(t)\right| \lesssim|t|^{j-k-n}$ for any $n \geq 0$; furthermore if $n=0$, 1 or 2 , then $\left|R^{(n)}(t)\right| \sim|t|^{j-k-n}$ if $|t| \in G$. For ease of notation later on, we rewrite the exponents j, k as $r:=j-k$ and so $r \neq 0,1$. We record that for $|t| \in G$ and for every $n \geq 0$,

$$
\begin{equation*}
\left|R^{(n)}(t)\right| \lesssim|t|^{r-n} \quad \text { whereas } \quad\left|R^{(n)}(t)\right| \sim|t|^{r-n} \quad \text { for } n=0,1,2 \tag{4.3}
\end{equation*}
$$

We split the operator $T_{G}=T_{G}^{1}+T_{G}^{2}$ into two pieces where

$$
\begin{aligned}
T_{G}^{1} f(x) & =\int_{|t| \in G \cap[0,1]} f(x-t) e^{i R(t)} d t / t \\
T_{G}^{2} f(x) & =\int_{|t| \in G \cap[1, \infty)} f(x-t) e^{i R(t)} d t / t
\end{aligned}
$$

From Theorem 1.1 in [6], it follows that both T_{G}^{1} and T_{G}^{2} are bounded on L^{2} with bounds uniform in the coefficients of R. We now break up the analysis into two cases: (I) $r \geq 0$ (and hence $r \geq 2$ in fact) and (II) $r<0$.
4.1. Case (I): when $r \geq 0$. In this case, the kernel $K(t):=e^{i R(t)} / t$ is a Calderón-Zygmund kernel on $G \cap[0,1]$, satisfying the bounds $|K(t)| \lesssim$ $|t|^{-1}$ and $\left|K^{\prime}(t)\right| \lesssim|t|^{-2}$ for $|t| \in G \cap[0,1]$. Since T_{G}^{1} is bounded on L^{2}, it is a classical Calderón-Zygmund singular integral operator satisfying the weak-type estimate 1.2 with bounds uniform in the coefficients of R. For T_{G}^{2} we follow the arguments in [2], using the classical Calderón-Zygmund decomposition lemma to decompose our L^{1} function $f=g+b$ at level α, into a good function g (with nice L^{∞} bounds $\|g\|_{\infty} \lesssim \alpha$ so that the L^{2} theory of T_{G}^{2} controls the bound (1.2) on g), and a bad function $b=\sum_{I} b_{I}$ where the collection of disjoint dyadic intervals $\{I\}$ with side lengths $2^{L(I)}$ have the property that if $\operatorname{dist}(I, J) \leq 2^{L(I)}$, then $|L(I)-L(J)| \lesssim 1$ for any
two such intervals and $\sum_{I}|I| \lesssim\|f\|_{1} / \alpha$. Furthermore, $\left\|b_{I}\right\|_{1} \lesssim \alpha|I|$ and $\sum_{I}\left\|b_{I}\right\|_{1} \lesssim\|f\|_{1}$ for each I.

Matters are then reduced to establishing the weak-type bound 1.2 for the bad function b off the exceptional set $\bigcup_{I} I$. Here we deviate from the classical Calderón-Zygmund paradigm where one uses L^{1} estimates off the exceptional set. Instead we use L^{2} estimates exploiting the oscillation of the phase R and so we do not need any cancellation between positive and negative values of t in T_{G}. Thus we concentrate on establishing (1.2) for

$$
T^{+} b(x)=\int_{t \in G \cap[1, \infty)} b(x-t) e^{i R(t)} d t / t
$$

Furthermore we split the bad function $b=b_{\text {small }}+b_{\text {large }}$ into two parts where $b_{\text {small }}=\sum_{I: L(I)<0} b_{I}$ and $b_{\text {large }}=\sum_{I: L(I) \geq 0} b_{I}$, and apply T^{+}separately to these functions. We concentrate first on the more difficult $b_{\text {large }}$ and establish

$$
\begin{equation*}
\alpha\left|\left\{x \notin \bigcup_{I} I^{*}:\left|T^{+} b_{\text {large }}(x)\right| \geq \alpha\right\}\right| \lesssim\|f\|_{1} \tag{4.4}
\end{equation*}
$$

where I^{*} is the 2 -fold dilate of I. For $x \notin \bigcup_{I} I^{*}$, we observe that $T^{+} b(x)=$ $\sum_{I} T^{L(I)} b_{I}(x)$ where $T^{L} g(x)=\sum_{k \geq L} T_{k} g(x)$,

$$
T_{k} g(x)=2^{-k} \int_{t \in G} g(x-t) \psi\left(2^{-k} t\right) e^{i R(t)} d t
$$

and $\psi \in C_{0}^{\infty}(\mathbb{R})$ is an appropriate function supported in $[1,2]$.
According to [2], the bound (4.4) will follow from certain estimates on the kernel

$$
\begin{aligned}
& L_{\ell, m}(x, y) \\
& =\sum_{j \geq \ell} \sum_{k \geq m} 2^{-k-j} \int_{x-z, y-z \in G} \psi\left(2^{-k}(x-z)\right) \psi\left(2^{-j}(y-z)\right) e^{i(R(x-z)-R(y-z))} d z
\end{aligned}
$$

of $\left(T^{\ell}\right)^{*} T^{m}$; namely, if $0 \leq m \leq \ell$,

$$
\begin{equation*}
\left|L_{\ell, m}(x, y)\right| \lesssim \min \left((1+\ell-m) 2^{-\ell},|x-y|^{-2}\right) \tag{4.5}
\end{equation*}
$$

Before establishing (4.5), we recall how (4.4) follows from it. Using the identity $T^{+} b(x)=\sum_{I} T^{L(I)} b_{I}(x)$, valid off the exceptional set $\bigcup_{I} I^{*}$, we apply Chebyshev's inequality to bound the left side of (4.4) by

$$
\alpha^{-2}\left\|\sum_{I: L(I) \geq 0} T^{L(I)} b_{I}\right\|_{2}^{2}=\alpha^{-2} \sum_{I, J: L(I), L(J) \geq 0} \sum\left\langle\left(T^{L(I)}\right)^{*} T^{L(J)} b_{J}, b_{I}\right\rangle
$$

We split the double sum into two parts, depending on the relative sizes of $L(I)$ and $L(J)$; we will consider only that part of the sum where $L(J) \leq$ $L(I)$, without loss of generality. We fix I and show that the sum in J has
the bound

$$
\begin{equation*}
\sum_{J: L(J) \leq L(I)}\left\langle\left(T^{L(I)}\right)^{*} T^{L(J)} b_{J}, b_{I}\right\rangle \lesssim \alpha\left\|b_{I}\right\|_{1} \tag{4.6}
\end{equation*}
$$

which gives us the desired estimate (4.4) after summing over the dyadic intervals I.

We split the sum in (4.6) into two parts, where $\operatorname{dist}(J, I) \leq 2^{L(I)}$ and where $\operatorname{dist}(J, I) \geq 2^{L(I)}$. For those dyadic intervals J with $\operatorname{dist}(J, I) \leq 2^{L(I)}$, we have $|L(J)-L(I)| \lesssim 1$ implying that there are $O(1)$ terms in the J sum in this case. Furthermore in this case, $\left|L_{L(I), L(J)}(x, y)\right| \lesssim 2^{-L(I)}$ by 4.5) implying

$$
\left\langle\left(T^{L(I)}\right)^{*} T^{L(J)} b_{J}, b_{I}\right\rangle \lesssim|I|^{-1}\left\|b_{J}\right\|_{1}\left\|b_{I}\right\|_{1} \lesssim \alpha\left\|b_{I}\right\|_{1}
$$

Hence

$$
\sum_{\substack{J: L(J) \leq L(I) \\ \operatorname{dist}(J, I) \leq 2^{L(I)}}}\left\langle\left(T^{L(I)}\right)^{*} T^{L(J)} b_{J}, b_{I}\right\rangle \lesssim \alpha\left\|b_{I}\right\|_{1},
$$

which is the estimate 4.6 for this part of the sum.
We now examine the sum in J with $L(J) \leq L(I)$ and $\operatorname{dist}(J, I) \geq 2^{L(I)}$. Here we will use the bound $\left|L_{L(I), L(J)}(x, y)\right| \lesssim|x-y|^{-2}$ from 4.5) implying that

$$
\left\langle\left(T^{L(I)}\right)^{*} T^{L(J)} b_{J}, b_{I}\right\rangle \lesssim\left\|b_{I}\right\|_{1}\left\|b_{J}\right\|_{1} \min _{(x, y) \in I \times J}|x-y|^{-2} \lesssim \alpha\left\|b_{I}\right\|_{1} \int_{J}\left|x_{I}-y\right|^{-2} d y
$$

where x_{I} denotes the centre of I. Here we used the fact that $|x-y|$ is about constant as (x, y) varies over $I \times J$ when $\operatorname{dist}(J, I) \geq 2^{L(I)}$ and $L(J) \leq L(I)$. Now summing over the disjoint intervals J, we see

$$
\sum_{J: \operatorname{dist}(J, I) \geq 2^{L(I)}} \int_{J}\left|x_{I}-y\right|^{-2} d y \lesssim 2^{-L(I)} \lesssim 1
$$

since $L(I) \geq 0$ and so

$$
\sum_{\begin{array}{c}
J: L(J) \leq L(I) \\
\operatorname{dist}(J, I) \geq 2^{L(I)}
\end{array}}\left\langle\left(T^{L(I)}\right)^{*} T^{L(J)} b_{J}, b_{I}\right\rangle \lesssim \alpha\left\|b_{I}\right\|_{1}
$$

which completes the proof of 4.6 and hence 4.4 once we establish the estimate 4.5).

The estimate $\left|L_{\ell, m}(x, y)\right| \lesssim(1+\ell-m) 2^{-\ell}$ in 4.5 for $0 \leq m \leq \ell$ follows from the size of the z integration $2^{-\min (j, k)}$ of the integral defining $L_{\ell, m}(x, y)$. Hence

$$
\left|L_{\ell, m}(x, y)\right| \lesssim \sum_{j \geq \ell} \sum_{k \geq m} 2^{-j-k} 2^{-\min (j, k)} \lesssim(1+\ell-m) 2^{-\ell}
$$

To see $\left|L_{\ell, m}(x, y)\right| \lesssim|x-y|^{-2}$, we will integrate by parts twice to estimate the integral

$$
I_{j, k}(x, y):=2^{-j-k} \int_{x-z, y-z \in G} \psi\left(2^{-k}(x-z)\right) \psi\left(2^{-j}(y-z)\right) e^{i(R(x-z)-R(y-z))} d z .
$$

This requires a bound from below on the derivative of the phase function $\phi(z):=R(x-z)-R(y-z)$ as well as bounds from above on the first, second and third derivatives of ϕ. We write

$$
\phi^{(n)}(z)=(-1)^{n}(x-y) \int_{0}^{1} R^{(n+1)}(y-z+s(x-y)) d s
$$

for the nth derivative of ϕ and make the simple observation that $y-z+$ $s(x-y) \in G$ for all $0 \leq s \leq 1$ since $x-z, y-z \in G$ and G is an interval. Recall that by scaling and conjugating our operator with appropriate modulations from the outset, we have put ourselves in the favourable position where for every $n \geq 0,\left|R^{(n+1)}(w)\right| \lesssim|w|^{r-n-1}$ on G for some positive integer $r \geq 2$; furthermore, $\left|R^{\prime \prime}(w)\right| \sim|w|^{r-2}$ on G (see 4.3$)$). This translates into bounds for $\phi^{(n)}$; namely, for z such that $x-z, y-z \in G, x-z \sim 2^{k}$ and $y-z \sim 2^{j}$, we have

$$
\left|\phi^{\prime}(z)\right| \sim|x-y| 2^{\max (j, k)(r-2)}, \quad\left|\phi^{\prime \prime}(z)\right| \lesssim|x-y| \max (j, k) 2^{\max (j, k)(r-3)}
$$

and

$$
\left|\phi^{\prime \prime \prime}(z)\right| \lesssim|x-y| \cdot \begin{cases}\max (j, k) 2^{\max (j, k)(r-4)} & \text { if } r \geq 3 \\ 2^{-j-k} & \text { if } r=2\end{cases}
$$

Using the differential operator $D:=\left[i / \phi^{\prime}(z)\right](d / d z)$ so that $D e^{i \phi(z)}=e^{i \phi(z)}$, we have, by integrating by parts twice,

$$
I_{j, k}(x, y)=2^{-j-k} \int_{x-z, y-z \in G}\left[D^{*}\right]^{2}\left(\psi\left(2^{-k}(x-z)\right) \psi\left(2^{-j}(y-z)\right)\right) e^{i \phi(z)} d z
$$

where $D^{*} g(z)=(d / d z)\left[g(z) / i \phi^{\prime}(z)\right]$ is the formal adjoint of D. Using the above derivative bounds on ϕ, we see that

$$
\left|I_{j, k}(x, y)\right| \lesssim 2^{-\max (j, k)}|x-y|^{-2}
$$

which implies the estimate $\left|L_{\ell, m}(x, y)\right| \lesssim|x-y|^{-2}$ in (4.5).
To finish Case (I) where $r \geq 0$, we need to establish (4.4) with $b_{\text {large }}$ replaced with $b_{\text {small }}=\sum_{I: L(I)<0} b_{I}$. Instead of the original operator T^{+}, it suffices to apply T^{0} (which differs from T^{+}by an operator bounded uniformly on L^{1}) to $b_{\text {small }}$ and verify (4.4). Again applying Chebyshev's inequality to bound the left side of 4.4) by

$$
\begin{equation*}
\alpha^{-2}\left\|\sum_{I: L(I)<0} T^{0} b_{I}\right\|_{2}^{2}=\alpha^{-2} \sum_{I, J: L(I), L(J)<0} \sum\left\langle\left(T^{0}\right)^{*} T^{0} b_{J}, b_{I}\right\rangle, \tag{4.7}
\end{equation*}
$$

we use the basic estimates $\left|L_{0,0}(x, y)\right| \lesssim \min \left(1,|x-y|^{-2}\right)$ from 4.5 for the kernel of $\left(T^{0}\right)^{*} T^{0}$ to prove

$$
\begin{equation*}
\sum_{J: L(J) \leq L(I)}\left\langle\left(T^{0}\right)^{*} T^{0} b_{J}, b_{I}\right\rangle \lesssim \alpha\left\|b_{I}\right\|_{1} \tag{4.8}
\end{equation*}
$$

for each fixed dyadic interval I. Summing over the disjoint intervals I successfully bounds 4.7) for those intervals I, J with $L(J) \leq L(I)$. Of course the symmetric sum over those intervals with $L(I) \leq L(J)$ also holds. The proof of 4.8) is similar to (4.6); we split the sum into those J with $\operatorname{dist}(J, I)$ ≤ 1 and those with $\operatorname{dist}(J, I) \geq 1$. The bound $\left|L_{0,0}(x, y)\right| \lesssim 1$ implies

$$
\sum_{\substack{J: L(J) \leq L(I) \\ \operatorname{dist}(J, I) \leq 1}}\left\langle\left(T^{0}\right)^{*} T^{0} b_{J}, b_{I}\right\rangle \lesssim \alpha\left\|b_{I}\right\|_{1} \sum_{J: \operatorname{dist}(J, I) \leq 1}|J| \lesssim \alpha\left\|b_{I}\right\|_{1}
$$

by the disjointness of the intervals J and the fact that those J with $L(J) \leq$ $L(I) \leq 0$ and $\operatorname{dist}(J, I) \leq 1$ cover an interval of length at most 1.

We now examine the sum (4.8) when $L(J) \leq L(I)$ and $\operatorname{dist}(J, I) \geq 1$. Here we will use the bound $\left|L_{0,0}(x, y)\right| \lesssim|x-y|^{-2}$ implying that

$$
\left\langle\left(T^{0}\right)^{*} T^{0} b_{J}, b_{I}\right\rangle \lesssim\left\|b_{I}\right\|_{1}\left\|b_{J}\right\|_{1} \min _{(x, y) \in I \times J}|x-y|^{-2} \lesssim \alpha\left\|b_{I}\right\|_{1} \int_{J}\left|x_{I}-y\right|^{-2} d y
$$

as before. Now summing over the disjoint intervals J, we see

$$
\sum_{J: \operatorname{dist}(J, I) \geq 1} \int_{J}\left|x_{I}-y\right|^{-2} d y \lesssim 1
$$

since $L(I)<0$ and $\operatorname{dist}(J, I) \geq 1$. Hence

$$
\sum_{\substack{J: L(J) \leq L(I) \\ \operatorname{dist}(J, I) \geq 1}}\left\langle\left(T^{0}\right)^{*} T^{0} b_{J}, b_{I}\right\rangle \lesssim \alpha\left\|b_{I}\right\|_{1},
$$

which completes the proof of 4.8 and hence Case (I).
4.2. Case (II): when $r<0$. In this case, the kernel $K(t):=e^{i R(t)} / t$ is a Calderón-Zygmund kernel on $G \cap[1, \infty)$, satisfying the bounds $|K(t)| \lesssim|t|^{-1}$ and $\left|K^{\prime}(t)\right| \lesssim|t|^{-2}$ for $|t| \in G \cap[1, \infty)$. Since T_{G}^{2} is bounded on L^{2}, it is a classical Calderón-Zygmund singular integral operator and so satisfies the weak-type estimate (1.2) with bounds uniform in the coefficients of R. For T_{G}^{1} we use the following result of C. Fefferman about strongly singular integral operators (see [4]).

Theorem 4.3. Let K be a tempered distribution on \mathbb{R}, agreeing with a locally integrable function away from the origin with compact support. Suppose that for all $\xi \in \mathbb{R}$, we have $|\hat{K}(\xi)| \leq A(1+|\xi|)^{-\theta / 2}$, and for all
$y \in \mathbb{R}$, we have

$$
\begin{equation*}
\int_{|x| \geq 2|y|^{1-\theta}}|K(x-y)-K(x)| d x \leq A \tag{4.9}
\end{equation*}
$$

for some $A>0$ and $0 \leq \theta<1$. Then the operator T given by convolution with K is weak-type $(1,1)$ with bounds depending only on A and θ.

We will apply this theorem to the kernel of T_{G}^{1}. Again, due to the oscilllation of the phase R, we do not need any possible cancellation between positive and negative values of t and so we treat them separately. We will verify the Fourier decay estimate $|\hat{K}(\xi)| \lesssim(1+|\xi|)^{-\theta / 2}$ and 4.9) for $K(t)=\chi_{[0,1] \cap G}(t) e^{i R(t)} / t$ with $\theta=|r| /(|r|+1)$. Similar estimates hold when t is negative and so for the entire kernel of T_{G}^{1}, giving us the desired estimate (1.2) for T_{G}^{1} in Case (II).

Since $\left|R^{(n)}(t)\right| \sim|t|^{-|r|-n}$ for $t \in G$ and every $n \geq 0$ (see (3.10), we see that for $|x| \geq 2|y|$,

$$
|K(x-y)-K(x)| \lesssim|y| /|x|^{2+|r|}
$$

and so the regularity condition (4.9) holds for $\theta=|r| /(|r|+1)$ with a constant A which can be taken to be independent of the coefficients of R. Next we claim that the uniform estimate

$$
\begin{equation*}
\left|\int_{t \in[0,1] \cap G} e^{i[R(t)-\xi t]} \frac{d t}{t}\right| \lesssim(1+|\xi|)^{-|r| / 2(|r|+1)} \tag{4.10}
\end{equation*}
$$

holds which shows $|\hat{K}(\xi)| \lesssim(1+|\xi|)^{-\theta / 2}$ for $\theta=|r| /(|r|+1)$. This will complete our analysis of Case (II) by Theorem 4.3. Since $R^{\prime \prime}$ does not vanish on G, there is at most one critical point of the phase $R(t)-\xi t$, and if such a critical point t_{*} exists, then $|\xi|=\left|R^{\prime}\left(t_{*}\right)\right| \sim\left|t_{*}\right|^{-|r|-1}$ or $\left|t_{*}\right| \sim|\xi|^{-1 /(|r|+1)}$. This only happens if $|\xi| \gtrsim 1$. If $|\xi| \lesssim 1$, there is no critical point and the estimate $|\hat{K}(\xi)| \lesssim 1$ follows easily from an integration by parts argument. We will assume from now on that $|\xi| \gtrsim 1$ and the critical point t_{*} exists. We split the integral in (4.10) into three parts

$$
\mathrm{I}+\mathrm{II}+\mathrm{III}=\int_{0}^{(1 / B) t_{*}} \ldots d t / t+\int_{(1 / B) t_{*}}^{B t_{*}} \ldots d t / t+\int_{B t_{*}}^{1} \ldots d t / t
$$

for some absolute, uniform constant B.
It is understood that the integrals defining I, II and III are taken over our gap G as well so that the derivative estimates 3.10 of R hold. In particular, on $\left[B t_{*}, 1\right]$ the estimate $\left|R^{\prime}(t)-\xi\right| \gtrsim|\xi|$ holds if B is large enough and so integrating by parts gives the (better than desired) estimate $|I I I| \lesssim|\xi|^{-|r| /(|r|+1)}$. Similarly, on the interval $\left[0,(1 / B) t_{*}\right]$ we have the bound $\left|R^{\prime}(t)-\xi\right| \gtrsim|t|^{-|r|-1}$, which together with our upper bounds on
$R^{\prime \prime}$ gives the same estimate $|\mathrm{I}| \lesssim|\xi|^{-|r| /(|r|+1)}$ by an integration by parts argument. Finally we turn to II, which is the main contribution to \hat{K}. Using the bound $\left|R^{\prime \prime}(t)\right| \sim|t|^{-|r|-2} \sim|\xi|^{(|r|+2) /(|r|+1)}$ on $\left[[1 / B] t_{*}, B t_{*}\right]$, we can apply van der Corput's lemma (see for example, Proposition 2 in Chapter VIII of [11]), together with an integration by parts, to see the desired estimate $|\mathrm{II}| \lesssim|\xi|^{-|r| / 2(|r|+1)}$, which completes the proof that $|\hat{K}(\xi)| \lesssim(1+|\xi|)^{-|r| / 2(|r|+1)}$ and hence Case (II).
5. Proof of Theorem 1.2. The theorem comes in two parts, depending on the relationship of the degrees of P and Q defining our rational phase $R=P / Q$. Recall that we cannot expect to obtain bounds which are uniform in the coefficients of R. We split our operator T in (1.1) into three parts $T=T_{1}+T_{2}+T_{3}$ where

$$
\begin{aligned}
& T_{1} f(x):=\int_{\mathbb{R}} f(x-t) \psi_{1}(t) e^{i R(t)} \frac{d t}{t} \\
& T_{2} f(x)=\int_{\mathbb{R}} f(x-t) \psi_{2}(t) e^{i R(t)} \frac{d t}{t} \\
& T_{3} f(x)=\int_{\mathbb{R}} f(x-t) \psi_{3}(t) e^{i R(t)} \frac{d t}{t}
\end{aligned}
$$

the three smooth functions are even and satisfy $\psi_{1}(t)+\psi_{2}(t)+\psi_{3}(t)=1$ for all $t \in \mathbb{R}$. The cut-off function ψ_{1} is supported in a sufficiently small neighbourhood of the origin, $\psi_{2}(t)$ vanishes for $|t|$ small and $|t|$ large and $\psi_{3}(t)$ is supported for $|t|$ sufficiently large. The operator T_{2} maps $H^{1}(\mathbb{R})$ into itself but with bounds that will depend on the coefficients of R in general. By classical Hardy space theory (see for example Theorem 4 in Chapter III of [11), this follows from the fact that T_{2} is bounded on L^{2} and the kernel K_{2} of T_{2} satisfies the regularity estimates

$$
\begin{equation*}
|K(x)| \leq C|x|^{-1} \quad \text { and } \quad|K(x-y)-K(x)| \leq C|y| /|x|^{2} \quad \text { for }|x| \geq 2|y| \tag{5.1}
\end{equation*}
$$

for some constant C which depends in general on the coefficients of R. Therefore to prove Theorem 1.2, it suffices to concentrate on T_{1} and T_{3}.

The choice of ψ_{1}, ψ_{2} and ψ_{3} will depend on the coefficients of R and be such that the $|t|$ support of ψ_{1} will be contained in the gap $G_{0}:=\left[0,(1 / A) s_{1}\right]$ at the origin and that of ψ_{3} contained in the gap $G_{\infty}:=\left[A s_{3}, \infty\right)$ at infinity (here s_{1} and s_{3} are the smallest and largest modulus of all the roots of P and Q, respectively). Hence $|R(t)| \sim c|t|^{r_{1}}$ for $|t| \in G_{0}$ and $|R(t)| \sim$ $d|t|^{r_{3}}$ for $|t| \in G_{\infty}$ for some $r_{1}, r_{3} \in \mathbb{Z}$ and $c, d>0$. We may assume that both exponents r_{1} and r_{3} are nonzero since we are at liberty to change the phase R by any constant $R(t)-c$ without affecting the Hardy space norm $H^{1}(\mathbb{R})$ (here general linear perturbations $R(t)-a-b t$ are not allowed as
was the case for the weak-type $(1,1)$ estimates). In fact the $r_{1}=j_{1}-k_{1}$ exponent arises from the lowest terms $P(t)=p_{d} t^{d}+\cdots+p_{j_{1}} t^{j_{1}}, Q(t)=$ $q_{e} t^{e}+\cdots+q_{k_{1}} t^{k_{1}}$ in P and Q; if $j_{1}=k_{1}$, then choosing c such that $p_{j_{1}}=$ $c q_{j_{1}}$ guarantees that the new rational phase $R(t)-c=[P(t)-c Q(t)] / Q(t)$ for the operator T_{1} behaves like $t^{r_{1}}$ with $r_{1} \neq 0$. Also the exponent $r_{3}=$ $d-e$ is the difference of the degrees of P and Q; if $d=e$, then choosing c such that $p_{d}=c q_{d}$ guarantees that the new rational phase $R(t)-c$ for the operator T_{3} behaves like $t^{r_{3}}$ with $r_{3} \neq 0$. Important: although we may change the phase in the operators T_{1} and T_{3} to guarantee that $r_{1}, r_{3} \neq 0$, the dichotomy degree $(P)=\operatorname{degree}(Q)+1$ or $\operatorname{degree}(P) \neq \operatorname{degree}(Q)+1$ remains unchanged!

Therefore from (3.6) and (3.10), we may assume that the phase R in T_{1} satisfies

$$
\begin{equation*}
|R(t)| \sim c|t|^{r_{1}} \quad \text { and } \quad\left|R^{\prime}(t)\right| \sim c^{\prime}|t|^{r_{1}-1} \tag{5.2}
\end{equation*}
$$

for $t \in \operatorname{support}\left(\psi_{1}\right), c, c^{\prime}>0$ and some $r_{1} \neq 0$. Also we may assume that the phase R in T_{3} satisfies

$$
\begin{equation*}
|R(t)| \sim d|t|^{r_{3}} \quad \text { and } \quad\left|R^{\prime}(t)\right| \sim d^{\prime}|t|^{r_{3}-1} \tag{5.3}
\end{equation*}
$$

for $t \in \operatorname{support}\left(\psi_{3}\right), d, d^{\prime}>0$ and some $r_{3} \neq 0$. In both cases upper bounds $\left|R^{(n)}\right| \lesssim c_{n}|t|^{r-n}$ hold for every $n \geq 0$ for $r=r_{1}$ or $r=r_{3}$, respectively. Furthermore, if $r_{3} \neq 1$ (which will be the case when degree $(P) \neq \operatorname{degree}(Q)$ $+1)$, then $\left|R^{\prime \prime}(t)\right| \sim d^{\prime \prime}|t|^{r_{3}-2}$ for $t \in \operatorname{support}\left(\psi_{3}\right)$ and some $d^{\prime \prime} \neq 0$.

Hence if $r_{1} \geq 1$ in (5.2) and/or $r_{3} \leq-1$ in (5.3), then the regularity condition $(\sqrt{5.1})$ is satisfied by the kernels of T_{1} and/or T_{3}, and together with the L^{2} boundedness of these operators we can conclude that T_{1} and/or T_{3} maps H^{1} into itself.

We are now in a position to give a proof of part (1) of Theorem 1.2, which assumes that degree $(P) \neq \operatorname{degree}(Q)+1$. In particular this condition on the degrees implies that the exponent r_{3} is not 1 . From the remarks above it therefore suffices to prove $T_{1}, T_{3}: H^{1} \rightarrow H^{1}$ when $r_{1} \leq-1$ and $r_{3} \geq 2$. Let us consider T_{1} first, where, as we have seen from the previous section, the kernel K_{1} satisfies the conditions of Theorem 4.3 with $\theta=\left|r_{1}\right| /\left(\left|r_{1}\right|+1\right)$. As shown by C. Fefferman and E. M. Stein [5], such strongly singular integral operators map H^{1} into itself. For the operator T_{3}, we appeal to the work of D. Fan and Y. Pan [3] who proved that oscillatory singular integral operators map H^{1} into itself for general phase functions which satisfy the derivative bounds $|R(t)| \sim a|t|^{r},\left|R^{\prime}(t)\right| \sim b|t|^{r-1},\left|R^{\prime \prime}(t)\right| \sim c|t|^{r-2}$ and $\left|R^{\prime \prime \prime}(t)\right| \lesssim d|t|^{r-3}$ for some $r \neq 0,1$; see [3].

Finally we turn to the proof of part (2) of Theorem 1.2, where we assume $\operatorname{degree}(P)=\operatorname{degree}(Q)+1$ and in particular $r_{3}=1$. As before, the operators T_{1} and T_{2} map H^{1} into itself and so it suffices to show that the operator T_{3}
does not map H^{1} into $L^{1, q}$ for any $q<\infty$. Write

$$
P(t)=p_{d} t^{d}+\cdots+p_{0} \quad \text { and } \quad Q(t)=q_{d-1} t^{d-1}+\cdots+q_{0}
$$

and $T_{3}=T_{3}^{1}+T_{3}^{2}$ where

$$
\begin{aligned}
& T_{3}^{1} f(x)=\int_{\mathbb{R}} f(x-t) \psi_{3}(t) e^{i\left(\left(p_{d} / q_{d-1}\right) t+c\right)} \frac{d t}{t}, \\
& T_{3}^{2} f(x)=\int_{\mathbb{R}} f(x-t) \psi_{3}(t)\left[e^{i R(t)}-e^{i\left(\left(p_{d} / q_{d-1}\right) t+c\right)}\right] \frac{d t}{t} .
\end{aligned}
$$

The constant c is chosen so that $p_{d}-c q_{d-1}-p_{d} q_{d-2} / q_{d-1}=0$, which implies that the kernel $K_{3}^{2}(t)=\psi_{3}(t)\left[e^{i R(t)}-e^{i\left(\left(p_{d} / q_{k-1}\right) t+c\right)}\right] / t$ of T_{3}^{2} is integrable, satisfying $\left|K_{3}^{2}(t)\right| \leq C|t|^{2}$. Hence T_{3}^{2} maps H^{1} into H^{1} and this leaves T_{3}^{1}, which we have already seen does not map H^{1} into $L^{1, q}$ for any $q<\infty$. This completes the proof of Theorem 1.2.

Acknowledgements. The first author acknowledges financial support from Proyecto CONACyT-DAIC U48633-F.

The second author would like to thank for the warm hospitality of the Instituto de Matemáticas, Universidad Nacional Autónoma de México where the research for this paper was conducted.

References

[1] A. Carbery, F. Ricci and J. Wright, Maximal functions and Hilbert transforms associated to polynomials, Rev. Mat. Iberoamer. 14 (1998), 117-144.
[2] S. Chanillo and M. Christ, Weak $(1,1)$ bounds for oscillatory singular integrals, Duke Math. J. 55 (1987), 141-155.
[3] D. Fan and Y. Pan, Boundedness of certain oscillatory singular integrals, Studia Math. 114 (1995), 105-116.
[4] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36.
[5] C. Fefferman and E. M. Stein, H^{p} spaces of several variables, Acta Math. 129 (1972), 137-193.
[6] M. Folch-Gabayet and J. Wright, An oscillatory integral estimate associated to rational phases, J. Geom. Anal. 13 (2003), 291-299.
[7] M. Folch-Gabayet and J. Wright, Singular integral operators associated to curves with rational components, Trans. Amer. Math. Soc. 360 (2008), 1661-1679.
[8] Y. Pan, Hardy spaces and oscillatory singular integrals, Rev. Mat. Iberoamer. 7 (1991), 55-64.
[9] D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms I, Acta Math. 157 (1986), 99-157.
[10] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals, J. Funct. Anal. 73 (1987), 179-194.
[11] E. M. Stein, Harmonic Analysis, Princeton Univ. Press, 1993.

Magali Folch-Gabayet
Instituto de Matemáticas
Universidad Nacional Autónoma de México
Ciudad Universitaria
México D.F., 04510, México
E-mail: folchgab@matem.unam.mx

James Wright
Maxwell Institute of Mathematical Sciences and the School of Mathematics

University of Edinburgh
JCMB, King's Buildings
Mayfield Road
Edinburgh EH9 3JZ, Scotland
E-mail: j.r.wright@ed.ac.uk

[^0]: 2010 Mathematics Subject Classification: 42B15.
 Key words and phrases: singular integrals, rational phases, weak-type (1, 1), Hardy spaces.

