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Weak-type (1, 1) bounds for oscillatory singular integrals
with rational phases

by

Magali Folch-Gabayet (México) and James Wright (Edinburgh)

Abstract. We consider singular integral operators on R given by convolution with a
principal value distribution defined by integrating against oscillating kernels of the form
eiR(x)/x where R(x) = P (x)/Q(x) is a general rational function with real coefficients. We
establish weak-type (1, 1) bounds for such operators which are uniform in the coefficients,
depending only on the degrees of P and Q. It is not always the case that these operators
map the Hardy space H1(R) to L1(R) and we will characterise those rational phases
R(x) = P (x)/Q(x) which do map H1 to L1 (and even H1 to H1).

1. Introduction. There has been considerable attention given to the
study of the mapping properties of oscillatory integral operators of the form

(1.1) Tf(x) = p.v.
�

R

eiR(y)

y
f(x− y) dy,

as well as their nonconvolution and higher-dimensional analogues. See, for
example, [9], [4], [5], [10], [2], [8] and [3]. Various Lp, weak-type (1, 1) and
Hardy space estimates have been proved when R(x) is a polynomial or
behaves like a power |x|a for positive or negative exponents a. Here we
would like to consider the class of rational functions which unifies in some
sense previous known results while giving uniform estimates on L1. Our
main result is the following.

Theorem 1.1. Let R(x) = P (x)/Q(x) be a rational function with real
coefficients and consider the associated operator T given in (1.1). Then T
is weak-type (1, 1) with bounds depending only on the degrees of P and Q.
More precisely,

(1.2) α |{x ∈ R : |Tf(x)| ≥ α}| ≤ C‖f‖L1(R)

with a constant C depending only on the degrees of P and Q, and in partic-
ular, C can be taken to be independent of the coefficients.
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From Theorem 1.1 in [6] one easily deduces that T is bounded on L2(R)
with bounds which are uniform in the coefficients. Therefore by duality and
interpolation with (1.2), we obtain uniform Lp, 1 < p <∞, estimates for T .

We now state a result on the classical Hardy space H1(R). It is well
known that when R(x) = bx for some b ∈ R \ {0}, then the associated
operator T does not map H1 to L1, and even more, T : H1 → L1,q only for
q =∞. In fact if f is a smooth H1 atom supported on (−1, 1) such that the

Fourier transform f̂(b) does not vanish, then for large x,

Tf(x) =
�

R

eib(x−y)

x− y
f(y) dy =

eibx

x
f̂(b) +O(|x|−2).

Therefore any positive result establishing T : H1 → L1,q for some q < ∞
for general rational phases will not be uniform in the coefficients. We make
the following observation.

Theorem 1.2. Let R(x) = P (x)/Q(x) be a real rational function with
d equal to the degree of P and e equal to the degree of Q. Consider the
associated operator T given in (1.1).

(1) If d 6= e+ 1, then T : H1(R)→ H1(R).
(2) If d = e+ 1, then T : H1(R)→ L1,q(R) if and only if q =∞.

Notation. Let A,B be positive quantities. We use the notation A . B
or A = O(B) to denote the estimate A ≤ CB where C depends only on the
degrees of P and Q. We use A ∼ B to denote the estimates A . B . A.

2. Idea of the proof for Theorem 1.1. Here we sketch the main
ideas for bounding the oscillatory singular integral operator T given by
(1.1) when R(x) = P (x)/Q(x) is a rational function with real coefficients.
By factoring the polynomials P and Q into linear factors, it is easy to see
that outside a bounded number of “dyadic” intervals, P and Q behave like
various monomials on the complementary intervals (see Lemma 3.1 below).
Hence we can reduce ourselves to bounding

(2.1) TGf(x) =
�

|y|∈G

f(x− y)
eiR(y)

y
dy

where G is an interval of R+ (possibly very long) on which the rational
function |R(y)| = |P (y)/Q(y)| ∼ |c| |y|j−k behaves like a monomial for some
nonnegative integers j, k ≥ 0.

The main effort is to ensure that various derivatives of R have the ex-
pected behaviour on G. When this is the case and when j ≥ k, say, then

�

|y|∈G∩[0,1]

f(x− y)
eiR(y)

y
dy
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is a classical Calderón–Zygmund singular integral operator. Hence we obtain
weak-type (1, 1) bounds for this part of the operator, and using a simple scal-
ing argument, we can ensure that the bounds are uniform in the coefficients.
For the part of the operator near infinity,

�

|y|∈G∩[1,∞)

f(x− y)
eiR(y)

y
dy,

we employ the arguments of Christ and Chanillo in [2] where weak-type (1, 1)
estimates are obtained for general oscillatory singular integral operators with
polynomial phases.

When j < k, the part of the operator near infinity is a classical Calderón–
Zygmund singular integral operator and for the part near the origin, the
operator is a strongly singular integral operator of the type treated by C. Fef-
ferman in [4].

3. Preliminaries and reductions. The following lemmas are variants
of results appearing in [1], [6] and [7]. We give the proofs for the convenience
of the reader.

Lemma 3.1. Let P (t) = a
∏d
j=1(t− zj) =

∑d
k=0 pkt

k be a polynomial of
degree d whose roots are ordered so that |z1| ≤ · · · ≤ |zd|. For each A > 0, we
define the following intervals (possibly empty) on R+: for 1 ≤ j ≤ d− 1, we
set Gj = Gj(A) := [A|zj |, A−1|zj+1|], and for j = d, we set Gd := [A|zd|,∞).
Furthermore if z1 6= 0, we set G0 = G0(A) = [0, A−1|z1|].

Then there exists a constant C = C(d) > 0 such that for any A ≥ C(d)
and 0 ≤ j ≤ d with Gj is nonempty,

(i) |P (t)| ∼ |pj | |t|j for |t| ∈ Gj, and

(ii) |pj | ∼ |a|
∏d
`=j+1 |z`|; in particular pj 6= 0.

Proof. From the factorisation P (t) = a
∏

(t−zj), we see that for |t| ∈ Gj
(and any A > 1),

(1− 1/A)d|a|
[ d∏
`=j+1

|z`|
]
≤ |P (t)|/|t|j ≤ (1 + 1/A)d|a|

[ d∏
`=j+1

|z`|
]
,

which shows that (i) follows from (ii). To establish (ii) we write

pj = (−1)ja
∑

`1<···<`d−j

z`1 · · · z`d−j

= (−1)ja
∑

`1<···<`d−j
`1≤j

z`1 · · · z`d−j + (−1)jazj+1 · · · zd = I + II
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and hence since |z`| ≤ (1/A)|z`′ | whenever ` ≤ j ≤ `′ − 1,

A|I| . |a| |zj+1| · · · |zd| = |II|.
Therefore if A ≥ 1 is large enough,

|pj | ∼ |II| = |a|
d∏

`=j+1

|z`|,

establishing (ii) and hence (i).

Remark 3.2. Lemma 3.1(i) shows that with respect to P , R+ can be
decomposed into disjoint intervals:

R+ =
M⋃
`=0

G` ∪
M−1⋃
`=1

D`

(M = O(1)), which depend on the choice of A, where the D` are dyadic
in the sense that if D` = [a, b), then b/a = O(1). On the complementary
intervals G` (which we call gaps), if |t| ∈ G`, then |P (t)| ∼ |pj` | |t|j` for some
j` ≥ 0 (and of course pj` 6= 0). See [1].

For a rational function R = P/Q, where P (t) = a
∏d
`=1(t− z`), Q(t) =

b
∏e
`=1(t − w`) with |z1| ≤ · · · ≤ |zd| and |w1| ≤ · · · ≤ |we|, Lemma

3.1 tells us that |R(t)| ∼ |pj/qk| |t|j−k on a gap G = [A|zj |, A−1|zj+1|] ∩
[A|wk|, A−1|wk+1|], if A ≥ 1 is large enough. We now examine derivatives of
R on G in the following two lemmas. We begin with the case j ≥ k.

Lemma 3.3. Let R = P/Q be a rational function and G a gap as de-
scribed above. Then for any integer n ≥ 0, A ≥ Cn can be chosen large
enough so that on G, if j ≥ k,

(3.1) R(n)(t) = R(t)

[ ∑
k+1≤`1 6=···6=`n≤j

n∏
m=1

1

t− z`m
+ En(t)

]
where |(d/dt)rEn(t)| . Cn,rA

−1|t|−n−r on G for all r ≥ 0.

Proof. We begin with the case n = 1:

R′(t) = R(t)[P ′(t)/P (t)−Q′(t)/Q(t)] = R(t)

[ d∑
`=1

1

t− z`
−

e∑
`=1

1

t− w`

]
.

We make the following two simple observations on G:

(3.2)

∣∣∣∣ 1

t− z`

∣∣∣∣, ∣∣∣∣ 1

t− w`′

∣∣∣∣ ≤ C[A|t|]−1, ` > j, `′ > k,

and

(3.3)

∣∣∣∣ 1

t− z`
− 1

t− w`′

∣∣∣∣ =
|z` − w`′ |

|t− z`| |t− w`′ |
≤ C[A|t|]−1, `, `′ ≤ k.
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Hence

R′ = R

[ j∑
`=k+1

1

t− z`
+ E1(t)

]
where

E1(t) =
k∑
`=1

[
1

t− z`
− 1

t− w`

]
+

d∑
`=j+1

1

t− z`
−

e∑
`=k+1

1

t− w`

satisfies |E(r)
1 (t)| ≤ CA−1|t|−r−1 for all r ≥ 0 on G by (3.2) and (3.3),

establishing (3.1) when n = 1.
The proof now proceeds by induction on n; if (3.1) holds for derivatives

up to order n− 1, then

R(n)(t) = R′(t)

[ ∑
k+1≤`1 6=···6=`n−1≤j

n−1∏
m=1

1

t− z`m
+ En−1(t)

]

+R(t)

[
−
n−1∑
r=1

∑
k+1≤`1 6=···6=`n−1≤j

1

(t−z`1)
· · · 1

(t−z`r)2
· · · 1

(t−z`n−1)
+E′n−1(t)

]

= R(t)

[ ∑
k+1≤`1 6=···6=`n−1≤j

k+1≤`≤j

1

t− z`

n−1∏
m=1

1

t− z`m

−
n−1∑
r=1

∑
k+1≤`1 6=···6=`n−1≤j

1

(t− z`r)2
∏

1≤m≤n−1
m 6=r

1

(t− z`m)
+ En(t)

]

where

En(t) = En−1(t)

( j∑
`=k+1

1

t− z`
+ E1(t)

)

+ E1(t)
∑

k+1≤`1 6=···6=`n−1≤j

n−1∏
m=1

1

t− z`
+ E′n−1(t)

is easily seen to satisfy the derivative bounds on G, proving (3.1) for gen-
eral n.

Remarks 3.4.

• It will be important for us to keep track of the number of terms in the
sum

(3.4)
∑

k+1≤`1 6=···6=`n≤j

n∏
m=1

1

t− z`m
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appearing in (3.1). The number of terms is

(j − k)(j − k − 1) · · · (j − k − n+ 1).

This shows in particular that (3.4) is empty (and hence equal to zero)
if 0 ≤ j − k ≤ n− 1.
• Since the sum (3.4) is zero when 0 ≤ j − k ≤ n − 1, Lemma 3.3

only gives a bound from above on the nth derivative of R; namely,
|R(n)(t)| . |R(t)| |t|−n for |t| ∈ G. For j− k ≥ n, we can in fact bound
|R(n)(t)/R(t)| from below.

When j − k ≥ n, the sum (3.4) is nonempty and we have

(3.5)

∣∣∣∣ ∑
k+1≤`1 6=···6=`n≤j

n∏
m=1

1

t− z`m

∣∣∣∣ ∼ |t|−n.
The upper bound follows easily from (3.2). For the lower bound, we use the
fact |z| ≥ Re(z) to see that the left hand side is larger than∣∣∣∣ ∑

k+1≤`1 6=···6=`n≤j

n∏
m=1

Re
∏n
s=1(t− z`s)∏n

s=1 |t− z`s |2

∣∣∣∣
=

∣∣∣∣ ∑
k+1≤`1 6=···6=`n≤j

Re[tn +O(A−1tn)]

|t|2n +O(A−1t2n)

∣∣∣∣,
which in turn is larger than |t|−n on G if A ≥ 1 is large enough, since
|z`| . A−1|t| on G whenever ` ≤ j.

The bound (3.5), together with the error bound |En(t)| . A−1|t|−n,
shows that if j − k ≥ n, then

(3.6) |R(n)(t)/R(t)| ∼ |t|−n

for |t| ∈ G if A ≥ 1 is large enough.

We now turn to the case j < k, which unfortunately is somewhat more
involved. As in the case k ≤ j it will be important for us to keep track
of the number of terms in various sums. To this end we associate to every
strictly positive multi-index α = (α1, . . . , αr), αi > 0, 1 ≤ i ≤ r, a size
|α| = α1 + · · ·+ αr and a length l(α) = r.

Lemma 3.5. Let R = P/Q and G be as in Lemma 3.3 but where now
j < k. For any integer n ≥ 1, A ≥ Cn can be chosen large enough so that
on G,
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(3.7) R(n)(t) = R(t)

[
(−1)n

n∑
m=1

∑
|α|=n
l(α)=m

d(α)

×
∑

j+1≤`1,...,`m≤k

1

(t− w`1)α1
. . .

1

(t− w`m)αm
+ Fn(t)

]

where |(d/dt)rFn(t)| . Cn,rA
−1|t|−n−r for all r ≥ 0. Here {d(α)} are com-

binatorial numbers defined on strictly positive multi-indices α such that the
sums

cm(n) =
∑

|α|=n, l(α)=m

d(α)

are the well-known Stirling numbers of the second kind, i.e., {cm(n)}nm=1

are the coefficients of the polynomial

x(x+ 1) · · · (x+ n− 1) =

n∑
m=1

cm(n)xm.

Proof. For n = 1 we argue exactly as in Lemma 3.3, using (3.3) and
(3.2) to obtain

(3.8) R′(t) = R(t)

[
−

k∑
`=j+1

1

t− w`
+ F1(t)

]
where F1 satisfies the appropriate derivative estimates on G. For general n
we argue by induction; if (3.7) holds for all derivatives up to order n, then

R(n+1)(t) = R′(t)

[
(−1)n

n∑
m=1

∑
|α|=n
l(α)=m

d(α)

×
∑

j+1≤`1,··· ,`m≤k

1

(t− w`1)α1
. . .

1

(t− w`m)αm
+ Fn(t)

]

+R(t)
[
(−1)n+1

n∑
m=1

∑
|α|=n
(α)=m

d(α)

m∑
r=1

αr

×
∑

j+1≤`1,...,`m≤k

1

(t− w`1)α1
· · · 1

(t− w`r)αr+1
· · · 1

(t− w`m)αm
+ F ′n(t)

]
.

Using (3.8) we obtain
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(3.9) R(n+1)(t) = R(t)

[
(−1)n+1

n∑
m=1

∑
|α|=n
l(α)=m

d(α)

×
∑

j+1≤`1,...,`m,`≤k

1

(t− w`1)α1
· · · 1

(t− w`m)αm
1

t− w`

+ (−1)n+1
n∑

m=1

∑
|α|=n, l(α)=m

d(α)

m∑
r=1

αr

×
∑

j+1≤`1,...,`m≤k

1

(t− w`1)α1
· · · 1

(t− w`r)αr+1
· · · 1

(t− w`m)αm
+ Fn+1(t)

]
where

Fn+1(t) = Fn(t)

[
−

k∑
`=j+1

1

t− w`
+ F ′n(t)

]

+

[
(−1)nF1(t)

n∑
m=1

∑
|α|=n, l(α)=m

d(α)

×
∑

j+1≤`1,...,`m≤k

1

(t− w`1)α1
· · · 1

(t− w`m)αm

]
.

satisfies the required derivative estimates on G.

Expressing R(n+1)(t) in the form (3.7) we see from (3.9) that the coeffi-
cients

cm(n+ 1) =
∑
|α|=n+1
l(α)=m

d(α)

satisfy the recursive formulae

cn+1(n+ 1) = 1, ck(n+ 1) = nck(n) + ck−1(n), k = 1, . . . , n,

where c0(n) = 0. These are the defining formulae for Stirling numbers of the
second kind; the equivalent property for these numbers as the coefficients
of the polynomial with roots at consecutive negative integers can be easily
derived by induction:

x(x+ 1) · · · (x+ n− 1) =

n∑
k=1

ck(n)xk

and so

x(x+ 1) · · · (x+ n) =
n∑
k=1

ck(n)xk+1 +
n∑
k=1

nck(n)xk
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= nc1(n)x+
n∑
k=2

(nck(n) + ck−1(n))xk + xn+1 =
n+1∑
k=1

ck(n+ 1)xk

by the above recursive formulae, completing the proof of Lemma 3.5.

Remark 3.6. The number of terms in the sum occurring in (3.7) is
n∑

m=1

∑
|α|=n
l(α)=m

d(α)(k − j)m =

n∑
m=1

cm(n)(k − j)m

= (k − j)(k − j + 1) · · · (k − j + n− 1).

Suppose that A = {α} is an O(1) collection of strictly positive multi-
indices of size n; that is, |α| = n for every α ∈ A. Furthermore, suppose for
each α ∈ A there is an associated collection {z`1 , . . . , z`m} where m = l(α)
and `1, . . . , `m ≤ j. Then the argument establishing (3.5) shows∣∣∣∑

α∈A
(t− z`1)−α1 · · · (t− z`m)−αm

∣∣∣ ∼ |t|−n.
Hence in the case j < k, Lemma 3.5 implies the bound

(3.10) |R(n)(t)/R(t)| ∼ |t|−n

for |t| ∈ G if A ≥ 1 is large enough with no further restriction on j < k.

4. Proof of Theorem 1.1. Here we give the details of the weak-type
estimate (1.2) for

Tf(x) = p.v.
�

R

f(x− t)eiP (t)/Q(t) dt

t
.

We first apply Lemma 3.1 to Q and decompose R+ into an O(1) collection of
gaps and dyadic intervals with respect to Q. On a dyadic interval D = [a, b],

TDf(x) :=
�

|t|∈D

f(x− t)eiP (t)/Q(t) dt

t

is bounded on L1 with O(1) bounds since b/a = O(1). Therefore we are
reduced to establishing (1.2) for

(4.1) TGf(x) :=
�

|t|∈G

f(x− t)eiP (t)/Q(t) dt

t

where G is a gap on which |Q(t)| ∼ |qk| |t|k for some k ≥ 0. At this point we
could use Lemma 3.1 again and decompose G into gaps and dyadic intervals
with respect to P , reducing matters to an interval where |P (t)| ∼ |pj | |t|j
for some j ≥ 0 as well and hence |P (t)/Q(t)| ∼ |pjq−1k | |t|

j−k. It will be
essential that we bound the second derivative of P/Q from below on this
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interval. However, in order to do this when k ≤ j, Lemma 3.3 requires
that j 6= k and j 6= k + 1; see (3.6). Fortunately it turns out that we can
prevent the situations j = k and j = k + 1 from arising by observing that
the weak-type estimate (1.2) is unaffected if we perturb our rational phase
P (t)/Q(t)− at− b by any linear polynomial. In fact

TGf(x) = e−iaxeib
�

|t|∈G

eia(x−t)f(x− t)ei[P (t)/Q(t)−at−b] dt

t

and the L1 norm of f is not affected by modulations of the form eiayf(y).
We note that this is not the case for the Hardy space H1 norm.

The idea is to choose a and b appropriately so that in the difference

P (t)/Q(t)− a− bt = N(t)/Q(t)

the numerator N(t) = P (t)− (a+ bt)Q(t) =
∑

j njt
j has vanishing kth and

(k+ 1)th coefficients; that is, nk = nk+1 = 0, putting us in a position to use
Lemma 3.1 with respect to N(t), decomposing the interval G further into
gaps and dyadic intervals so that on a gap, |N(t)| ∼ |t|j for some j 6= k or
k + 1. Hence we will be able to bound from below the second derivative of
N(t)/Q(t) on such an interval; see (3.6) and (3.10). A little linear algebra
shows that we can choose a and b so that nk = nk+1 = 0 if and only if
q2k 6= qk−1qk+1. In the cases k = 0 and k = degree(Q), we interpret the
right hand side as zero and so q2k 6= qk−1qk+1 holds in these trivial cases.
One easily checks that an appropriate choice for a and b can be made to
guarantee nk = nk+1 = 0 when either k = 0 or k = degree(Q).

We will now see that q2k 6= qk−1qk+1 is indeed the case since G is a gap
on which |Q(t)| ∼ |qk| |t|k. Specifically we will use the fact that the kth root
wk of Q is separated from the (k + 1)th root wk+1 if G is nonempty. The
kth coefficient qk of Q is related to the roots of Q by |qk| ∼ |b|

∏n
`=k+1 |w`|;

this is the content of part (ii) of Lemma 3.1. Hence

(4.2) |q2k| ∼ |b|2
n∏

`=k+1

|w`|2.

For qk−1qk+1 we have

qk−1qk+1 = b2
[ ∑
`1<···<`n−k+1

w`1 · · ·w`n−k+1

][ ∑
`1<···<`n−k−1

w`1 · · ·w`n−k−1

]
= b2

∑
`1<···<`n−k+1

`′1<···<`′n−k−1

w`1 · · ·w`n−k+1
w`′1 · · ·w`′n−k−1

.
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Since in each summand defining qk−1, |w`1 | ≤ |wk| ≤ (1/A)|wk+1|, we have

|w`1 · · ·w`n−k+1
w`′1 · · ·w`′n−k−1

| ≤ 1

A

n∏
`=k+1

|w`|2.

Therefore by (4.2),

|qk−1qk+1| ≤
1

A
|b|2

n∏
`=k+1

|w`|2 .
1

A
|qk|2

and hence q2k 6= qk−1qk+1 if A ≥ 1 is chosen large enough.
So in order to prove the weak-type (1, 1) estimate in Theorem 1.1 it suf-

fices to bound the integral operator TG defined in (4.1) where on G we have
|R(t)| = |P (t)/Q(t)| ∼ |pjq−1k | |t|

j−k and j 6= k, k + 1. Before proceeding,
we make a simple scaling by changing variables t 7→ ct in (4.1) (the bound
in the weak-type estimate (1.2) is unaffected). Choosing the constant c ap-
propriately, we may assume that |R(t)| ∼ |t|j−k for |t| ∈ G. Hence on G we
have |R(n)(t)| . |t|j−k−n for any n ≥ 0; furthermore if n = 0, 1 or 2, then
|R(n)(t)| ∼ |t|j−k−n if |t| ∈ G. For ease of notation later on, we rewrite the
exponents j, k as r := j − k and so r 6= 0, 1. We record that for |t| ∈ G and
for every n ≥ 0,

(4.3) |R(n)(t)| . |t|r−n whereas |R(n)(t)| ∼ |t|r−n for n = 0, 1, 2.

We split the operator TG = T 1
G + T 2

G into two pieces where

T 1
Gf(x) =

�

|t|∈G∩[0,1]

f(x− t)eiR(t) dt/t,

T 2
Gf(x) =

�

|t|∈G∩[1,∞)

f(x− t)eiR(t) dt/t.

From Theorem 1.1 in [6], it follows that both T 1
G and T 2

G are bounded on L2

with bounds uniform in the coefficients of R. We now break up the analysis
into two cases: (I) r ≥ 0 (and hence r ≥ 2 in fact) and (II) r < 0.

4.1. Case (I): when r ≥ 0. In this case, the kernel K(t) := eiR(t)/t
is a Calderón–Zygmund kernel on G ∩ [0, 1], satisfying the bounds |K(t)| .
|t|−1 and |K ′(t)| . |t|−2 for |t| ∈ G ∩ [0, 1]. Since T 1

G is bounded on L2,
it is a classical Calderón–Zygmund singular integral operator satisfying the
weak-type estimate (1.2) with bounds uniform in the coefficients of R. For
T 2
G we follow the arguments in [2], using the classical Calderón–Zygmund

decomposition lemma to decompose our L1 function f = g + b at level α,
into a good function g (with nice L∞ bounds ‖g‖∞ . α so that the L2

theory of T 2
G controls the bound (1.2) on g), and a bad function b =

∑
I bI

where the collection of disjoint dyadic intervals {I} with side lengths 2L(I)

have the property that if dist(I, J) ≤ 2L(I), then |L(I)− L(J)| . 1 for any
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two such intervals and
∑

I |I| . ‖f‖1/α. Furthermore, ‖bI‖1 . α|I| and∑
I ‖bI‖1 . ‖f‖1 for each I.

Matters are then reduced to establishing the weak-type bound (1.2) for
the bad function b off the exceptional set

⋃
I I. Here we deviate from the

classical Calderón–Zygmund paradigm where one uses L1 estimates off the
exceptional set. Instead we use L2 estimates exploiting the oscillation of
the phase R and so we do not need any cancellation between positive and
negative values of t in TG. Thus we concentrate on establishing (1.2) for

T+b(x) =
�

t∈G∩[1,∞)

b(x− t)eiR(t) dt/t.

Furthermore we split the bad function b = bsmall+blarge into two parts where
bsmall =

∑
I:L(I)<0 bI and blarge =

∑
I:L(I)≥0 bI , and apply T+ separately to

these functions. We concentrate first on the more difficult blarge and establish

(4.4) α
∣∣∣{x /∈⋃

I

I∗ : |T+blarge(x)| ≥ α
}∣∣∣ . ‖f‖1

where I∗ is the 2-fold dilate of I. For x /∈
⋃
I I
∗, we observe that T+b(x) =∑

I T
L(I)bI(x) where TLg(x) =

∑
k≥L Tkg(x),

Tkg(x) = 2−k
�

t∈G
g(x− t)ψ(2−kt)eiR(t) dt

and ψ ∈ C∞0 (R) is an appropriate function supported in [1, 2].

According to [2], the bound (4.4) will follow from certain estimates on
the kernel

L`,m(x, y)

=
∑
j≥`

∑
k≥m

2−k−j
�

x−z,y−z∈G
ψ(2−k(x− z))ψ(2−j(y − z))ei(R(x−z)−R(y−z)) dz

of (T `)∗Tm; namely, if 0 ≤ m ≤ `,

(4.5) |L`,m(x, y)| . min((1 + `−m)2−`, |x− y|−2).

Before establishing (4.5), we recall how (4.4) follows from it. Using the
identity T+b(x) =

∑
I T

L(I)bI(x), valid off the exceptional set
⋃
I I
∗, we

apply Chebyshev’s inequality to bound the left side of (4.4) by

α−2
∥∥∥ ∑
I:L(I)≥0

TL(I)bI

∥∥∥2
2

= α−2
∑∑

I,J :L(I),L(J)≥0

〈(TL(I))∗TL(J)bJ , bI〉.

We split the double sum into two parts, depending on the relative sizes of
L(I) and L(J); we will consider only that part of the sum where L(J) ≤
L(I), without loss of generality. We fix I and show that the sum in J has
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the bound

(4.6)
∑

J :L(J)≤L(I)

〈(TL(I))∗TL(J)bJ , bI〉 . α‖bI‖1,

which gives us the desired estimate (4.4) after summing over the dyadic
intervals I.

We split the sum in (4.6) into two parts, where dist(J, I) ≤ 2L(I) and
where dist(J, I) ≥ 2L(I). For those dyadic intervals J with dist(J, I) ≤ 2L(I),
we have |L(J)−L(I)| . 1 implying that there are O(1) terms in the J sum
in this case. Furthermore in this case, |LL(I),L(J)(x, y)| . 2−L(I) by (4.5)
implying

〈(TL(I))∗TL(J)bJ , bI〉 . |I|−1‖bJ‖1‖bI‖1 . α‖bI‖1.
Hence ∑

J :L(J)≤L(I)
dist(J,I)≤2L(I)

〈(TL(I))∗TL(J)bJ , bI〉 . α‖bI‖1,

which is the estimate (4.6) for this part of the sum.

We now examine the sum in J with L(J) ≤ L(I) and dist(J, I) ≥ 2L(I).
Here we will use the bound |LL(I),L(J)(x, y)| . |x−y|−2 from (4.5) implying
that

〈(TL(I))∗TL(J)bJ , bI〉 . ‖bI‖1‖bJ‖1 min
(x,y)∈I×J

|x−y|−2 . α‖bI‖1
�

J

|xI−y|−2 dy

where xI denotes the centre of I. Here we used the fact that |x− y| is about
constant as (x, y) varies over I×J when dist(J, I) ≥ 2L(I) and L(J) ≤ L(I).
Now summing over the disjoint intervals J , we see∑

J : dist(J,I)≥2L(I)

�

J

|xI − y|−2 dy . 2−L(I) . 1

since L(I) ≥ 0 and so∑
J :L(J)≤L(I)
dist(J,I)≥2L(I)

〈(TL(I))∗TL(J)bJ , bI〉 . α‖bI‖1,

which completes the proof of (4.6) and hence (4.4) once we establish the
estimate (4.5).

The estimate |L`,m(x, y)| . (1 + ` − m)2−` in (4.5) for 0 ≤ m ≤ `

follows from the size of the z integration 2−min(j,k) of the integral defining
L`,m(x, y). Hence

|L`,m(x, y)| .
∑
j≥`

∑
k≥m

2−j−k2−min(j,k) . (1 + `−m)2−`.
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To see |L`,m(x, y)| . |x− y|−2, we will integrate by parts twice to estimate
the integral

Ij,k(x, y) := 2−j−k
�

x−z,y−z∈G
ψ(2−k(x−z))ψ(2−j(y−z))ei(R(x−z)−R(y−z)) dz.

This requires a bound from below on the derivative of the phase function
φ(z) := R(x−z)−R(y−z) as well as bounds from above on the first, second
and third derivatives of φ. We write

φ(n)(z) = (−1)n(x− y)

1�

0

R(n+1)(y − z + s(x− y)) ds

for the nth derivative of φ and make the simple observation that y − z +
s(x−y) ∈ G for all 0 ≤ s ≤ 1 since x−z, y−z ∈ G and G is an interval. Recall
that by scaling and conjugating our operator with appropriate modulations
from the outset, we have put ourselves in the favourable position where for
every n ≥ 0, |R(n+1)(w)| . |w|r−n−1 on G for some positive integer r ≥ 2;
furthermore, |R′′(w)| ∼ |w|r−2 on G (see (4.3)). This translates into bounds
for φ(n); namely, for z such that x− z, y− z ∈ G, x− z ∼ 2k and y− z ∼ 2j ,
we have

|φ′(z)| ∼ |x− y|2max(j,k)(r−2), |φ′′(z)| . |x− y|max(j, k) 2max(j,k)(r−3)

and

|φ′′′(z)| . |x− y| ·
{

max(j, k)2max(j,k)(r−4) if r ≥ 3,

2−j−k if r = 2.

Using the differential operator D := [i/φ′(z)](d/dz) so that Deiφ(z) = eiφ(z),
we have, by integrating by parts twice,

Ij,k(x, y) = 2−j−k
�

x−z,y−z∈G
[D∗]2

(
ψ(2−k(x− z))ψ(2−j(y − z))

)
eiφ(z) dz

where D∗g(z) = (d/dz)[g(z)/iφ′(z)] is the formal adjoint of D. Using the
above derivative bounds on φ, we see that

|Ij,k(x, y)| . 2−max(j,k) |x− y|−2,
which implies the estimate |L`,m(x, y)| . |x− y|−2 in (4.5).

To finish Case (I) where r ≥ 0, we need to establish (4.4) with blarge re-
placed with bsmall =

∑
I:L(I)<0 bI . Instead of the original operator T+, it suf-

fices to apply T 0 (which differs from T+ by an operator bounded uniformly
on L1) to bsmall and verify (4.4). Again applying Chebyshev’s inequality to
bound the left side of (4.4) by

(4.7) α−2
∥∥∥ ∑
I:L(I)<0

T 0bI

∥∥∥2
2

= α−2
∑∑

I,J :L(I),L(J)<0

〈(T 0)∗T 0bJ , bI〉,
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we use the basic estimates |L0,0(x, y)| . min(1, |x− y|−2) from (4.5) for the
kernel of (T 0)∗T 0 to prove

(4.8)
∑

J :L(J)≤L(I)

〈(T 0)∗T 0bJ , bI〉 . α‖bI‖1

for each fixed dyadic interval I. Summing over the disjoint intervals I suc-
cessfully bounds (4.7) for those intervals I, J with L(J) ≤ L(I). Of course
the symmetric sum over those intervals with L(I) ≤ L(J) also holds. The
proof of (4.8) is similar to (4.6); we split the sum into those J with dist(J, I)
≤ 1 and those with dist(J, I) ≥ 1. The bound |L0,0(x, y)| . 1 implies∑

J :L(J)≤L(I)
dist(J,I)≤1

〈(T 0)∗T 0bJ , bI〉 . α‖bI‖1
∑

J : dist(J,I)≤1

|J | . α‖bI‖1

by the disjointness of the intervals J and the fact that those J with L(J) ≤
L(I) ≤ 0 and dist(J, I) ≤ 1 cover an interval of length at most 1.

We now examine the sum (4.8) when L(J) ≤ L(I) and dist(J, I) ≥ 1.
Here we will use the bound |L0,0(x, y)| . |x− y|−2 implying that

〈(T 0)∗T 0bJ , bI〉 . ‖bI‖1‖bJ‖1 min
(x,y)∈I×J

|x− y|−2 . α‖bI‖1
�

J

|xI − y|−2 dy

as before. Now summing over the disjoint intervals J , we see∑
J : dist(J,I)≥1

�

J

|xI − y|−2 dy . 1

since L(I) < 0 and dist(J, I) ≥ 1. Hence∑
J :L(J)≤L(I)
dist(J,I)≥1

〈(T 0)∗T 0bJ , bI〉 . α‖bI‖1,

which completes the proof of (4.8) and hence Case (I).

4.2. Case (II): when r < 0. In this case, the kernelK(t) := eiR(t)/t is a
Calderón–Zygmund kernel on G∩[1,∞), satisfying the bounds |K(t)| . |t|−1
and |K ′(t)| . |t|−2 for |t| ∈ G ∩ [1,∞). Since T 2

G is bounded on L2, it is
a classical Calderón–Zygmund singular integral operator and so satisfies
the weak-type estimate (1.2) with bounds uniform in the coefficients of R.
For T 1

G we use the following result of C. Fefferman about strongly singular
integral operators (see [4]).

Theorem 4.3. Let K be a tempered distribution on R, agreeing with
a locally integrable function away from the origin with compact support.
Suppose that for all ξ ∈ R, we have |K̂(ξ)| ≤ A(1 + |ξ|)−θ/2, and for all
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y ∈ R, we have

(4.9)
�

|x|≥2|y|1−θ
|K(x− y)−K(x)| dx ≤ A

for some A > 0 and 0 ≤ θ < 1. Then the operator T given by convolution
with K is weak-type (1, 1) with bounds depending only on A and θ.

We will apply this theorem to the kernel of T 1
G. Again, due to the

oscilllation of the phase R, we do not need any possible cancellation be-
tween positive and negative values of t and so we treat them separately. We
will verify the Fourier decay estimate |K̂(ξ)| . (1 + |ξ|)−θ/2 and (4.9) for
K(t) = χ[0,1]∩G(t)eiR(t)/t with θ = |r|/(|r|+1). Similar estimates hold when

t is negative and so for the entire kernel of T 1
G, giving us the desired estimate

(1.2) for T 1
G in Case (II).

Since |R(n)(t)| ∼ |t|−|r|−n for t ∈ G and every n ≥ 0 (see (3.10)), we see
that for |x| ≥ 2|y|,

|K(x− y)−K(x)| . |y|/|x|2+|r|

and so the regularity condition (4.9) holds for θ = |r|/(|r|+1) with a constant
A which can be taken to be independent of the coefficients of R. Next we
claim that the uniform estimate

(4.10)

∣∣∣∣ �

t∈[0,1]∩G

ei[R(t)−ξt] dt

t

∣∣∣∣ . (1 + |ξ|)−|r|/2(|r|+1)

holds which shows |K̂(ξ)| . (1 + |ξ|)−θ/2 for θ = |r|/(|r| + 1). This will
complete our analysis of Case (II) by Theorem 4.3. Since R′′ does not vanish
on G, there is at most one critical point of the phase R(t)− ξt, and if such a
critical point t∗ exists, then |ξ| = |R′(t∗)| ∼ |t∗|−|r|−1 or |t∗| ∼ |ξ|−1/(|r|+1).
This only happens if |ξ| & 1. If |ξ| . 1, there is no critical point and the
estimate |K̂(ξ)| . 1 follows easily from an integration by parts argument.
We will assume from now on that |ξ| & 1 and the critical point t∗ exists. We
split the integral in (4.10) into three parts

I + II + III =

(1/B)t∗�

0

. . . dt/t+

Bt∗�

(1/B)t∗

. . . dt/t+

1�

Bt∗

. . . dt/t

for some absolute, uniform constant B.
It is understood that the integrals defining I, II and III are taken over

our gap G as well so that the derivative estimates (3.10) of R hold. In
particular, on [Bt∗, 1] the estimate |R′(t) − ξ| & |ξ| holds if B is large
enough and so integrating by parts gives the (better than desired) esti-
mate |III| . |ξ|−|r|/(|r|+1). Similarly, on the interval [0, (1/B)t∗] we have
the bound |R′(t)− ξ| & |t|−|r|−1, which together with our upper bounds on
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R′′ gives the same estimate |I| . |ξ|−|r|/(|r|+1) by an integration by parts
argument. Finally we turn to II, which is the main contribution to K̂.
Using the bound |R′′(t)| ∼ |t|−|r|−2 ∼ |ξ|(|r|+2)/(|r|+1) on [[1/B]t∗, Bt∗],
we can apply van der Corput’s lemma (see for example, Proposition 2
in Chapter VIII of [11]), together with an integration by parts, to see
the desired estimate |II| . |ξ|−|r|/2(|r|+1), which completes the proof that
|K̂(ξ)| . (1 + |ξ|)−|r|/2(|r|+1) and hence Case (II).

5. Proof of Theorem 1.2. The theorem comes in two parts, depending
on the relationship of the degrees of P and Q defining our rational phase
R = P/Q. Recall that we cannot expect to obtain bounds which are uniform
in the coefficients of R. We split our operator T in (1.1) into three parts
T = T1 + T2 + T3 where

T1f(x) :=
�

R

f(x− t)ψ1(t)e
iR(t) dt

t
,

T2f(x) =
�

R

f(x− t)ψ2(t)e
iR(t) dt

t
,

T3f(x) =
�

R

f(x− t)ψ3(t)e
iR(t) dt

t
;

the three smooth functions are even and satisfy ψ1(t) + ψ2(t) + ψ3(t) = 1
for all t ∈ R. The cut-off function ψ1 is supported in a sufficiently small
neighbourhood of the origin, ψ2(t) vanishes for |t| small and |t| large and
ψ3(t) is supported for |t| sufficiently large. The operator T2 maps H1(R) into
itself but with bounds that will depend on the coefficients of R in general.
By classical Hardy space theory (see for example Theorem 4 in Chapter III
of [11]), this follows from the fact that T2 is bounded on L2 and the kernel
K2 of T2 satisfies the regularity estimates

(5.1) |K(x)| ≤ C|x|−1 and |K(x−y)−K(x)| ≤ C|y|/|x|2 for |x| ≥ 2|y|
for some constant C which depends in general on the coefficients of R.
Therefore to prove Theorem 1.2, it suffices to concentrate on T1 and T3.

The choice of ψ1, ψ2 and ψ3 will depend on the coefficients of R and be
such that the |t| support of ψ1 will be contained in the gap G0 := [0, (1/A)s1]
at the origin and that of ψ3 contained in the gap G∞ := [As3,∞) at infinity
(here s1 and s3 are the smallest and largest modulus of all the roots of
P and Q, respectively). Hence |R(t)| ∼ c|t|r1 for |t| ∈ G0 and |R(t)| ∼
d|t|r3 for |t| ∈ G∞ for some r1, r3 ∈ Z and c, d > 0. We may assume that
both exponents r1 and r3 are nonzero since we are at liberty to change the
phase R by any constant R(t) − c without affecting the Hardy space norm
H1(R) (here general linear perturbations R(t) − a − bt are not allowed as
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was the case for the weak-type (1, 1) estimates). In fact the r1 = j1 − k1
exponent arises from the lowest terms P (t) = pdt

d + · · · + pj1t
j1 , Q(t) =

qet
e + · · · + qk1t

k1 in P and Q; if j1 = k1, then choosing c such that pj1 =
cqj1 guarantees that the new rational phase R(t)− c = [P (t)− cQ(t)]/Q(t)
for the operator T1 behaves like tr1 with r1 6= 0. Also the exponent r3 =
d − e is the difference of the degrees of P and Q; if d = e, then choosing
c such that pd = cqd guarantees that the new rational phase R(t) − c for
the operator T3 behaves like tr3 with r3 6= 0. Important: although we may
change the phase in the operators T1 and T3 to guarantee that r1, r3 6= 0,
the dichotomy degree(P ) = degree(Q) + 1 or degree(P ) 6= degree(Q) + 1
remains unchanged!

Therefore from (3.6) and (3.10), we may assume that the phase R in T1
satisfies

(5.2) |R(t)| ∼ c|t|r1 and |R′(t)| ∼ c′|t|r1−1

for t ∈ support(ψ1), c, c
′ > 0 and some r1 6= 0. Also we may assume that

the phase R in T3 satisfies

(5.3) |R(t)| ∼ d |t|r3 and |R′(t)| ∼ d′ |t|r3−1

for t ∈ support(ψ3), d, d
′ > 0 and some r3 6= 0. In both cases upper bounds

|R(n)| . cn|t|r−n hold for every n ≥ 0 for r = r1 or r = r3, respectively.
Furthermore, if r3 6= 1 (which will be the case when degree(P ) 6= degree(Q)
+ 1), then |R′′(t)| ∼ d′′|t|r3−2 for t ∈ support(ψ3) and some d′′ 6= 0.

Hence if r1 ≥ 1 in (5.2) and/or r3 ≤ −1 in (5.3), then the regularity
condition (5.1) is satisfied by the kernels of T1 and/or T3, and together with
the L2 boundedness of these operators we can conclude that T1 and/or T3
maps H1 into itself.

We are now in a position to give a proof of part (1) of Theorem 1.2, which
assumes that degree(P ) 6= degree(Q)+1. In particular this condition on the
degrees implies that the exponent r3 is not 1. From the remarks above it
therefore suffices to prove T1, T3 : H1 → H1 when r1 ≤ −1 and r3 ≥ 2. Let us
consider T1 first, where, as we have seen from the previous section, the kernel
K1 satisfies the conditions of Theorem 4.3 with θ = |r1|/(|r1|+1). As shown
by C. Fefferman and E. M. Stein [5], such strongly singular integral operators
map H1 into itself. For the operator T3, we appeal to the work of D. Fan
and Y. Pan [3] who proved that oscillatory singular integral operators map
H1 into itself for general phase functions which satisfy the derivative bounds
|R(t)| ∼ a|t|r, |R′(t)| ∼ b|t|r−1, |R′′(t)| ∼ c|t|r−2 and |R′′′(t)| . d|t|r−3 for
some r 6= 0, 1; see [3].

Finally we turn to the proof of part (2) of Theorem 1.2, where we assume
degree(P ) = degree(Q)+1 and in particular r3 = 1. As before, the operators
T1 and T2 map H1 into itself and so it suffices to show that the operator T3
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does not map H1 into L1,q for any q <∞. Write

P (t) = pdt
d + · · ·+ p0 and Q(t) = qd−1t

d−1 + · · ·+ q0

and T3 = T 1
3 + T 2

3 where

T 1
3 f(x) =

�

R

f(x− t)ψ3(t)e
i((pd/qd−1)t+c)

dt

t
,

T 2
3 f(x) =

�

R

f(x− t)ψ3(t)
[
eiR(t) − ei((pd/qd−1)t+c)

] dt
t
.

The constant c is chosen so that pd−cqd−1−pdqd−2/qd−1 = 0, which implies
that the kernel K2

3 (t) = ψ3(t)[e
iR(t) − ei((pd/qk−1)t+c)]/t of T 2

3 is integrable,
satisfying |K2

3 (t)| ≤ C|t|2. Hence T 2
3 maps H1 into H1 and this leaves T 1

3 ,
which we have already seen does not map H1 into L1,q for any q <∞. This
completes the proof of Theorem 1.2.
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Instituto de Matemáticas, Universidad Nacional Autónoma de México where
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