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A remark on the div-curl lemma
by

PIERRE GILLES LEMARIE-RIEUSSET (Evry)

Abstract. We prove the div-curl lemma for a general class of function spaces, stable
under the action of Calderén—Zygmund operators. The proof is based on a variant of the
renormalization of the product introduced by S. Dobyinsky, and on the use of divergence-
free wavelet bases.

1. Introduction. In 1992, Coifman, Lions, Meyer and Semmes [COIL]
gave a new interpretation of the compensated compactness introduced by
Murat and Tartar [MUR]. They showed that the functions considered by
Murat and Tartar had a greater regularity than expected: they belonged to
the Hardy space H'.

Moreover, they gave a new version of the div-curl lemma of Murat and
Tartar:

THEOREM 1.1. If 1 < p < o0, ¢ = p/(p — 1), f € (LP(RH))? and
g e (LYRY))?, then

divf=0and curlg=0 = f-ge M

There are many proofs of this result. We shall rely mainly on the proof
by S. Dobyinsky, based on the renormalization of the product introduced in
[DOBJ.

As pointed out to me by Grzegorz Karch, it is easy to see that this result
can be extended to a large class of function spaces. For instance, we have the
straightforward consequence of Theorem for weak Lebesgue spaces LP*
(better viewed as Lorentz spaces LP**°) and their preduals L%!:

COROLLARY 1.2. If1 < p < o0, ¢ = p/(p — 1), f € (LP°RY)? and
G € (L9 (R)?, then

divf:O and curl§ =0 :f-g'e%l,
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and
divg =0 and curlf:(_f :>f-§€H1.

Proof. All we need is the projection operators that lead to the Helmhotz
decomposition of a vector field: Id = P 4+ Q where Q is the projection onto
irrotational vector fields,

Qh = 6% div A,
and IP the projection operator onto solenoidal vector fields. Those projection
operators are matrices of singular integral operators and thus are bounded
on Lebesgue spaces L", 1 < r < oo, and, by interpolation, on Lorentz spaces
L™ 1<r<oo,1<t< 0.

Let € > 0 be such that ¢ < min(1/p,1/q). We write 1/p+ = 1/p+¢,
1/p-=1/p—¢ /gy = 1/g+cand 1/q- = 1/g— e Tf f € (LP=(RY))?,
we can write, for every A > 0, f = aa+ Ba with ||@apr- < CAHf HLpoo
and HBAHL” < CA7Y|f||ppoe. If div f = 0, we have moreover f = Pf =
P& + PB4. On the other hand, if § € (L9} )4, we can write § = > jenAidi

with ||G;||ze-[|g]lpe+ < 1 and deN IAj] < CHgHLq 1. If curl § = 0, we have

~ ~ 1/2 ~1/2 .
moreover § = QF = 3,y A; Qgj. Let A; = [|Gj| ¢ / ”ggHLqJ{ . We then write

F-g=>"X(Pda, - Qg +PBa, - Q3))

JjeN
and get (from the div-curl theorem of Coifman, Lions, Meyer and Semmes)

1F - Gl < CYINIIPEA, | - 11QG M pav + PBa, Il o+ 1QF ] £o-)
JEN
< CIF Nlzree Y INIA G5 Lor + A7 I )
jEN
= C'|[f e Y IN < CVN F 1w 1] o

jeN
The proof for the case div g = 0 and curlf: 0 is similar. =

In this paper, we aim to find a general class of function spaces for which
the div-curl lemma still holds. As we can see from the proof of Corollary [1.2]
singular integral operators will play a key role in our result. In Section
we shall introduce Calderon—Zygmund pairs of function spaces which will
allow us to prove such a general result. In Section [3, we recall the basics
of divergence-free wavelet bases (as described in the book [LEMc]). In Sec-
tion [4l we prove our main theorem. Then, in Section 4, we give examples of
Calderon—Zygmund pairs of function spaces.
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2. Calder6n—Zygmund pairs of Banach spaces. We begin by re-
calling the definition of a Calderén—Zygmund operator:

DEFINITION 2.1. (A) A singular integral operator is a continuous lin-
ear mapping from D(R?) to D'(R?) whose distribution kernel K(x,y) €
D'(R? x R?) (defined formally by the formula Tf(z) = (K (z,y)f(y) dy)
has its restriction outside the diagonal x = y defined by a locally Lipschitz
function with the following size estimates:

(1) Supz;éy|K($7y)’ |x_y|d < 00,
(11) Sup:z:;éy |VIK(I7 y)’ |5C - y|d+1 < o0,
(111) SUP g4y |vyK(x7 y)‘ ’:E - y’dJrl < 0.

For such an operator T', we define

ITllsto = (1K (z, y)la — YU oo () + VK (2,92 — y|* | 1o ()
+ IV K (2,92 — y| "l 1o 0

where K is the distribution kernel of 7 and 2 = {(z,y) € R? x RY | 2 # y}
(B) A Calderén—Zygmund operator is a singular integral operator T'
which may be extended as a bounded operator on L?:

sup  [|[Te|l2 < 0.
©€D, [lpll2<1
We define CZO to be the space of Calderén—Zygmund operators, endowed
with the norm

ITllczo = 1T\l zcz2,22) + 1T |s10-
We can now define our main tool:

DEFINITION 2.2. A Calderén—Zygmund pair is a pair (X,Y") of Banach
spaces such that:

(i) We have the continuous embeddings D(RY) ¢ X C D'(R?) and
DRY) C Y C D'(RY).

(ii) Let X be the closure of D in X; then the dual X of X, (i.e.
the space of bounded linear forms on Xj) coincides with Y with
equivalence of norms: a distribution 7" belongs to Y if and only if
there exists a constant Cp such that [(T'| p)p p| < Crll¢| x for all
peD.

(iii) Let Yy be the closure of D in Y. Then the dual Y coincides with
X with equivalence of norms.

(iv) Every Calderén—Zygmund operator may be extended to a bounded
operator on X and on Y{: there exists a constant Cy such that, for
every T' € CZO and every ¢ € D, we have T'(¢) € XoNY, and

ITellx < Col[Tllezollellx  and [[Telly < ColTllczoll#lly-
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By duality, we find that every Calderén—Zygmund operator extends to
a bounded operator on X and Y if 7™ is defined by the formula

(Tel)pp={o|T™Y)pp,

then T' € CZO implies T* € CZO and we may define T'(f) on X as the
distribution ¢ = (f [T (¢))vg v,- The two definitions of 7' coincide on Xj.

For m € L, the operator T}, : ¢ — mp belongs to CZO (with kernel
K(z,y) = m(x)d(x —y)). The stability of X and Y under multiplication by
bounded smooth functions (with the inequalities ||mf|x < Colm||sol| fllx
and [[mflly < Collm| sl f]ly) shows that elements of X and Y are (complex)
local measures and that Xy and Y are embedded into L}

loc*

Our main result (to be proved in Section [4]) is the following:

THEOREM 2.3. Let (X,Y) be a Calderén—Zygmund pair of Banach
spaces. If f € Xf)l and G €Y?, then

divf=0and curlj=0 = f-geH'
and
divi=0and curl f=0 = f-§eH"
REMARK. The distribution f - ¢ is well-defined, since f € Xg: if p €D,
then gpfe X and g € (X§)2.

3. Divergence-free wavelet bases. In this section, we give a short
review of properties of divergence-free wavelet bases. Wavelet theory was
introduced in the 1980’s as an efficient tool for signal analysis. Orthonormal
wavelet bases were first constructed by Y. Meyer [LEMM], G. Battle [BAT] and
P. G. Lemarié-Rieusset; a major advance was the construction of compactly
supported orthonormal wavelets by I. Daubechies [DAU]. Then bi-orthogonal
bases were introduced by A. Cohen, I. Daubechies and J.-C. Feauveau [COH].
Divergence-free wavelets were introduced by Battle and Federbush [BATF].
Compactly divergence-free wavelets wereintroduced by P. G. Lemarié-Rieusset
[LEMal; they are not orthogonal wavelets [LEMDb|, but have been explored for
the numerical analysis of the Navier—Stokes equations [DERI [URB].

Let Hgiv—o and Hceyri—o be defined as

Hgaiv—o = {f € (L*)? | div f = 0} and Heuri—o = {f € (L*)? | curl f = 0}.

For f € (L*)%, j € Z and k € Z%, we define Jik as f;k(x) = 2jd/2f(2jx —k).
Let us recall the main results of [LEMa] (described as well in the book
[LEMc]). The idea is to begin with a Hilbertian basis of compactly sup-
ported wavelets, associated to a multi-resolution analysis (V;);jez of L*(R).
Associated to this multi-resolution analysis (with orthogonal projection op-
erator II; onto Vj), there is a bi-orthogonal multi-resolution analysis (Vﬁ),
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(Vj ) Wlth projection II(;) onto V;~ orthogonally to VjJr such that % oll; =
Mg o

Startlng from this one-dimensional setting, we now consider a bi-orthogo-
nal multi-resolution analysis of (L2(RM))%, (Vj1,...,V;q) and (Vi Vi,
where V3 =Vp1 ®@ - @ Vjjq with Vj ., =V, for k#1 and ka—Vf
and V5 =V5 1@ - @V ; with Vj k1= Vj for k1 and Vi k:V . Let P; be
the projection operator onto (Vj1,...,Vjq) orthogonally to (V]*l, e V;:‘d)
Its adjoint P is the projection operator onto (ij1> ceey ijd) orthogonally to
(Vja,---sVja). The point is that we have P;(V f) = V(II;f) and div(P; f)
= IT:(div f).

Those projection operators P; and P} yield an accurate description of
Hgiv—0 and Hcyri=o:

PROPOSITION 3.1 (Multi-resolution analysis for divergence-free or irrota-
tional vector fields). Let N € N. Then there exists a compact set Ky C R?
such that:

(A) Multi-resolution analysis: There exist
e functions g and G in (L%, 1<€<d,
e functions 1/7X and 1/7; in (L2)4, 1 < x <d(2?-1),
such that:
(i) Pe, P sz and 1/7; are supported in K.
(i) @e, P 1EX and 1/7; are of class C.
(iii) Forl e N® with 3% | I; < N, we have {2k, do = leJ; dr = 0.
(iv) Forj, ' inZ, k, k' inZ%, €, & in {1,...,d}, and x, X' in {1,...,
d2? - 1)},
\Bejn- Ber jpor do = SppoOeer and \ g by o g da = 0 OBy
(v) The operators P; defined on (L?)? by
Pif =" > A1) Pesn
kezd 1<€<d
are bounded projections and satisfy

PjoPyy = Pyy1oP; = Py, tim [Pl =0 = lim =P, f 2 = 0.
j——o0 j—oo
(vi) The operators Q; deﬁned on (L*)% by

keZd 1<x<d(2¢—-1)
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are bounded and satisfy

Qj=Pjg1—-P
and

IFlla~ D INQiF I3~ DS > KFI 00
JEZ JEZL keZd 1<x<d(2¢—1)

(B) Irrotational vector fields: The projection operators P; satisfy
fe@®% and curlf =0 = curle(f) =0.

Moreover, there exist

o 2% — 1 functions Tn € (L), 1 <n <21, with curly, =0,
e 27 1 functions Yo € (L4, 1<n<2d 1,

such that:
(i) 9, and 7, are supported in K.
(ii) ¥y and 7, are of class cN.
(iii) For | € N with Zle li <N, we have §2'%, du = {2'7} dx = 0.
(iv) Forj, j' inZ, k, k' in Z¢, and n, ' in {1,...,2% — 1},
VT = T g e A = 85O By
(v) The operators S; defined on (L?)¢ by
Sf Z Z fMWk%M
kezd 1<n<2d-1
are bounded and satisfy
Vf€ Hourimo  S;f = Qif
and

V]?E chrl:O ||.fH2 ~ Z Z Z |<f|’777]’ >‘ :

JEL kezd 1<n<24—1

(C) Divergence-free vector fields: The projection operators P; satisfy
fe () and divf=0 = divP;f=0.
Moreover, there exist
e (d—1)(2% — 1) functions @, € (L*)?, 1 < e < (d —1)(2% — 1), with
diva, =0,
e (d—1)(2% —1) functions @ € (L*)4, 1 <e < (d—1)(2¢ - 1),
such that:

(i) de and & are supported in Ky.

(i) d. and @ are of class CV.
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(iii) For € N? with 25:1 l; < N, we have {z'd. dx = {2'a} dz = 0.
(iv) Forj, j' inZ, k, k' in Z% and ¢, ¢ in {1,...,(d —1)(2¢ — 1)},
SO_ZEJ"k . &:’,j’,k’ dr = 5j,j’5k,k’6e,e"

(v) The operators R; defined on (LA by

Rif=3 > a0
keZd 1<e<(d—1)(2¢-1)
are bounded and satisfy
Vf € Haiveo  Rif =Qif
and

Vi€ Hav=o [Ifllz~ [ > [(Faz ;012

JEZ keZd 1<e<(d—1)(29-1)

We would like now to use those special functions for our spaces X and Y.
We begin with the following lemma:

LEMMA 3.2.
a) If f € X4, then P Fand P f converge strongly to 0 in X% as j —
0 J J
—00 and converge strongly to f in X% as j — oo.
b) If f € Y, then P;f and P* f converge strongly to 0 in Y as j — —oo
0 J 7
and converge strongly to f in_’Yd as j — oo.
(c) If f € X4, then P;f and P; f converge *-weakly to 0 in X% as j —

—00 and converge *-weakly to f in X% as j — oo.
(d) Iff € Y4, then P f and P} f converge *-weakly to 0 in Y as j —

—o0 and converge *-weakly to f inY? as j — oo.
Proof. First, we check that the operators are well defined. If f € CV
has a compact support, then we may write f = f0 with 8 € D equal to 1
on a neighborhood of the support of f. Thus, f = T(#) and we find that

f € XoNYy. Hence, (f|g)x, v is well defined for every g € Y, and (f | h)y, x
is well defined for every h € X. We may thus consider the following operators

on X%
Pif =" > Af18 0 xvePejin

kezd 1<£<d

and

Prf= Z Z (f 1 Be j k) X v0 P j k-

kezd 1<£<d
We have supjcy || Pjllczo = supjez [P} lczo < oo. Thus, those operators
are equicontinuous on X d,
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To prove (a), we need to check the limits only on a dense subspace of X¢.
The space Xy cannot be embedded into L': if f € D with f(O) # 0, then
the Riesz transforms R;f are not in L' but belong to X(. This means that
f € D || f|l1 is not continuous for the Xy norm. We may thus find a
sequence of functions f, such that || f,||x converges to 0 and || f,|1 = 1.
Since |fy| is Lipschitz and compactly supported, we can regularize f,, and
find a sequence of smooth compactly supported functions f, , such that all
the f, %, k € N, are supported in a compact neighborhood of the support of
fn and converge, as k — oo, uniformly to | f,|; then, we have convergence in
X (since Yy C Lloc) and in L'. Thus, we can find a sequence of functions f,
which are in D, with §{ f,, dz = 1 and lim,_,o || fn||x = 0. This shows that
the set of functions f € D with { f dz = 0 is dense in Xj.

We now consider Q; = Pjy1 — Pj and QF = P, — P/

Qif =Y > flE 0 xxvik

kezd 1<x<d(24-1)

DD SRRV TR

keZd 1<x<d(24—1)
If f € D and Sfdac = 0, we have f = zlggdalf[ for some f; € D
Similarly, we have ¢} = >4 81@;,1 and Yy = > 1<y 81@01 for some

compactly supported functions of class CN. Thus, we find that, for f e p?
with { fdz =0,

and

1By F=PiF I +1P70 F~Pi Fllx < Canin((Y 007 52 Z||fz||X2 7).

=14
Thus, ij and P;f have strong limits in Xo as j goes to —oo or oco. If
j € D?, viewing f and § as elements of (L?)%, we see that

lim (Pif|7)xy, = lim (P7f]§)xy, =0
j——00 J—=—=

and

—

lim (Pf|g>Xy0 = hm <P f|g>XY0 (f13)xv-

j—00
Thus, we have, for f € D¢ with Sfda: =0,
lim [|Pf]lx = lim [P f]lx =0
j——o00 j——o0

and
lim ||Pif — fllx = lm [|[P/f—fllx=0
j—o0 j—oo
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Hence (a) is proved; and (b) is proved in a similar way. By duality, we
get (c) and (d). =

We may now consider the operators

Rif=> > (F1aEj k) x.¥0 e 5k

keZd 1<e<(d—1)(2¢—1)

f Z Z f‘fyr],]k XYO’Y'U]y
kezZd 1<n<2d—1
From the equalities P*R; = P*Q); and Q*57 = Q*Q; of maps from DA
to Yod, we find by duality that R;P = QP and S;Q = Q;Q on X4 To be
able to use those identities, we shall need the following lemma:
LEMMA 3.3. Let fe X<, Then:
(i) Pf=f < divf=0.
(i) Qf = f < curlf=0.
Proof. First, we check that [f € X and Af =0] = f = 0. Take § € D
such that 6 > 0 and 6 # 0, and define
1

v= (1 + 22)(n+D)/2 +0.

and

Convolution with the kernel (14 22)~("*+1/2 is a Calderén-Zygmund opera-
tor, so v € Y. Moreover, if ¢ is a function such that (14 z2)"*+1/2g ¢ L
we find that g = v lgy = T,-14(7), where the pointwise multiplication op-
erator T'-1, is a Calder6n—Zygmund operator, so g € Yp. This proves that
X C & Thus, if f € X and Af = 0, we find that f is a harmonic poly-
nomial. Moreover {|f|ydz = (f | Tt/ /(7))x,v,, hence the integral {|f|ydx
must be finite, and f must be constant. As the smooth functions with van-
ishing integral are dense in Yy, we find that the constant is equal to 0.
Now, for a distribution f we have

divf=0 < Vge D with curl =0, (f|3) =0;
thus, div P f =0 on X< Similarly, for a distribution f we have

curl f=0 & V3 e D? with divg=0, (f|3) =0;
thus, curle: 0 on X<

Conversely, we start from the decomposition Id = P + Q valid on X*. d

If dlvf = 0, then we find that h = f ]P’f @f satisfies divh = 0 and
curlh = 0. But this implies Ah = 0, hence h =0. We prove similarly that

curlf = 0 implies f = Qf "
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4. The proof of the div-curl lemma. As in [LEMc|, we prove The-
orem by adapting the proof given by Dobyinsky [DOB]. This proof uses
the renormalization of the product through wavelet bases.

If fE X4, §e Y? and if moreover fe Xdor §e Y, we use Lemma
to find that, in the distribution sense, we have

frg= lim (P} f-P;g—P;f P;g)
J—00
and thus
Fg=> (Pf Qig+Q;f Pg+Q;f Qi)
JEZL
If moreover div f =0 and curlg = 0, we use Lemma to get
F-g=> (P f-Sig+Rif Pg+R;f- S,
JEL
We shall prove that the three terms
9 =>_Pf-8§ B(f.9=Y Rif-Pg C(f.§)=Y Rif 583
JEL JEL JEZ
belong to H!.
We give the proof for f € X¢ (the proof for § € Y{ is similar). We
first check that A and B map (Xg)? x Y? to H': we use the duality of H'

and CMO (the closure of Cy in BMO) (see Coifman and Weiss [COIW] and
Bourdaud [BOU]) and try to prove that the operators

h)=> " S;(hP;f) and B(f,h)=> Pj(hR;f)
JEZ JEZ
map (Xo)? x CMO to (Xo)4.
To this end, we shall prove that A(-,h) and that B(-,h) are matrices
of singular integral operators when h € D and that we have the estimates

[AG; )llczo < Cllhllemo and [[B(+; h)llczo < CllhllBmo- For B, we may as
well study the adjoint operator

B (f,h) =Y R;(hP;f).
JEZ

First, we estimate the size of the kernels and of their gradients. The kernels
Ap(x,y) of A(-,h) and Bj(x,y) of B(:,h)* are given by

An(z,y) ZZ Z Z Z Vgt (€) (WP i

JEZL ke7d 1<E<d €72 1<n<2d—1

V5,00 Pe ik (Y)

and

Bi(z,y)=Y_> > > > ar @) hGe i | Gejr)PE i W)-

JEZ keZd 1<6<d €7 1<e<(d—1)(29-1)
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There are only a few terms that interact, because of the localization of the
supports: if Ky C B(0, M), then <hg5”£7j7k\f_y’n,j,l> = (hPeji| Qe jr) = 0 if
|l — k| > 2M. Let

C(h) = sup ‘(h‘ﬁzjk | '7n,j,l>‘7
JEZ, kEZ, 1<E<d, I€Z4,1<n<2d—1
D(h) = sup [(hBeji | Oejore)|-
JEZ, keZd, 1<E<d, 1€74,1<e< (d—1)(29—1)
Then
|Ap(z,y)| < Z Z CC(h)21" 1 p(o,ar) (272 — k)10 300 (2y — k)
JEL kezd
and thus

[An(z, )| <CC(h) Y 2 <CCh)e -y~
29|y —=|<4M
and similarly
|Br(z,y)| < CD(h)|z —y| ™.

In the same way, we have
Ve An(@,y)| + VyAn(e, y)|
< Z Z CC(h)27 D1 g0 0y (202 — k)L posnn) 2y — k)
JEZ kezd
and thus
Ve An(z,y)| + [VyAn(@, y)| < CO(R)|w -y~
and similarly
Ve Bu(@,y)| + [VyBu(z,y)| < CD(h)|z —y| =",
Moreover, ¢ ; +7y,j,1 is supported in B(277k,M277), ‘|@2,j,k'7n,j,l’|oo < 0274
and S(ﬁzjk g dr =0 (since PY@ ;) = G 5y and Q7,51 = Yy,j1)- Thus,
we find that [|GF ; ;- Vyjillzr < C, s0
C(h) < Clh|[Bmo-
We have similar estimates for ||F¢ j; - dcjrllz (since Pj@e ;i = Peji and
Q}0lcjk = Qe jik, and thus {Ge ;- dejp dv = 0), so
D(h) < C|lhl[Bmo-
Thus far, we have proved that A(-,h) and B(-, h) are singular integral
operators. To prove L? boundedness, we use the T'(1) theorem of David and
Journé [DAV]. We have to check that the operators are weakly bounded (in

the sense of the WBP property), and to compute the images of the function
f = 1 under the operators and their adjoints.
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Let zg € RY, ry > 0 and let f and ¢ be supported in B(x We want to

0570)-
estimate (A(f, h)| §)prp and (B(f, ) | §)pr.p. We have (A(F,h) | §)prp] <
> jezn Aj where

A= 3  G1 T BB g A i) F | Pe )]
kezZd 1<6<d €74 1<n<2d—1
and similarly |(B(f,h) |G)p D < 3 e Bj where

Bi=> > > > §ldeinhde

keZd 1<E<d €7 1<e<(d—1)(2¢—1)
We have

Ap<Cm) Y Y > > a0 Fenls

keZd 1<€<d |I—k|<2M 1<n<2d-1

Ve o) (f 1O 1)

which gives

A <Ch) YT DT UG D D G0

kezd 1<£<d lezd 1<n<2d—1
< COm)2| fhllglh

and

Ay <ccm) |3 ST 1GR3 Y 11T

kezd 1<£<d lezd 1<n<2d—1
and thus
A; < C'C)|IS;dll2ll Py fll2 < C"C(h)277 |V gllall £ -
Finally, we get
(A §)o ol < COB)( S0 24580 allale + 30 27719300711

2i7ro<1 2irg>1

< ORI Iz + rollV £ ll2) (Igll2 + ol Vgll2)-

Similar computations (based on the inequality ||R; Fll2 < C279|VF]l2)
give as well

[(B(f.h)1)pr .0l < CDMR)(IIf ll2 + ol VF12)(lgll2 + 7ol Vglla).

Thus, our operators satisfy the weak boundedness property.

We must now compute the distributions 7°(1) and 77(1) when T is one
component of the matrix of operators A(-, h) or B(-,h). We must prove that
if 8 € D is equal to 1 on a neighborhood of 0, if 977R = (010R,----0a1R)
with 041 p = 0,0(z/R) and if ) € D¢ with (¢ dz = 0, then

dim >S5 (hP} 0 ) € (BMO)!
JEZ
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(the limit is taken in (D'/R)%) and similarly
Jim > Py(hS;0,r) € (BMO)',
JEZ
lim Y P} (hR;0r) € (BMO),

R—o0
JEL

lim R} (hP;j0,r) € (BMO)".

R—+o00
JEZ

To check that, we write hy = (h1gs- -5 hgy) with hy; = 05 1h and we consider
¢ € D¢ with {4 dz = 0. We have > ez 15;(4)]]1 < oo and HhPféTl,RHoo <
|h]|solf|lco and thus, by dominated convergence,

dim Yo > S5 (hPiOR) du =)\ Sy Iy da
JET JET
> jez Sj is a matrix of Calderén-Zygmund operators T" which satisfy 77 (1)
=0, hence map H! to H!, so

1> 1856 By da| < Cllplmuoll¥l
JEZ

and thus limp o 3507 SH(hP10,R) € (BMO)Z Similar estimates prove
that
lim \¢ - R;(hP;0)R)du = "\ Rjip - by da

R—o0 -
JEZ

and

‘ZSRjJ' hy df”) < C|lhllBymoll® 1,

JEZ
s0 that limp_e ez R (hP0, 1) € (BMO).
On the other hand, we have
10 Pj(1S,01,5) da| < C1hllocl| Pyll11 15580l
< Cjlhlloo min(1, 27) min([|0]l o, 277 B[ V6]|oo) = O(R_l/z),
50 WAoo Yz P (hSi01,r) =0. Similarly, limp o 3z Pf (hR;0, 1) =
Thus, we have proved that A and B map Xg x CMO to XO, and thus A

and B map X¢ x Y4 to H'. We still have to deal with the term C(f,g) =
ZJEZR‘f -5;g. We write

ZZ Z Z Z <§”7;,j,k><f\&:,j,lWe,j,l'%,j,k'

JEZL keZd 1<n<24—11€Z 1<e<(d—1)(24—1)
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We have dc ;- Vnjr = 0 for |k —1| > 2M and ||dcji - Vn.jk
|k — 1| < 2M. Thus, we are led to prove that

DD DY S WG]

JEZL keZd 1<n<24—1 [I—k|<2M 1<e<(d—1)(29—1) .
< Cllf Nl xgllgllya-

For 1 <n<2'—1,1<e<(d—1)(29—1) and r € Z¢ with |r| < 2M , we
consider a finite subset J of Z x Z? and for €7 = (¢;x)(jkyes € {—1,1}7 and
T, the operator

H1 S C for

T, (F) = > rlf 1 )T i
(G.k)€T
Using again the T'(1) theorem, we see that ||T¢,||czo < C, so that T, (f) €
X¢ and

VI, (F) - gde =37 eiul 1 G jaan) (G175 500 < CUF lxglglye-

(g,k)eT

Now, it is enough to choose €;;, as the sign of (f] O k(G 7y i) and we
can conclude.
Thus, Theorem [2.3] has been proved.

5. Examples. We now give some examples of Calderén—Zygmund pairs
of Banach spaces (according to Definition :

(a) Lebesgue spaces: X = Xo=LP and Y =Yy = LY with 1 < p < o0
and 1/p+1/g=1.

(b) Lorentz spaces: X = Xo = LP" and Y = L% with 1 < p < oo,
1<r<oo,1/p+1/g=1land 1/r+1/p=1.

(c) Weighted Lebesque spaces: X = Xo = LP(wdz) and ¥ = Yy =
LI(w=Y®=D dz) with 1 < p < co and 1/p + 1/q = 1, when the weight w
belongs to the Muckenhoupt class A,,.

(d) Morrey spaces: We consider the Morrey space LYP defined by

1/
feL* supRQ< S\f( )\pda:> p<oo.

QI

We are interested in the set of parameters l<p<ooand 0<a<d/p.
The Zorko space Lg* is the closure of D in £P. Adams and Xiao
[ADA] have proved that L£*P is the bidual of L£y”: H*? = (Ly)* and
LY = (H*1)* with 1/p 4+ 1/q = 1. One characterization of H*? is the
following: f € H®? if and only if there is a sequence (A\y)neny € I and a
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sequence of functions f, and of cubes @), such that f, € L%, f, is sup-

ported in @, and || fp |l < R%::d/q_d. The norm || f||e.q is then equivalent

60 I (3 (), 7 =5 An fn 2onen [Anl-
Our Calderén—Zygmund pair is then X = L%P and Y = Yy = H%? with
l<p<oo,0<a<d/pand 1/p+1/q=1.

(e) Multiplier spaces: We can build new examples from the former ones.
Indeed, let X be a Banach space such that:

(i) We have continuous embeddings X; C X C X» for some Calderén-
Zygmund pairs of Banach spaces (X1,Y7) and (X2, Y3).
(ii) There is a Banach space A such that D is dense in A and the dual
space A* coincides with X with equivalence of norms.
(iii) Every Calderén—Zygmund operator may be extended as a bounded
operator on X: [T'(f)|x < C[|Tlczollf]lx-

Then, if Xy is the closure of D in X and Y = X, (X,Y) is a Calderén—-
Zygmund pair of Banach spaces (and A = Yj).

This is easy to prove. First, notice that every Calderén—Zygmund oper-
ator can be extended on X5, hence be defined on X; the extra information
is that it is bounded from X to X. Moreover, we have D C X1 C Xo with
continuous embeddings, so that every Calderén—Zygmund operator maps
Xo to Xp, hence Y to Y by duality. Moreover, from X; 9 C Xo C X2, we
get Yo C Y C Yq. We will conclude if we prove A = Yj; but we see easily
(since truncation and convolution operators are Calderén—Zygmund opera-
tors) that Xy is *-weakly dense in X and that A is embedded into Y with
equivalence of norms (due to the Hahn—Banach theorem). Thus, A = Yj.

We may apply this to the space X = X*P of pointwise multipliers from
the potential space H; (1<p<oo,0<s<d/p):

(i) We have the continuous embeddings for p; > p: L5P* C X*P C L5P
(Fefferman—Phong inequality) [FEF].

(ii) X*P is the dual space of Y%7 defined by: f € Y*? if and only if
there is a sequence (A, )nen € ' and a sequence of functions f,, and
gn With f), € Hij’ gn € L9, ||fn||H; <1 and ||gn|lq < 1. The norm

[ fllysa is then equivalent to inf .y (£}, (), f =5 A frgn 2oneN [Anl-
(iii) Every Calderén—Zygmund operator may be extended as a bounded

operator on X: ||T(f)||lx < C||T||czol|f]lx- This is due to a theo-
rem of Verbitsky [MAZ].
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