Copies of ℓ_{∞} in the space of Pettis integrable functions with integrals of finite variation

by

JUAN CARLOS FERRANDO (Elche)

Abstract. Let (Ω, Σ, μ) be a complete finite measure space and X a Banach space. We show that the space of all weakly μ -measurable (classes of scalarly equivalent) X-valued Pettis integrable functions with integrals of finite variation, equipped with the variation norm, contains a copy of ℓ_{∞} if and only if X does.

1. Preliminaries. Along this paper X will be a Banach space over the field \mathbb{K} of real or complex numbers. If (Ω, Σ) is a measurable space, we denote by $ca(\Sigma, X)$ the Banach space over \mathbb{K} of all X-valued countably additive measures F on Σ equipped with the semivariation norm ||F||, and by $bvca(\Sigma, X)$ the Banach space of all X-valued countably additive measures F of bounded variation on Σ with the variation norm |F|. Let $ca^+(\Sigma)$ denote the set of all positive and finite countably additive measures defined on Σ .

Let us recall some useful facts. If (Ω, Σ, μ) is a finite measure space, a weakly μ -measurable function $f: \Omega \to X$ is said to be *Dunford integrable* if $x^*f \in \mathcal{L}_1(\mu)$ for every $x^* \in X^*$, and if f is Dunford integrable and $E \in \Sigma$ the map $x^* \mapsto \int_E x^*f d\mu$, denoted by $(D)\int_E f d\mu$, is a continuous linear form on X^* . If $(D)\int_E f d\mu \in X$ for each $E \in \Sigma$ then f is said to be *Pettis integrable* and one writes $(P)\int_E f d\mu$ instead of $(D)\int_E f d\mu$. The *Pettis space* of all weakly measurable (classes of scalarly equivalent) Pettis integrable functions $f: \Omega \to X$ will be denoted by $\mathcal{P}_1(\mu, X)$ and the subspace of all those strongly measurable (classes of) functions by $\mathcal{P}_1(\mu, X)$. These spaces are provided with the semivariation norm

$$\|f\|_{\mathcal{P}_1(\mu,X)} = \sup \Big\{ \int_{\Omega} |x^* f(\omega)| \, d\mu(\omega) : x^* \in X^*, \, \|x^*\| \le 1 \Big\}.$$

Neither $\mathcal{P}_1(\mu, X)$ nor $P_1(\mu, X)$ is in general a Banach space, although they are barrelled normed spaces [4]. According to a result of Pettis, if $f: \Omega \to X$

²⁰¹⁰ Mathematics Subject Classification: Primary 28B05; Secondary 46B03.

Key words and phrases: Pettis integrable function, countably additive vector measure of bounded variation, copy of ℓ_{∞} .

is (weakly measurable and) Pettis integrable, the map $F : \Sigma \to X$ defined by $F(E) = (P) \int_E f(\omega) d\mu(\omega)$ is a μ -continuous countably additive X-valued measure, that is, $F \in ca_{\mu}(\Sigma, X)$. Moreover the linear operator $S : \mathcal{P}_1(\mu, X) \to ca(\Sigma, X)$ defined by Sf = F is a linear isometry from $\mathcal{P}_1(\mu, X)$ into $ca(\Sigma, X)$, i.e. $\|Sf\| = \|f\|_{\mathcal{P}_1(\mu, X)}$. In addition, if f is strongly measurable, i.e. if $f \in P_1(\mu, X)$, then $Sf(\Sigma)$ is a relatively compact subset of X [1, Chapter VIII], so that $Sf \in cca(\Sigma, X)$. A finite measure space (Ω, Σ, μ) is called *perfect* if for each measurable function $f : \Omega \to \mathbb{R}$ and each set A in \mathbb{R} with $f^{-1}(A) \in \Sigma$ there exists a Borel set $B \subseteq A$ such that $\mu(f^{-1}(B)) = \mu(f^{-1}(A))$. If (Ω, Σ, μ) is a perfect finite measure space and $f \in \mathcal{P}_1(\mu, X)$ then the linear operator $S_f : L_{\infty}(\mu) \to X$ defined by $S_f(\chi_E) = Sf(E)$ is compact and consequently $Sf(\Sigma)$ is a relatively compact subset of X.

If each $\mu \in ca^+(\Sigma)$ is purely atomic, then $ca(\Sigma, X)$ contains a copy of c_0 or ℓ_{∞} if and only if X does [2]. Assuming that X has the Radon– Nikodým property with respect to each $\mu \in ca^+(\Sigma)$, the space $bvca(\Sigma, X)$ contains a copy of c_0 or ℓ_{∞} if and only if X does [5]. As a consequence, if each $\mu \in ca^+(\Sigma)$ is purely atomic, the space $bvca(\Sigma, X)$ contains a copy of c_0 or ℓ_{∞} if and only if X does. If there exists a nonzero atomless measure $\mu \in ca^+(\Sigma)$, the latter statement is no longer true [16]. However, if the range space of the measures is a dual Banach space X^* , then $bvca(\Sigma, X^*)$ contains a copy of c_0 or ℓ_{∞} if and only if X^* does [15]. On the other hand, according to [6] and [9, 10] it is known that the Pettis space $P_1(\mu, X)$ contains a copy of c_0 if and only if X does.

Musiał [14, Section 13] considered the linear subspace of $\mathcal{P}_1(\mu, X)$, which he denoted by $\mathbb{P}V(\mu, X)$, formed by all those functions $f: \Omega \to X$ whose (indefinite) Pettis integral Sf has bounded variation, endowed with the variation norm. We shall denote this space by $\mathcal{M}(\Sigma, \mu, X)$. Like $\mathcal{P}_1(\mu, X)$, in general $\mathcal{M}(\Sigma, \mu, X)$ is not a complete normed space, although it can be shown as in [4] that it is barrelled. Since $\mathcal{M}(\Sigma, \mu, X)$ embeds in $bvca(\Sigma, X)$, by the previous results $\mathcal{M}(\Sigma, \mu, X^*)$ contains a copy of c_0 or ℓ_{∞} if and only X^* does. The general case is not so easy due to the lack of a general criterion concerning the X-inheritance of copies of c_0 or ℓ_{∞} in $bvca(\Sigma, X)$. However, in [8] we have shown that if the Pettis integral Sf of each $f \in$ $\mathcal{M}(\Sigma,\mu,X)$ has separable range then the Musiał space $\mathcal{M}(\Sigma,\mu,X)$ contains a copy of c_0 if and only if X does. In particular, if the measure space (Ω, Σ, μ) is perfect, then $\mathcal{M}(\Sigma, \mu, X)$ contains a copy of c_0 if and only if X does. Finally, let us point out that for a general finite measure space (Ω, Σ, μ) the subspace $M(\Sigma, \mu, X)$ of $\mathcal{M}(\Sigma, \mu, X)$ consisting of all strongly measurable functions coincides with $L_1(\mu, X)$, so $M(\Sigma, \mu, X)$ always contains a copy of c_0 or ℓ_{∞} if and only if X does (by [12] and [13], respectively).

In this paper we complete the research started in [8] by showing that $\mathcal{M}(\Sigma, \mu, X)$ contains a copy of ℓ_{∞} if and only if X does. Nonetheless, our approach differs from that of [8] and it is closer (but not identical) to the strategy developed in [7].

2. Main theorem. In what follows, (Ω, Σ, μ) will be a finite measure space and as above $\mathcal{M}(\Sigma, \mu, X)$ will stand for the Musiał space of all those functions $f \in \mathcal{P}_1(\mu, X)$ whose associated measure F has bounded variation, endowed with the variation norm, which we shall denote by $||_{\Sigma}$. If S is the canonical isometric embedding of $\mathcal{P}_1(\mu, X)$ into $bvca(\Sigma, X)$, defined by $(Sf)(E) = \int_E f d\mu$ for all $E \in \Sigma$, we shall denote by $|f|_{\Sigma}$ the norm of $f \in \mathcal{M}(\Sigma, \mu, X)$ on $\mathcal{M}(\Sigma, \mu, X)$, so by definition $|f|_{\Sigma} = |Sf|_{\Sigma}$.

LEMMA 2.1. If $\mathcal{M}(\Sigma, \mu, X)$ contains an isomorphic copy of ℓ_{∞} then there exists a countably generated sub- σ -algebra Γ of Σ and a closed and separable linear subspace Y of X such that $\mathcal{M}(\Gamma, \mu|_{\Gamma}, Y)$ contains an isomorphic copy of ℓ_{∞} .

Proof. Let K be an isomorphism from ℓ_{∞} into $\mathcal{M}(\Sigma, \mu, X)$. Denote by $\{e_n : n \in \mathbb{N}\}$ the canonical unit sequence of ℓ_{∞} and set $J := S \circ K$. For each $m, n \in \mathbb{N}$ let $\{E_{n,i}^m : 1 \leq i \leq k(m,n)\}$ be a finite partition of Ω by elements of Σ such that

$$|Je_n|_{\Sigma} \le \sum_{i=1}^{k(m,n)} ||Je_n(E_{n,i}^m)|| + \frac{1}{m},$$

and denote by Λ the algebra generated by the countable family

$$\{E_{n,i}^m : 1 \le i \le k(m,n), m, n \in \mathbb{N}\}.$$

Observe that Λ is also countable [11, 1.5 Theorem C], and denote by Γ the σ -algebra generated by Λ . Since clearly $\Omega \in \Gamma$, Γ is a sub- σ -algebra of Σ .

Let Y be the closure in X of the linear cover of the countable subset $\bigcup_{n=1}^{\infty} Je_n(\Lambda)$ of X formed by the union of the images of the countable set Λ by the measures Je_n . Suppose that $\Lambda = \{A_n : n \in \mathbb{N}\}$. Assume that X does not contain a copy of ℓ_{∞} and define $J_n : \ell_{\infty} \to X$ by $J_n\xi = (J\xi)(A_n)$ for each $n \in \mathbb{N}$. Since ℓ_{∞} does not live in X and J_n is a bounded linear operator for each $n \in \mathbb{N}$, all the operators J_n are weakly compact. So, according to [3], there exists an infinite subset N of \mathbb{N} such that

$$J_n\xi = \sum_{i=1}^{\infty} \xi_i J_n e_i$$

for each $n \in \mathbb{N}$ and $\xi \in \ell_{\infty}(N)$. Hence

$$J\xi(A_n) = \sum_{i=1}^{\infty} \xi_i Je_i(A_n)$$

in X for every $\xi \in \ell_{\infty}(N)$ and $n \in \mathbb{N}$. But since $Je_i(A_n) \in Y$ for every $i, n \in \mathbb{N}$ and Y is closed, we see that $J\xi(A_n) \in Y$ for every $\xi \in \ell_{\infty}(N)$ and $n \in \mathbb{N}$, i.e. $J\xi(A) \in Y$ for every $\xi \in \ell_{\infty}(N)$ and $A \in \Lambda$. By the classic theorem on monotone classes [11, 1.6 Theorem B], the family $\{E \in \Sigma : J\xi(E) \in Y \ \forall \xi \in \ell_{\infty}(N)\}$ contains the sub- σ -algebra Γ generated by Λ . So we conclude that $J\xi(E) \in Y$ for every $\xi \in \ell_{\infty}(N)$ and $E \in \Gamma$. There is no loss of generality in identifying N with \mathbb{N} .

Define a map $T: \ell_{\infty} \to \mathcal{M}(\Gamma, \mu|_{\Gamma}, Y)$ so that

$$\langle y^*, T\xi(\omega) \rangle = \langle \widetilde{y}^*, K\xi(\omega) \rangle$$

for all $y^* \in Y^*$, where \tilde{y}^* stands for a fixed norm-preserving extension of y^* to the whole of X. Let us see that T is well defined, linear and bounded. First, T is linear, since

$$\begin{aligned} \langle y^*, T(\alpha\zeta + \beta\xi)(\omega) \rangle &= \langle \widetilde{y}^*, K(\alpha\zeta + \beta\xi)(\omega) \rangle = \alpha \langle \widetilde{y}^*, K\zeta(\omega) \rangle + \beta \langle \widetilde{y}^*, K\xi(\omega) \rangle \\ &= \alpha \langle y^*, T\zeta(\omega) \rangle + \beta \langle y^*, T\xi(\omega) \rangle = \langle y^*, (\alpha T\zeta + \beta T\xi)(\omega) \rangle \end{aligned}$$

for $\zeta, \xi \in \ell_{\infty}$ and $\alpha, \beta \in \mathbb{K}$. Moreover, the function $T\xi : \Omega \to Y$ is weakly measurable since $\omega \mapsto \langle \tilde{y}^*, (K\xi)(\omega) \rangle$ is μ -measurable for each $y^* \in Y^*$. As in addition $\omega \mapsto \langle y^*, (T\xi)(\omega) \rangle$ clearly belongs to $L_1(\mu)$, it follows that $T\xi$ is Dunford integrable. To show that $T\xi \in \mathcal{P}_1(\mu, Y)$ we proceed as follows. Given $\xi \in \ell_{\infty}$, consider the map $G_{\xi} : \Gamma \to Y^{**}$ defined by

$$G_{\xi}(E) = (D) \int_{E} T\xi(\omega) \, d\mu|_{\Gamma}(\omega)$$

for $E \in \Gamma$. We claim that $G_{\xi} = J\xi|_{\Gamma}$, so that $G_{\xi}(\Gamma) \subseteq Y$ and hence $T\xi \in \mathcal{P}_1(\mu, Y)$. In fact, if $y^* \in Y^*$ then

$$\begin{split} \langle y^*, G_{\xi}(E) \rangle &= \int_E \langle y^*, T\xi(\omega) \rangle \, d\mu|_{\varGamma}(\omega) = \int_E \langle \widetilde{y}^*, K\xi(\omega) \rangle \, d\mu(\omega) \\ &= \left\langle \widetilde{y}^*, (P) \int_E K\xi \, d\mu \right\rangle = \langle \widetilde{y}^*, (J\xi)(E) \rangle = \langle y^*, (J\xi)(E) \rangle \end{split}$$

since, as we have shown above, $(J\xi)(E) \in Y$ whenever $E \in \Gamma$. Thus $G_{\xi}(E) = (J\xi)(E)$ for every $E \in \Gamma$ as claimed. Moreover G_{ξ} has bounded variation since

$$\begin{aligned} \|G_{\xi}(E)\| &= \sup_{\|y^*\| \le 1} \left| \left\langle y^*, (P) \int_E T\xi \, d\mu |_\Gamma \right\rangle \right| = \sup_{\|y^*\| \le 1} \left| \int_E \langle y^*, T\xi(\omega) \rangle \, d\mu |_\Gamma(\omega) \right| \\ &= \sup_{\|y^*\| \le 1} \left| \int_E \langle \widetilde{y}^*, K\xi(\omega) \rangle \, d\mu |_\Gamma(\omega) \right| \le \|K\xi \cdot \chi_E\|_{\mathcal{P}_1(\mu, X)} \\ &= \|J\xi\|_{\mathcal{L}}(E) \le |J\xi|_{\mathcal{L}}(E) \end{aligned}$$

for every $E \in \Gamma$ due to the fact that $\|\widetilde{y}^*\| = \|y^*\|$ for every $y^* \in Y^*$. So if

 $\{E_1, \ldots, E_n\}$ is a partition of Ω by elements of Γ then

$$\sum_{i=1}^{n} \|G_{\xi}(E_i)\| \leq \sum_{i=1}^{n} |J\xi|_{\Sigma}(E_i) = |J\xi|_{\Sigma}(\Omega) = |J\xi|_{\Sigma},$$

which implies that $|G_{\xi}|_{\Gamma} = |J\xi|_{\Gamma}|_{\Gamma} \leq |J\xi|_{\Sigma} = |K\xi|_{\Sigma} < \infty$. This also shows that the map T is bounded, since by the preceding inequality

$$|T\xi|_{\varGamma} = |G_{\xi}|_{\varGamma} \le |K\xi|_{\varSigma} \le ||K|| \, ||\xi||_{\infty}$$

Further, given $m \in \mathbb{N}$, by the definition of Γ one has

$$|Je_n|_{\Sigma} \le \sum_{i=1}^{k(m,n)} ||Je_n(E_{n,i}^m)|| + \frac{1}{m} \le |Je_n|_{\Gamma}|_{\Gamma} + \frac{1}{m},$$

which implies that $|Je_n|_{\Sigma} = |Je_n|_{\Gamma}|_{\Gamma}$ for every $n \in \mathbb{N}$. Thus

$$|Te_n|_{\Gamma} = |G_{e_n}|_{\Gamma} = |Je_n|_{\Gamma} = |Je_n|_{\Sigma} = |Ke_n|_{\Sigma},$$

so that $\inf_{n\in\mathbb{N}} |Te_n|_{\Gamma} > 0$. Hence Rosenthal's ℓ_{∞} theorem ensures that there exists an infinite subset $M \subseteq \mathbb{N}$ such that the restriction R of T to $\ell_{\infty}(M)$ is an isomorphism from $\ell_{\infty}(M)$ into the completion of $\mathcal{M}(\Gamma, \mu|_{\Gamma}, Y)$. Now, given $\zeta \in \ell_{\infty}(M)$, if $\xi \in \ell_{\infty}$ is defined by $\xi(i) = \zeta(i)$ if $i \in M$ and $\xi(i) = 0$ if $i \notin M$ then $R\zeta = T\xi \in \mathcal{M}(\Gamma, \mu|_{\Gamma}, Y)$, which ensures that the space $\mathcal{M}(\Gamma, \mu|_{\Gamma}, Y)$ contains a copy of ℓ_{∞} .

THEOREM 2.2. $\mathcal{M}(\Sigma, \mu, X)$ contains a copy of ℓ_{∞} if and only if X does.

Proof. If $\mathcal{M}(\Sigma, \mu, X)$ contains a copy of ℓ_{∞} , according to Lemma 2.1 there exists a countably generated sub- σ -algebra Γ of Σ and a closed and separable linear subspace Y of X such that $\mathcal{M}(\Gamma, \mu|_{\Gamma}, Y)$ contains a copy of ℓ_{∞} .

If $f \in \mathcal{M}(\Gamma,\mu|_{\Gamma},Y)$ then $f \in \mathcal{P}_1(\mu|_{\Gamma},Y)$, so that f is weakly $\mu|_{\Gamma}$ -measurable. But since Y is separable, f is strongly $\mu|_{\Gamma}$ -measurable, that is, $f \in P_1(\mu|_{\Gamma},Y)$. This ensures that $||f(\cdot)||$ is $\mu|_{\Gamma}$ -measurable and consequently

$$\int_{\Omega} \|f(\omega)\| \, d\mu|_{\Gamma} = |f|_{\Gamma} < \infty,$$

so f is Bochner integrable. This shows that $\mathcal{M}(\Gamma, \mu|_{\Gamma}, Y)$ coincides with $L_1(\Gamma, \mu|_{\Gamma}, Y)$. Thus $L_1(\Gamma, \mu|_{\Gamma}, Y)$ contains a copy of ℓ_{∞} , a contradiction since $L_1(\Gamma, \mu|_{\Gamma}, Y)$ is separable. Hence X must contain an isomorphic copy of ℓ_{∞} .

References

 J. Diestel and J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, 1977.

J. C. Ferrando

- [2] L. Drewnowski, When does ca(Σ, Y) contain a copy of ℓ_∞ or c₀?, Proc. Amer. Math. Soc. 109 (1990), 747–752.
- [3] L. Drewnowski, Copies of ℓ_∞ in an operator space, Math. Proc. Cambridge Philos. Soc. 108 (1990), 523–526.
- [4] L. Drewnowski, M. Florencio and P. J. Paúl, The space of Pettis integrable functions is barrelled, Proc. Amer. Math. Soc. 114, (1992), 687–694.
- [5] J. C. Ferrando, When does bvca(Σ, X) contain a copy of ℓ_∞?, Math. Scand. 74 (1994), 271–274.
- [6] J. C. Ferrando, On sums of Pettis integrable random elements, Quaestiones Math. 25 (2002), 311–316.
- J. C. Ferrando, On certain spaces of vector measures of bounded variation, J. Math. Anal. Appl. 380 (2011), 323–326.
- [8] J. C. Ferrando, Copies of c_0 in the space of Pettis integrable functions with integrals of finite variation, Acta Math. Hungar. 135 (2012), 24–30.
- F. J. Freniche, Embedding c₀ in the space of Pettis integrable functions, Quaestiones Math. 21 (1998), 261–267.
- [10] F. J. Freniche, Correction to the paper 'Embedding c₀ in the space of Pettis integrable functions', Quaestiones Math. 29 (2006), 133–134.
- [11] P. R. Halmos, *Measure Theory*, Grad. Texts in Math. 18, Springer, New York, 1974.
- [12] S. Kwapień, On Banach spaces containing c_0 , Studia Math. 52 (1974), 187–188.
- [13] J. Mendoza, Copies of ℓ_{∞} in $L_p(\mu, X)$, Math. Proc. Cambridge Philos. Soc. 111 (1992), 125–127.
- [14] K. Musiał, *Pettis integral*, in: Handbook of Measure Theory, North-Holland, 2002, 531–586.
- [15] E. Saab and P. Saab, On complemented copies of c₀ in injective tensor products, in: Contemp. Math. 52, Amer. Math. Soc., 1986, 131–135.
- [16] M. Talagrand, Quand l'espace des mesures à variation bornée est-il faiblement séquentiellement complet?, Proc. Amer. Math. Soc. 90 (1984), 285–288.

Juan Carlos Ferrando

Centro de Investigación Operativa Edificio Torretamarit, Avda de la Universidad s/n Universidad Miguel Hernández E-03202 Elche (Alicante), Spain E-mail: jc.ferrando@umh.es

Received May 21, 2012

(7527)