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A remark on the div-curl lemma

by

Pierre Gilles Lemarié-Rieusset (Évry)

Abstract. We prove the div-curl lemma for a general class of function spaces, stable
under the action of Calderón–Zygmund operators. The proof is based on a variant of the
renormalization of the product introduced by S. Dobyinsky, and on the use of divergence-
free wavelet bases.

1. Introduction. In 1992, Coifman, Lions, Meyer and Semmes [COIL]
gave a new interpretation of the compensated compactness introduced by
Murat and Tartar [MUR]. They showed that the functions considered by
Murat and Tartar had a greater regularity than expected: they belonged to
the Hardy space H1.

Moreover, they gave a new version of the div-curl lemma of Murat and
Tartar:

Theorem 1.1. If 1 < p < ∞, q = p/(p − 1), ~f ∈ (Lp(Rd))d and
~g ∈ (Lq(Rd))d, then

div ~f = 0 and curl~g = ~0 ⇒ ~f · ~g ∈ H1.

There are many proofs of this result. We shall rely mainly on the proof
by S. Dobyinsky, based on the renormalization of the product introduced in
[DOB].

As pointed out to me by Grzegorz Karch, it is easy to see that this result
can be extended to a large class of function spaces. For instance, we have the
straightforward consequence of Theorem 1.1 for weak Lebesgue spaces Lp,∗

(better viewed as Lorentz spaces Lp,∞) and their preduals Lq,1:

Corollary 1.2. If 1 < p < ∞, q = p/(p − 1), ~f ∈ (Lp,∞(Rd))d and
~g ∈ (Lq,1(Rd))d, then

div ~f = 0 and curl~g = ~0 ⇒ ~f · ~g ∈ H1,
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and

div~g = 0 and curl ~f = ~0 ⇒ ~f · ~g ∈ H1.

Proof. All we need is the projection operators that lead to the Helmhotz
decomposition of a vector field: Id = P + Q where Q is the projection onto
irrotational vector fields,

Q~h = ~∇ 1

∆
div~h,

and P the projection operator onto solenoidal vector fields. Those projection
operators are matrices of singular integral operators and thus are bounded
on Lebesgue spaces Lr, 1 < r <∞, and, by interpolation, on Lorentz spaces
Lr,t, 1 < r <∞, 1 ≤ t ≤ ∞.

Let ε > 0 be such that ε < min(1/p, 1/q). We write 1/p+ = 1/p + ε,

1/p− = 1/p − ε, 1/q+ = 1/q + ε and 1/q− = 1/q − ε. If ~f ∈ (Lp,∞(Rd))d,
we can write, for every A > 0, ~f = ~αA + ~βA with ‖~αA‖Lp− ≤ CA‖~f ‖Lp,∞
and ‖~βA‖Lp+ ≤ CA−1‖~f ‖Lp,∞ . If div ~f = 0, we have moreover ~f = P~f =

P~αA + P~βA. On the other hand, if ~g ∈ (Lq,1)d, we can write ~g =
∑

j∈N λj~gj
with ‖~gj‖Lq−‖~g‖Lq+ ≤ 1 and

∑
j∈N |λj | ≤ C‖~g‖Lq,1 . If curl~g = 0, we have

moreover ~g = Q~g =
∑

j∈N λj Q~gj . Let Aj = ‖~gj‖1/2Lq−‖~gj‖
−1/2
Lq+

. We then write

~f · ~g =
∑
j∈N

λj(P~αAj ·Q~gj + P~βAj ·Q~gj)

and get (from the div-curl theorem of Coifman, Lions, Meyer and Semmes)

‖~f · ~g‖H1 ≤ C
∑
j∈N
|λj |(‖P~αAj‖Lp−‖Q~gj‖Lq+ + ‖P~βAj‖Lp+‖Q~gj‖Lq− )

≤ C ′‖~f ‖Lp,∞
∑
j∈N
|λj |(Aj‖~gj‖Lq+ +Aj

−1‖~gj‖Lq− )

= C ′‖~f ‖Lp,∞
∑
j∈N
|λj | ≤ C ′′‖~f ‖Lp,∞‖~g‖Lq,1 .

The proof for the case div~g = 0 and curl ~f = ~0 is similar.

In this paper, we aim to find a general class of function spaces for which
the div-curl lemma still holds. As we can see from the proof of Corollary 1.2,
singular integral operators will play a key role in our result. In Section 2,
we shall introduce Calderón–Zygmund pairs of function spaces which will
allow us to prove such a general result. In Section 3, we recall the basics
of divergence-free wavelet bases (as described in the book [LEMc]). In Sec-
tion 4, we prove our main theorem. Then, in Section 4, we give examples of
Calderón–Zygmund pairs of function spaces.
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2. Calderón–Zygmund pairs of Banach spaces. We begin by re-
calling the definition of a Calderón–Zygmund operator:

Definition 2.1. (A) A singular integral operator is a continuous lin-
ear mapping from D(Rd) to D′(Rd) whose distribution kernel K(x, y) ∈
D′(Rd × Rd) (defined formally by the formula Tf(x) =

	
K(x, y)f(y) dy)

has its restriction outside the diagonal x = y defined by a locally Lipschitz
function with the following size estimates:

(i) supx 6=y |K(x, y)| |x− y|d <∞,

(ii) supx 6=y |~∇xK(x, y)| |x− y|d+1 <∞,
(iii) supx 6=y |~∇yK(x, y)| |x− y|d+1 <∞.

For such an operator T , we define

‖T‖SIO = ‖K(x, y)|x− y|d‖L∞(Ω) + ‖~∇xK(x, y)|x− y|d+1‖L∞(Ω)

+ ‖~∇yK(x, y)|x− y|d+1‖L∞(Ω)

where K is the distribution kernel of T and Ω = {(x, y) ∈ Rd ×Rd | x 6= y}
(B) A Calderón–Zygmund operator is a singular integral operator T

which may be extended as a bounded operator on L2:

sup
ϕ∈D, ‖ϕ‖2≤1

‖Tϕ‖2 <∞.

We define CZO to be the space of Calderón–Zygmund operators, endowed
with the norm

‖T‖CZO = ‖T‖L(L2,L2) + ‖T‖SIO.
We can now define our main tool:

Definition 2.2. A Calderón–Zygmund pair is a pair (X,Y ) of Banach
spaces such that:

(i) We have the continuous embeddings D(Rd) ⊂ X ⊂ D′(Rd) and
D(Rd) ⊂ Y ⊂ D′(Rd).

(ii) Let X0 be the closure of D in X; then the dual X∗0 of X0 (i.e.
the space of bounded linear forms on X0) coincides with Y with
equivalence of norms: a distribution T belongs to Y if and only if
there exists a constant CT such that |〈T |ϕ〉D′,D| ≤ CT ‖ϕ‖X for all
ϕ ∈ D.

(iii) Let Y0 be the closure of D in Y . Then the dual Y ∗0 coincides with
X with equivalence of norms.

(iv) Every Calderón–Zygmund operator may be extended to a bounded
operator on X0 and on Y0: there exists a constant C0 such that, for
every T ∈ CZO and every ϕ ∈ D, we have T (ϕ) ∈ X0 ∩ Y0 and

‖Tϕ‖X ≤ C0‖T‖CZO‖ϕ‖X and ‖Tϕ‖Y ≤ C0‖T‖CZO‖ϕ‖Y .
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By duality, we find that every Calderón–Zygmund operator extends to
a bounded operator on X and Y : if T ∗ is defined by the formula

〈Tϕ |ψ〉D′,D = 〈ϕ |T ∗ψ〉D,D′ ,
then T ∈ CZO implies T ∗ ∈ CZO and we may define T (f) on X as the
distribution ϕ 7→ 〈f |T ∗(ϕ)〉Y ∗0 ,Y0 . The two definitions of T coincide on X0.

For m ∈ L∞, the operator Tm : ϕ 7→ mϕ belongs to CZO (with kernel
K(x, y) = m(x)δ(x− y)). The stability of X and Y under multiplication by
bounded smooth functions (with the inequalities ‖mf‖X ≤ C0‖m‖∞‖f‖X
and ‖mf‖Y ≤ C0‖m‖∞‖f‖Y ) shows that elements ofX and Y are (complex)
local measures and that X0 and Y0 are embedded into L1

loc.

Our main result (to be proved in Section 4) is the following:

Theorem 2.3. Let (X,Y ) be a Calderón–Zygmund pair of Banach

spaces. If ~f ∈ Xd
0 and ~g ∈ Y d, then

div ~f = 0 and curl~g = ~0 ⇒ ~f · ~g ∈ H1

and

div~g = 0 and curl ~f = ~0 ⇒ ~f · ~g ∈ H1.

Remark. The distribution ~f · ~g is well-defined, since ~f ∈ Xd
0 : if ϕ ∈ D,

then ϕ~f ∈ Xd
0 and ~g ∈ (X∗0 )d.

3. Divergence-free wavelet bases. In this section, we give a short
review of properties of divergence-free wavelet bases. Wavelet theory was
introduced in the 1980’s as an efficient tool for signal analysis. Orthonormal
waveletbaseswerefirst constructedbyY.Meyer [LEMM],G. Battle [BAT]and
P. G. Lemarié-Rieusset; a major advance was the construction of compactly
supported orthonormal wavelets by I. Daubechies [DAU]. Then bi-orthogonal
bases were introduced by A. Cohen, I. Daubechies and J.-C. Feauveau [COH].
Divergence-free wavelets were introduced by Battle and Federbush [BATF].
Compactlydivergence-freewaveletswereintroducedbyP.G.Lemarié-Rieusset
[LEMa]; they are not orthogonal wavelets [LEMb], but have been explored for
the numerical analysis of the Navier–Stokes equations [DER, URB].

Let Hdiv=0 and Hcurl=0 be defined as

Hdiv=0 = {~f ∈ (L2)d | div ~f = 0} and Hcurl=0 = {~f ∈ (L2)d | curl ~f = 0}.

For ~f ∈ (L2)d, j ∈ Z and k ∈ Zd, we define ~fj,k as ~fj,k(x) = 2jd/2 ~f(2jx− k).
Let us recall the main results of [LEMa] (described as well in the book
[LEMc]). The idea is to begin with a Hilbertian basis of compactly sup-
ported wavelets, associated to a multi-resolution analysis (Vj)j∈Z of L2(R).
Associated to this multi-resolution analysis (with orthogonal projection op-
erator Πj onto Vj), there is a bi-orthogonal multi-resolution analysis (V +

j ),
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(V −j ) with projection Π(j) onto V −j orthogonally to V +
j such that d

dx ◦Πj =

Π(j) ◦ d
dx .

Starting from this one-dimensional setting, we now consider a bi-orthogo-
nal multi-resolution analysis of (L2(Rd))d, (Vj,1, . . . , Vj,d) and (V ∗j,1, . . . , V

∗
j,d),

where Vj,k = Vj,k,1 ⊗ · · · ⊗ Vj,k,d with Vj,k,l = Vj for k 6= l and Vj,k,k = V −j
and V ∗j,k=V ∗j,k,1⊗· · ·⊗V ∗j,k,d with V ∗j,k,l=Vj for k 6= l and V ∗j,k,k=V +

j . Let Pj be

the projection operator onto (Vj,1, . . . , Vj,d) orthogonally to (V ∗j,1, . . . , V
∗
j,d).

Its adjoint P ∗j is the projection operator onto (V ∗j,1, . . . , V
∗
j,d) orthogonally to

(Vj,1, . . . , Vj,d). The point is that we have Pj(~∇f) = ~∇(Πjf) and div(P ∗j
~f )

= Π∗j (div ~f ).

Those projection operators Pj and P ∗j yield an accurate description of
Hdiv=0 and Hcurl=0:

Proposition 3.1 (Multi-resolution analysis for divergence-free or irrota-
tional vector fields). Let N ∈ N. Then there exists a compact set KN ⊂ Rd
such that:

(A) Multi-resolution analysis: There exist

• functions ~ϕξ and ~ϕ∗ξ in (L2)d, 1 ≤ ξ ≤ d,

• functions ~ψχ and ~ψ∗χ in (L2)d, 1 ≤ χ ≤ d(2d − 1),

such that:

(i) ~ϕξ, ~ϕ
∗
ξ ,
~ψχ and ~ψ∗χ are supported in KN .

(ii) ~ϕξ, ~ϕ
∗
ξ ,
~ψχ and ~ψ∗χ are of class CN .

(iii) For l ∈ Nd with
∑d

i=1 li ≤ N , we have
	
xl ~ψχ dx =

	
xl ~ψ∗χ dx = 0.

(iv) For j, j′ in Z, k, k′ in Zd, ξ, ξ′ in {1, . . . , d}, and χ, χ′ in {1, . . . ,
d(2d − 1)},
�
~ϕξ,j,k ·~ϕ∗ξ′,j,k′ dx = δk,k′δξ,ξ′ and

�
~ψχ,j,k · ~ψ∗χ′,j′,k′ dx = δj,j′δk,k′δχ,χ′ .

(v) The operators Pj defined on (L2)d by

Pj ~f =
∑
k∈Zd

∑
1≤ξ≤d

〈~f | ~ϕ∗ξ,j,k〉~ϕξ,j,k

are bounded projections and satisfy

Pj◦Pj+1 = Pj+1◦Pj = Pj , lim
j→−∞

‖Pj ~f ‖2 = 0 = lim
j→∞

‖~f−Pj ~f ‖2 = 0.

(vi) The operators Qj defined on (L2)d by

Qj ~f =
∑
k∈Zd

∑
1≤χ≤d(2d−1)

〈~f | ~ψ∗χ,j,k〉~ψχ,j,k



82 P. G. Lemarié-Rieusset

are bounded and satisfy

Qj = Pj+1 − Pj
and

‖~f ‖2 ≈
√∑

j∈Z
‖Qj ~f ‖22 ≈

√∑
j∈Z

∑
k∈Zd

∑
1≤χ≤d(2d−1)

|〈~f | ~ψ∗χ,j,k〉|2.

(B) Irrotational vector fields: The projection operators Pj satisfy

~f ∈ (L2)d and curl ~f = 0 ⇒ curlPj(~f ) = 0.

Moreover, there exist

• 2d − 1 functions ~γη ∈ (L2)d, 1 ≤ η ≤ 2d − 1, with curl~γη = 0,
• 2d − 1 functions ~γ∗η ∈ (L2)d, 1 ≤ η ≤ 2d − 1,

such that:

(i) ~γη and ~γ∗η are supported in KN .

(ii) ~γη and ~γ∗η are of class CN .

(iii) For l ∈ Nd with
∑d

i=1 li ≤ N , we have
	
xl~γη dx =

	
xl~γ∗η dx = 0.

(iv) For j, j′ in Z, k, k′ in Zd, and η, η′ in {1, . . . , 2d − 1},�
~γη,j,k · ~γ∗η′,j′,k′ dx = δj,j′δk,k′δη,η′ .

(v) The operators Sj defined on (L2)d by

Sj ~f =
∑
k∈Zd

∑
1≤η≤2d−1

〈~f |~γ∗η,j,k〉~γη,j,k

are bounded and satisfy

∀~f ∈ Hcurl=0 Sj ~f = Qj ~f

and

∀~f ∈ Hcurl=0 ‖~f ‖2 ≈
√∑

j∈Z

∑
k∈Zd

∑
1≤η≤2d−1

|〈~f |~γ∗η,j,k〉|2.

(C) Divergence-free vector fields: The projection operators Pj satisfy

~f ∈ (L2)d and div ~f = 0 ⇒ divP ∗j
~f = 0.

Moreover, there exist

• (d − 1)(2d − 1) functions ~αε ∈ (L2)d, 1 ≤ ε ≤ (d − 1)(2d − 1), with
div ~αε = 0,

• (d− 1)(2d − 1) functions ~α∗ε ∈ (L2)d, 1 ≤ ε ≤ (d− 1)(2d − 1),

such that:

(i) ~αε and ~α∗ε are supported in KN .
(ii) ~αε and ~α∗ε are of class CN .
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(iii) For l ∈ Nd with
∑d

i=1 li ≤ N , we have
	
xl~αε dx =

	
xl~α∗ε dx = 0.

(iv) For j, j′ in Z, k, k′ in Zd and ε, ε′ in {1, . . . , (d− 1)(2d − 1)},�
~αε,j,k · ~α∗ε′,j′,k′ dx = δj,j′δk,k′δε,ε′ .

(v) The operators Rj defined on (L2)d by

Rj ~f =
∑
k∈Zd

∑
1≤ε≤(d−1)(2d−1)

〈~f | ~α∗ε,j,k〉~αε,j,k

are bounded and satisfy

∀~f ∈ Hdiv=0 Rj ~f = Q∗j
~f

and

∀~f ∈ Hdiv=0 ‖~f ‖2 ≈
√∑

j∈Z

∑
k∈Zd

∑
1≤ε≤(d−1)(2d−1)

|〈~f | ~α∗ε,j,k〉|2.

We would like now to use those special functions for our spaces X and Y .
We begin with the following lemma:

Lemma 3.2.

(a) If ~f ∈ Xd
0 , then Pj ~f and P ∗j

~f converge strongly to 0 in Xd as j →
−∞ and converge strongly to ~f in Xd as j →∞.

(b) If ~f ∈ Y d
0 , then Pj ~f and P ∗j

~f converge strongly to 0 in Y d as j → −∞
and converge strongly to ~f in Y d as j →∞.

(c) If ~f ∈ Xd, then Pj ~f and P ∗j
~f converge ∗-weakly to 0 in Xd as j →

−∞ and converge ∗-weakly to ~f in Xd as j →∞.
(d) If ~f ∈ Y d, then Pj ~f and P ∗j

~f converge ∗-weakly to 0 in Y d as j →
−∞ and converge ∗-weakly to ~f in Y d as j →∞.

Proof. First, we check that the operators are well defined. If f ∈ CN
has a compact support, then we may write f = fθ with θ ∈ D equal to 1
on a neighborhood of the support of f . Thus, f = Tf (θ) and we find that
f ∈ X0∩Y0. Hence, 〈f | g〉X0,Y is well defined for every g ∈ Y , and 〈f |h〉Y0,X
is well defined for every h ∈ X. We may thus consider the following operators
on Xd:

Pj ~f =
∑
k∈Zd

∑
1≤ξ≤d

〈~f | ~ϕ∗ξ,j,k〉X,Y0 ~ϕξ,j,k

and

P ∗j
~f =

∑
k∈Zd

∑
1≤ξ≤d

〈~f | ~ϕξ,j,k〉X,Y0 ~ϕ∗ξ,j,k.

We have supj∈Z ‖Pj‖CZO = supj∈Z ‖P ∗j ‖CZO < ∞. Thus, those operators

are equicontinuous on Xd.
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To prove (a), we need to check the limits only on a dense subspace of Xd
0 .

The space X0 cannot be embedded into L1: if f ∈ D with f̂(0) 6= 0, then
the Riesz transforms Rjf are not in L1 but belong to X0. This means that
f ∈ D 7→ ‖f‖1 is not continuous for the X0 norm. We may thus find a
sequence of functions fn such that ‖fn‖X converges to 0 and ‖fn‖1 = 1.
Since |fn| is Lipschitz and compactly supported, we can regularize fn and
find a sequence of smooth compactly supported functions fn,k such that all
the fn,k, k ∈ N, are supported in a compact neighborhood of the support of
fn and converge, as k →∞, uniformly to |fn|; then, we have convergence in
X (since Y0 ⊂ L1

loc) and in L1. Thus, we can find a sequence of functions fn
which are in D, with

	
fn dx = 1 and limn→∞ ‖fn‖X = 0. This shows that

the set of functions f ∈ D with
	
f dx = 0 is dense in X0.

We now consider Qj = Pj+1 − Pj and Q∗j = P ∗j+1 − P ∗j :

Qj ~f =
∑
k∈Zd

∑
1≤χ≤d(2d−1)

〈~f | ~ψ∗χ,j,k〉X,Y0 ~ψχ,j,k

and

Q∗j
~f =

∑
k∈Zd

∑
1≤χ≤d(2d−1)

〈~f | ~ψχ,j,k〉X,Y0 ~ψ∗χ,j,k.

If ~f ∈ Dd and
	
~f dx = 0, we have ~f =

∑
1≤l≤d ∂l

~fl for some ~fl ∈ Dd.
Similarly, we have ψ∗χ =

∑
1≤l≤d ∂l

~Ψ∗χ,l and ψχ =
∑

1≤l≤d ∂l
~Ψχ,l for some

compactly supported functions of class CN . Thus, we find that, for ~f ∈ Dd
with

	
~f dx = 0,

‖Pj+1
~f−Pj ~f ‖X+‖P ∗j+1

~f−P ∗j ~f ‖X ≤ C min
(∑
l=1d

‖∂l ~f ‖X2j ,

d∑
i=1

‖~fl‖X2−j
)
.

Thus, Pj ~f and P ∗j
~f have strong limits in Xd

0 as j goes to −∞ or ∞. If

~g ∈ Dd, viewing ~f and ~g as elements of (L2)d, we see that

lim
j→−∞

〈Pj ~f |~g 〉X,Y0 = lim
j→−∞

〈P ∗j ~f |~g 〉X,Y0 = 0

and

lim
j→∞
〈Pj ~f |~g 〉X,Y0 = lim

j→∞
〈P ∗j ~f |~g 〉X,Y0 = 〈~f |~g 〉X,Y0 .

Thus, we have, for ~f ∈ Dd with
	
~f dx = 0,

lim
j→−∞

‖Pj ~f ‖X = lim
j→−∞

‖P ∗j ~f ‖X = 0

and

lim
j→∞

‖Pj ~f − ~f ‖X = lim
j→∞

‖P ∗j ~f − ~f ‖X = 0
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Hence (a) is proved; and (b) is proved in a similar way. By duality, we
get (c) and (d).

We may now consider the operators

Rj ~f =
∑
k∈Zd

∑
1≤ε≤(d−1)(2d−1)

〈~f | ~α∗ε,j,k〉X,Y0~αε,j,k

and

Sj ~f =
∑
k∈Zd

∑
1≤η≤2d−1

〈~f |~γ∗η,j,k〉X,Y0~γη,j,k.

From the equalities P∗R∗j = P∗Qj and Q∗S∗j = Q∗Q∗j of maps from Dd

to Y d
0 , we find by duality that RjP = Q∗jP and SjQ = QjQ on Xd. To be

able to use those identities, we shall need the following lemma:

Lemma 3.3. Let ~f ∈ Xd. Then:

(i) P~f = ~f ⇔ div ~f = 0.

(ii) Q~f = ~f ⇔ curl ~f = 0.

Proof. First, we check that [f ∈ X and ∆f = 0] ⇒ f = 0. Take θ ∈ D
such that θ ≥ 0 and θ 6= 0, and define

γ =
1

(1 + x2)(n+1)/2
∗ θ.

Convolution with the kernel (1+x2)−(n+1)/2 is a Calderón–Zygmund opera-
tor, so γ ∈ Y0. Moreover, if g is a function such that (1 + x2)(n+1)/2g ∈ L∞,
we find that g = γ−1gγ = Tγ−1g(γ), where the pointwise multiplication op-
erator Tγ−1g is a Calderón–Zygmund operator, so g ∈ Y0. This proves that
X ⊂ S ′. Thus, if f ∈ X and ∆f = 0, we find that f is a harmonic poly-
nomial. Moreover

	
|f |γ dx = 〈f |Tf/|f |(γ)〉X,Y0 , hence the integral

	
|f |γ dx

must be finite, and f must be constant. As the smooth functions with van-
ishing integral are dense in Y0, we find that the constant is equal to 0.

Now, for a distribution ~f we have

div ~f = 0 ⇔ ∀~ϕ ∈ Dd with curl ~ϕ = 0, 〈~f | ~ϕ〉 = 0;

thus, divP~f = 0 on Xd. Similarly, for a distribution ~f we have

curl ~f = 0 ⇔ ∀~ϕ ∈ Dd with div ~ϕ = 0, 〈~f | ~ϕ〉 = 0;

thus, curlQ~f = 0 on Xd.

Conversely, we start from the decomposition Id = P + Q valid on Xd.
If div ~f = 0, then we find that ~h = ~f − P~f = Q~f satisfies div~h = 0 and
curl~h = 0. But this implies ∆~h = 0, hence ~h = 0. We prove similarly that
curl ~f = 0 implies f = Q~f .
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4. The proof of the div-curl lemma. As in [LEMc], we prove The-
orem 2.3 by adapting the proof given by Dobyinsky [DOB]. This proof uses
the renormalization of the product through wavelet bases.

If ~f ∈ Xd, ~g ∈ Y d and if moreover ~f ∈ Xd
0 or ~g ∈ Y d

0 , we use Lemma 3.2
to find that, in the distribution sense, we have

~f · ~g = lim
j→∞

(P ∗j
~f · Pj~g − P ∗−j ~f · P−j~g)

and thus
~f · ~g =

∑
j∈Z

(P ∗j
~f ·Qj~g +Q∗j

~f · Pj~g +Qj ~f ·Q∗j~g).

If moreover div ~f = 0 and curl~g = 0, we use Lemma 3.3 to get

~f · ~g =
∑
j∈Z

(P ∗j
~f · Sj~g +Rj ~f · Pj~g +Rj ~f · Sj~g).

We shall prove that the three terms

A(~f,~g) =
∑
j∈Z

P ∗j
~f ·Sj~g, B(~f,~g) =

∑
j∈Z

Rj ~f ·Pj~g, C(~f,~g) =
∑
j∈Z

Rj ~f ·Sj~g

belong to H1.
We give the proof for ~f ∈ Xd

0 (the proof for ~g ∈ Y d
0 is similar). We

first check that A and B map (X0)
d × Y d to H1: we use the duality of H1

and CMO (the closure of C0 in BMO) (see Coifman and Weiss [COIW] and
Bourdaud [BOU]) and try to prove that the operators

A(~f, h) =
∑
j∈Z

S∗j (hP ∗j
~f ) and B(~f, h) =

∑
j∈Z

P ∗j (hRj ~f )

map (X0)
d × CMO to (X0)

d.
To this end, we shall prove that A(·, h) and that B(·, h) are matrices

of singular integral operators when h ∈ D and that we have the estimates
‖A(·, h)‖CZO ≤ C‖h‖BMO and ‖B(·, h)‖CZO ≤ C‖h‖BMO. For B, we may as
well study the adjoint operator

B∗(~f, h) =
∑
j∈Z

R∗j (hPj
~f ).

First, we estimate the size of the kernels and of their gradients. The kernels
Ah(x, y) of A(·, h) and B∗h(x, y) of B(·, h)∗ are given by

Ah(x, y) =
∑
j∈Z

∑
k∈Zd

∑
1≤ξ≤d

∑
l∈Zd

∑
1≤η≤2d−1

~γ∗η,j,l(x)〈h~ϕ∗ξ,j,k |~γη,j,l〉~ϕξ,j,k(y)

and

B∗h(x, y) =
∑
j∈Z

∑
k∈Zd

∑
1≤ξ≤d

∑
l∈Zd

∑
1≤ε≤(d−1)(2d−1)

~α∗ε,j,l(x)〈h~ϕξ,j,l | ~αε,j,k〉~ϕ∗ξ,j,k(y).
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There are only a few terms that interact, because of the localization of the
supports: if KN ⊂ B(0,M), then 〈h~ϕ∗ξ,j,k |~γη,j,l〉 = 〈h~ϕξ,j,l | ~αε,j,k〉 = 0 if
|l − k| > 2M . Let

C(h) = sup
j∈Z, k∈Zd, 1≤ξ≤d, l∈Zd, 1≤η≤2d−1

|〈h~ϕ∗ξ,j,k |~γη,j,l〉|,

D(h) = sup
j∈Z, k∈Zd, 1≤ξ≤d, l∈Zd, 1≤ε≤(d−1)(2d−1)

|〈h~ϕξ,j,l | ~αε,j,k〉|.

Then

|Ah(x, y)| ≤
∑
j∈Z

∑
k∈Zd

CC(h)2jd1B(0,M)(2
jx− k)1B(0,3M)(2

jy − k)

and thus

|Ah(x, y)| ≤ CC(h)
∑

2j |y−x|≤4M

2jd ≤ C ′C(h)|x− y|−d

and similarly

|Bh(x, y)| ≤ CD(h)|x− y|−d.
In the same way, we have

|~∇xAh(x, y)|+ |~∇yAh(x, y)|

≤
∑
j∈Z

∑
k∈Zd

CC(h)2j(d+1)1B(0,M)(2
jx− k)1B(0,3M)(2

jy − k)

and thus

|~∇xAh(x, y)|+ |~∇yAh(x, y)| ≤ CC(h)|x− y|−d−1

and similarly

|~∇xBh(x, y)|+ |~∇yBh(x, y)| ≤ CD(h)|x− y|−d−1.
Moreover, ~ϕ∗ξ,j,k ·~γη,j,l is supported in B(2−jk,M2−j), ‖~ϕ∗ξ,j,k ·~γη,j,l‖∞ ≤ C2jd

and
	
~ϕ∗ξ,j,k · ~γη,j,l dx = 0 (since P ∗j ~ϕ

∗
ξ,j,k = ~ϕ∗ξ,j,k and Qj~γη,j,l = ~γη,j,l). Thus,

we find that ‖~ϕ∗ξ,j,k · ~γη,j,l‖H1 ≤ C, so

C(h) ≤ C‖h‖BMO.

We have similar estimates for ‖~ϕξ,j,l · ~αε,j,k‖H1 (since Pj ~ϕξ,j,l = ~ϕξ,j,l and
Q∗j~αε,j,k = ~αε,j,k, and thus

	
~ϕξ,j,l · ~αε,j,k dx = 0), so

D(h) ≤ C‖h‖BMO.

Thus far, we have proved that A(·, h) and B(·, h) are singular integral
operators. To prove L2 boundedness, we use the T (1) theorem of David and
Journé [DAV]. We have to check that the operators are weakly bounded (in
the sense of the WBP property), and to compute the images of the function
f = 1 under the operators and their adjoints.
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Let x0 ∈ Rd, r0 > 0 and let ~f and ~g be supported in B(x0, r0). We want to

estimate 〈A(~f, h) |~g 〉D′,D and 〈B(~f, h) |~g 〉D′,D. We have 〈A(~f, h) |~g 〉D′,D| ≤∑
j∈ZAj where

Aj =
∑
k∈Zd

∑
1≤ξ≤d

∑
l∈Zd

∑
1≤η≤2d−1

|〈~g |~γ∗η,j,l〉〈h~ϕ∗ξ,j,k |~γη,j,l〉〈~f | ~ϕξ,j,k〉|

and similarly |〈B(~f, h) |~g 〉D′,D ≤
∑

j∈ZBj where

Bj =
∑
k∈Zd

∑
1≤ξ≤d

∑
l∈Zd

∑
1≤ε≤(d−1)(2d−1)

|〈~g | ~ϕξ,j,l〉〈h~ϕξ,j,l | ~αε,j,k〉〈~f | ~α∗ε,j,k〉|.

We have

Aj ≤ C(h)
∑
k∈Zd

∑
1≤ξ≤d

∑
|l−k|≤2M

∑
1≤η≤2d−1

|〈~g |~γ∗η,j,l〉〈~f | ~ϕξ,j,k〉|,

which gives

Aj ≤ C(h)
∑
k∈Zd

∑
1≤ξ≤d

|〈~f | ~ϕξ,j,k〉|
∑
l∈Zd

∑
1≤η≤2d−1

|〈~g |~γ∗η,j,l〉|

≤ CC(h)2jd‖~f ‖1‖~g‖1
and

Aj ≤ CC(h)

√∑
k∈Zd

∑
1≤ξ≤d

|〈~f | ~ϕξ,j,k〉|2
√∑
l∈Zd

∑
1≤η≤2d−1

|〈~g |~γ∗η,j,l〉|2,

and thus

Aj ≤ C ′C(h)‖Sj~g‖2‖P ∗j ~f ‖2 ≤ C ′′C(h)2−j‖~∇~g‖2‖~f ‖2.
Finally, we get

|〈A(~f, h) |~g 〉D′,D| ≤ CC(h)
( ∑
2jr0≤1

2jdrd0‖~f ‖2‖~g‖2 +
∑

2jr0>1

2−j‖~∇~g‖2‖~f ‖2
)

≤ C ′C(h)(‖~f ‖2 + r0‖~∇~f ‖2)(‖~g‖2 + r0‖~∇g‖2).

Similar computations (based on the inequality ‖Rj ~f ‖2 ≤ C2−j‖~∇~f ‖2)
give as well

|〈B(~f, h) |~g 〉D′,D| ≤ CD(h)(‖~f ‖2 + r0‖~∇~f ‖2)(‖~g‖2 + r0‖~∇g‖2).
Thus, our operators satisfy the weak boundedness property.

We must now compute the distributions T (1) and T ∗(1) when T is one
component of the matrix of operators A(·, h) or B(·, h). We must prove that

if θ ∈ D is equal to 1 on a neighborhood of 0, if ~θl,R = (θ1,l,R, . . . , θd,l,R)

with θk,l,R = δk,lθ(x/R) and if ~ψ ∈ Dd with
	
~ψ dx = 0, then

lim
R→∞

∑
j∈Z

S∗j (hP ∗j
~θl,R) ∈ (BMO)d
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(the limit is taken in (D′/R)d) and similarly

lim
R→∞

∑
j∈Z

Pj(hSj~θl,R) ∈ (BMO)d,

lim
R→∞

∑
j∈Z

P ∗j (hRj~θl,R) ∈ (BMO)d,

lim
R→+∞

∑
j∈Z

R∗j (hPj
~θl,R) ∈ (BMO)d.

To check that, we write ~hl = (h1,l, . . . , hd,l) with hk,l = δk,lh and we consider
~ψ ∈ Dd with

	
~ψ dx = 0. We have

∑
j∈Z ‖Sj(~ψ )‖1 < ∞ and ‖hP ∗j ~θl,R‖∞ ≤

‖h‖∞‖θ‖∞ and thus, by dominated convergence,

lim
R→∞

�
~ψ ·
∑
j∈Z

S∗j (hP ∗j
~θl,R) dx =

∑
j∈Z

�
Sj ~ψ · ~hl dx.

∑
j∈Z Sj is a matrix of Calderón–Zygmund operators T which satisfy T ∗(1)

= 0, hence map H1 to H1, so∣∣∣∑
j∈Z

�
Sj ~ψ · ~hl dx

∣∣∣ ≤ C‖h‖BMO‖~ψ‖H1

and thus limR→∞
∑

j∈Z S
∗
j (hP ∗j

~θl,R) ∈ (BMO)d. Similar estimates prove
that

lim
R→∞

�
~ψ ·R∗j (hPj~θl,R) dx =

∑
j∈Z

�
Rj ~ψ · ~hl dx

and ∣∣∣∑
j∈Z

�
Rj ~ψ · ~hl dx

∣∣∣ ≤ C‖h‖BMO‖~ψ‖H1 ,

so that limR→∞
∑

j∈ZR
∗
j (hPj

~θl,R) ∈ (BMO)d.

On the other hand, we have∣∣∣� ~ψ · Pj(hSj~θl,R) dx
∣∣∣ ≤ C‖h‖∞‖Pj ~ψ‖1‖Sj~θl,R‖∞

≤ C~ψ
‖h‖∞min(1, 2j) min(‖θ‖∞, 2−jR−1‖~∇θ‖∞) = O(R−1/2),

so limR→∞
∑

j∈Z Pj(hSj
~θl,R)=0. Similarly, limR→∞

∑
j∈Z P

∗
j (hRj~θl,R)=0.

Thus, we have proved that A and B map Xd
0 ×CMO to Xd

0 , and thus A

and B map Xd
0 × Y d to H1. We still have to deal with the term C(~f,~g) =∑

j∈ZRj
~f · Sj~g. We write

C(~f,~g) =
∑
j∈Z

∑
k∈Zd

∑
1≤η≤2d−1

∑
l∈Zd

∑
1≤ε≤(d−1)(2d−1)

〈~g |~γ∗η,j,k〉〈~f | ~α∗ε,j,l〉~αε,j,l·~γη,j,k.
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We have ~αε,j,l · ~γη,j,k = 0 for |k − l| > 2M and ‖~αε,j,l · ~γη,j,k‖H1 ≤ C for
|k − l| ≤ 2M . Thus, we are led to prove that∑

j∈Z

∑
k∈Zd

∑
1≤η≤2d−1

∑
|l−k|≤2M

∑
1≤ε≤(d−1)(2d−1)

|〈~g |~γ∗η,j,k〉| |〈~f | ~α∗ε,j,l〉|

≤ C‖~f ‖Xd
0
‖~g‖Y d .

For 1 ≤ η ≤ 2d − 1, 1 ≤ ε ≤ (d− 1)(2d − 1) and r ∈ Zd with |r| ≤ 2M , we
consider a finite subset J of Z×Zd and for εJ = (εj,k)(j,k)∈J ∈ {−1, 1}J and
TεJ the operator

TεJ (~f ) =
∑

(j,k)∈J

εj,k〈~f | ~α∗ε,j,k+r〉~γ∗η,j,k.

Using again the T (1) theorem, we see that ‖TεJ‖CZO ≤ C, so that TεJ (~f ) ∈
Xd

0 and
�
TεJ (~f ) · ~g dx =

∑
(j,k)∈J

εj,k〈~f | ~α∗ε,j,k+r〉〈~g |~γ∗η,j,k〉 ≤ C‖~f ‖Xd
0
‖~g‖Y d .

Now, it is enough to choose εj,k as the sign of 〈~f | ~α∗ε,j,k+r〉〈~g |~γ∗η,j,k〉 and we
can conclude.

Thus, Theorem 2.3 has been proved.

5. Examples. We now give some examples of Calderón–Zygmund pairs
of Banach spaces (according to Definition 2.2):

(a) Lebesgue spaces: X = X0 = Lp and Y = Y0 = Lq with 1 < p < ∞
and 1/p+ 1/q = 1.

(b) Lorentz spaces: X = X0 = Lp,r and Y = Lq,ρ with 1 < p < ∞,
1 ≤ r <∞, 1/p+ 1/q = 1 and 1/r + 1/ρ = 1.

(c) Weighted Lebesgue spaces: X = X0 = Lp(w dx) and Y = Y0 =
Lq(w−1/(p−1) dx) with 1 < p < ∞ and 1/p + 1/q = 1, when the weight w
belongs to the Muckenhoupt class Ap.

(d) Morrey spaces: We consider the Morrey space Lα,p defined by

f ∈ Lα,p ⇔ sup
Q∈Q

RαQ

(
1

|Q|

�

Q

|f(x)|p dx
)1/p

<∞.

We are interested in the set of parameters 1 < p <∞ and 0 < α ≤ d/p.
The Zorko space Lα,p0 is the closure of D in Lα,p. Adams and Xiao

[ADA] have proved that Lα,p is the bidual of Lα,p0 : Hα,q = (Lα,p0 )∗ and
Lα,p = (Hα,q)∗ with 1/p + 1/q = 1. One characterization of Hα,p is the
following: f ∈ Hα,q if and only if there is a sequence (λn)n∈N ∈ l1 and a
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sequence of functions fn and of cubes Qn such that fn ∈ Lq, fn is sup-

ported in Qn and ‖fn‖q ≤ R
α+d/q−d
Qn

. The norm ‖f‖Hα,q is then equivalent

to inf(λn),(fn),f=
∑
λnfn

∑
n∈N |λn|.

Our Calderón–Zygmund pair is then X = Lα,p and Y = Y0 = Hα,q with
1 < p <∞, 0 < α ≤ d/p and 1/p+ 1/q = 1.

(e) Multiplier spaces: We can build new examples from the former ones.
Indeed, let X be a Banach space such that:

(i) We have continuous embeddings X1 ⊂ X ⊂ X2 for some Calderón–
Zygmund pairs of Banach spaces (X1, Y1) and (X2, Y2).

(ii) There is a Banach space A such that D is dense in A and the dual
space A∗ coincides with X with equivalence of norms.

(iii) Every Calderón–Zygmund operator may be extended as a bounded
operator on X: ‖T (f)‖X ≤ C‖T‖CZO‖f‖X .

Then, if X0 is the closure of D in X and Y = X∗0 , (X,Y ) is a Calderón–
Zygmund pair of Banach spaces (and A = Y0).

This is easy to prove. First, notice that every Calderón–Zygmund oper-
ator can be extended on X2, hence be defined on X; the extra information
is that it is bounded from X to X. Moreover, we have D ⊂ X1,0 ⊂ X0 with
continuous embeddings, so that every Calderón–Zygmund operator maps
X0 to X0, hence Y to Y by duality. Moreover, from X1,0 ⊂ X0 ⊂ X2,0, we
get Y2 ⊂ Y ⊂ Y1. We will conclude if we prove A = Y0; but we see easily
(since truncation and convolution operators are Calderón–Zygmund opera-
tors) that X0 is ∗-weakly dense in X and that A is embedded into Y with
equivalence of norms (due to the Hahn–Banach theorem). Thus, A = Y0.

We may apply this to the space X = Xs,p of pointwise multipliers from
the potential space Ḣs

p (1 < p <∞, 0 < s < d/p):

(i) We have the continuous embeddings for p1 > p: Ls,p1 ⊂ Xs,p ⊂ Ls,p
(Fefferman–Phong inequality) [FEF].

(ii) Xs,p is the dual space of Y s,q defined by: f ∈ Y s,q if and only if
there is a sequence (λn)n∈N ∈ l1 and a sequence of functions fn and
gn with fn ∈ Ḣs

p , gn ∈ Lq, ‖fn‖Ḣs
p
≤ 1 and ‖gn‖q ≤ 1. The norm

‖f‖Y s,q is then equivalent to inf(λn),(fn),(gn),f=
∑
λnfngn

∑
n∈N |λn|.

(iii) Every Calderón–Zygmund operator may be extended as a bounded
operator on X: ‖T (f)‖X ≤ C‖T‖CZO‖f‖X . This is due to a theo-
rem of Verbitsky [MAZ].
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