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Geometric characterization for
homeomorphisms between disks

by

Shulong Li and Lixin Liu (Guangzhou)

Abstract. We give some characterizations for certain homeomorphisms between
disks in the complex plane, and we prove some Schwarz type theorems for such homeo-
morphisms. Our results replace the main result of Chen [Studia Math. 157 (2003)] which
we show to be false.

1. Preliminaries. Let D be a domain in the complex plane and Γ be a
family of rectifiable arcs in D. A function % defined on D is called admissible
for Γ if it satisfies the following conditions:

(1) % is a non-negative Borel measurable function,
(2) A(%) =

	 	
D %

2 dx dy 6= 0,∞.
Any γ ∈ Γ has a well-defined % length

Lγ(%) =
�

γ

% |dz|,

which may be infinite. Let

L(%) = inf
γ∈Γ

Lγ(%).

The extremal length of Γ is defined to be

λ(Γ ) = sup
%

L(%)2

A(%)
,

where the supremum is taken over all admissible %.
Let Q denote a (topological) quadrilateral, that is, a Jordan domain in

the complex plane with four distinguished boundary points which divide
the boundary curve into four arcs, the sides of Q. Then Q can be mapped
conformally onto a rectangle Q′ with sides of lengths a and b so that vertices
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map to vertices. Consider the pair of opposite sides of Q which correspond
to the sides of Q′ of length a. The modulus of Q with respect to this pair of
sides is defined as a/b, which is the extremal length of the curve family in
this rectangle connecting the other two sides. The modulus of Q with respect
to the other pair is then b/a. We denote either of these moduli by modQ.

Define the modulus modA(r1, r2) of an annulus

A(r1, r2) = {z | r1 < |z| < r2}
as the extremal length of the family Γ of arcs that connect {z | |z| = r1}
and {z | |z| = r2} in A(r1, r2). Then

modA(r1, r2) =
1

2π
log

r2
r1
.

By the conformal invariance of extremal lengths, we can define the modulus
of any ring domain.

Define the modulus modA(r1, r2; θ1, θ2) of a sector

A(r1, r2; θ1, θ2) = {z | r1 < |z| < r2; θ1 < arg z < θ2}
as the extremal length of the family Γ of arcs that connect {z | |z| = r1}
and {z | |z| = r2} in A(r1, r2; θ1, θ2). Then

modA(r1, r2; θ1, θ2) =
1

θ2 − θ1
log

r2
r1
.

By the continuity of modulus, we can view an annulus as a sector with
θ1 = 0 and θ2 = 2π.

A sense-preserving homeomorphism ω of a domain G in the complex
plane onto a domainG′ in the complex plane is said to beK-quasiconformal if

modω(Q) ≤ K modQ

for each quadrilateral Q whose closure Q lies in G, where the moduli are
taken with respect to the corresponding pair of sides. This is called the
geometric definition of K-quasiconformal mappings.

It is natural to look for other geometric definitions of quasiconformal
mappings. In [4], Gehring and Väisälä showed that the quadrilaterals in
the above definition can be replaced by rectangles. If the quadrilaterals are
replaced by annuli or oriented rectangles, we obtain a (K +

√
K2 − 1)-

quasiconformal mapping. Here an oriented rectangle is a rectangle with a
pair of its sides parallel to some fixed line. In this paper we consider a
similar question and we show that for homeomorphisms between unit disks,
the quadrilaterals in the above cannot be replaced by concentric sectors.

It is interesting to generalize the Schwarz lemma to quasiconformal map-
pings or other homeomorphisms between disks in the complex plane. Let ∆
be the unit disk in the complex plane. In [7], Zhu, Zhou and He obtained
the following Schwarz type theorem.
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Theorem A. If K ≥ 1 and f(z) is a K-quasiconformal mapping of ∆
onto itself which satisfies f(0) = 0 and

lim
z→0

|f(z)|
|z|1/K

= 1,

then f(z) = λz|z|1/K−1 for any z ∈ ∆, where λ is a constant with |λ| = 1.

One can ask if it is possible to obtain the same conclusion under weaker
conditions. Chen stated in [3] some results of this type. His main statement
(Theorem 2.1 in [3]) is:

Theorem B. Let f(z) be a sense-preserving homeomorphism of the unit
disk ∆ onto itself with normalization f(0) = 0. If

(1)
1
K

modA ≤ mod f(A)

for any A = A(r1, r2) ⊂ ∆ and A = A(r1, r2; θ1, θ2) ⊂ ∆, and

(2) lim
z→0

|f(z)|
|z|1/K

= 1,

then f(z) = λz|z|1/K−1 for any z ∈ ∆, where λ is a constant with |λ| = 1.

Unfortunately, our Examples 1 and 2 show that this statement is false.
We prove the following related result:

Theorem 1. Let K ≥ 1 and f(z) be a sense-preserving homeomorphism
of the unit disk ∆ onto itself with f(0) = 0. If

(3) modA ≤ K mod f(A) for any annulus A = A(r1, r2) ⊂ ∆,
and

lim
z→0

|f(z)|
|z|1/K

= 1,

then |f(z)| = |z|1/K for any z ∈ ∆.

We also give a sufficient condition for the conclusion of Theorem B to
be valid.

Theorem 2. Let K ≥ 1 and f(z) be a sense-preserving homeomorphism
of the unit disk ∆ onto itself with f(0) = 0. If

modA ≤ K mod f(A) for any annulus A = A(r1, r2) ⊂ ∆,

lim
z→0

|f(z)|
|z|1/K

= 1,

and

(4) mod f(A) ≤ 1
K

modA for any A = A(r1, r2; θ1, θ2) ⊂ ∆,

then f(z) = λz|z|1/K−1 for any z ∈ ∆, where λ is a constant and |λ| = 1.
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We answer a weak form of a problem suggested by Chen in [3]:

Theorem 3. Let K ≥ 1 and f(z) be a sense-preserving homeomorphism
from D1 = {z | r ≤ |z| ≤ 1} onto D2 = {z | rK ≤ |z| ≤ 1}. If

mod f(A) ≤ K modA for any A = A(r1, r2; θ1, θ2) ⊂ D1,

then f(z) = λz|z|K−1 for any z ∈ D1, where λ is a constant with |λ| = 1.

In the last part of this paper we discuss some related problems.

2. Auxiliary lemmas. We give some well-known lemmas first.

Lemma 1 ([1], [2], [6]). If every γ ∈ Γ contains some γ′ ∈ Γ ′, then λ(Γ )
≥ λ(Γ ′).

Lemma 2 ([1], [2], [6]). Let D1 and D2 be two disjoint domains in the
complex plane, let Γ1 and Γ2 consist of rectifiable arcs in D1, D2, respec-
tively , and let Γ be a third family of rectifiable arcs.

(1) If every γ ∈ Γ contains some γ1 ∈ Γ1 and γ2 ∈ Γ2, then

λ(Γ ) ≥ λ(Γ1) + λ(Γ2).

(2) If every γ1 ∈ Γ1 and every γ2 ∈ Γ2 contains some γ ∈ Γ , then
1

λ(Γ )
≥ 1
λ(Γ1)

+
1

λ(Γ2)
.

Lemma 3 ([1], [2], [6]). Let D1 and D2 be two disjoint domains in
A(r1, r2; θ1, θ2). Let Γ1 and Γ2 consist of rectifiable arcs in D1, D2, respec-
tively , and let Γ be the family of rectifiable arcs that connect {z | |z| = r1}
and {z | |z| = r2} in A(r1, r2; θ1, θ2).

(1) If every γ ∈ Γ contains some γ1 ∈ Γ1 and γ2 ∈ Γ2, then

λ(Γ ) = λ(Γ1) + λ(Γ2).

if and only if one of Dk, k = 1, 2, is A(r1, r; θ1, θ2) and the other is
A(r, r2; θ1, θ2), for some r1 ≤ r ≤ r2.

(2) If every γ1 ∈ Γ1 and every γ2 ∈ Γ2 contains some γ ∈ Γ , then
1

λ(Γ )
=

1
λ(Γ1)

+
1

λ(Γ2)
if and only if one of Dk, k = 1, 2, is A(r1, r2; θ1, θ) and the other is
A(r1, r2; θ, θ2), for some θ1 ≤ θ ≤ θ2.

3. Proofs of the main results. Theorem 1 will follow from Lemmas 4
and 5 below, which were proved in [3]. For the sake of completeness, we
repeat their proofs here.

Define
R(r) = {z | r < |z| < 1}.
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Then there exists a conformal mapping Φr such that

Φr ◦ f(R(r)) = {ζ | φ(r) < |ζ| < 1}.
Set gr = Φr ◦ f.

For any set V in the complex plane, let intV and V stand for the interior
and the closure of V .

Lemma 4. If f(z) satisfies condition (3), then φ(r)/r1/K is an increasing
function on (0, 1] and φ(r)/r1/K ≤ 1.

Proof. For 0 < r1 < r2 ≤ 1, set A = {z | r1 < |z| < r2}, B = {z | r2 <
|z| < 1}, A′ = f(A), B′ = f(B). By Lemma 2,

modA′ + modB′ ≤ mod(int(A′ ∪B′)).
By conformal invariance of modulus,

modB′ = mod f(B) = mod gr2(B) =
1

2π
log

1
φ(r2)

,

mod(int(A′ ∪B′)) = mod f(int(A ∪B)) = mod gr1(int(A ∪B))

=
1

2π
log

1
φ(r1)

.

By (3),
modA ≤ K modA′.

Thus
1

2π
log

r2
r1
≤ K modA′ ≤ K(mod(int(A′ ∪B′))−modB′) =

K

2π
log

φ(r2)
φ(r1)

.

Hence

log
r2
r1
≤ K log

φ(r2)
φ(r1)

,

and so
φ(r1)

r
1/K
1

≤ φ(r2)

r
1/K
2

.

This shows that φ(r)/r1/K is increasing on (0, 1]. Letting r2 = 1 yields
φ(r)/r1/K ≤ 1.

Lemma 5. If f(z) satisfies condition (2), then

lim
r→0

φ(r)
r1/K

= 1.

Proof. By (2), for any ε > 0 there exists δ > 0 such that for any r < δ
and θ ∈ [0, 2π),

1− ε ≤ |f(reiθ)|
r1/K

≤ 1 + ε.
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Hence
(1− ε)r1/K ≤ |f(reiθ)| ≤ (1 + ε)r1/K ,

and so

{w | (1 + ε)r1/K < |w| < 1} ⊂ f(R(r)) ⊂ {w | (1− ε)r1/K < |w| < 1}.
By Lemma 1,

1
2π

log
1

(1 + ε)r1/K
≤ mod f(R(r)) ≤ 1

2π
log

1
(1− ε)r1/K

.

By conformal invariance of modulus,

mod f(R(r)) = mod gr(R(r)) =
1

2π
log

1
φ(r)

.

Thus we get the following inequalities:
1

2π
log

1
(1 + ε)r1/K

≤ 1
2π

log
1

φ(r)
≤ 1

2π
log

1
(1− ε)r1/K

.

Hence

1− ε ≤ φ(r)
r1/K

≤ 1 + ε,

completing the proof.

From Lemmas 4 and 5 we know that

φ(r) = r1/K for 0 ≤ r ≤ 1.

Proof of Theorem 1. For 0 < r1 < r2 ≤ 1, set A = {z | r1 < |z| < r2},
B = {z | r2 < |z| < 1}, A′ = f(A), B′ = f(B), A′′ = Φr1 ◦ f(A), B′′ =
Φr1 ◦ f(B). Moreover, set gr = Φr ◦ f for r ∈ (0, 1). Then

mod(int(A′′ ∪B′′)) = mod gr1(int(A ∪B)) =
1

2π
log

1
φ(r1)

=
1

2πK
log

1
r1

and
modB′′ = mod gr1(B) = mod f(B)

= mod gr2(B) =
1

2π
log

1
φ(r2)

=
1

2πK
log

1
r2
.

By conformal invariance of modulus,

modA′ = modA′′.

By (3),
1
K

modA ≤ modA′,

and by Lemma 2,

modA′ + modB′ ≤ mod(int(A′ ∪B′)).
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Combining the above facts, we have

1
2πK

log
r2
r1
≤ modA′ ≤ 1

2π
log

φ(r2)
φ(r1)

=
1

2π
log
(
r2
r1

)1/K

.

So
modA′′ = modA′ =

1
2πK

log
r2
r1
.

Thus we know that

modA′′ + modB′′ = mod(int(A′′ ∪B′′)).
By Lemma 3, A′′, B′′ are annuli with center at z = 0. Then

modB′′ =
1

2πK
log

1
r2

implies B′′ = {z | r1/K2 < |z| < 1},

and

modA′ =
1

2πK
log

r2
r1

implies A′′ = {z | r1/K1 < |z| < r
1/K
2 }.

We normalize each Φr by limz→1 Φr(z) = 1 for any r ∈ (0, 1). By defini-
tion, we see that Φr2(B′) = B′′. Then

Ψ := Φr2 ◦ Φ−1
r1 : B′′ → B′′

is a conformal mapping. We may extend it conformally to a mapping Ψ∗ of
the unit disk ∆ onto itself. Thus Ψ∗ is a Möbius transformation of ∆. Since
Ψ∗(0) = 0 and

lim
z→1

Ψ∗(z) = lim
z→1

Ψ∗(Φr1(z)) = lim
z→1

Φr2(z) = 1,

we have Ψ∗(z) = z for z ∈ ∆, and so

Φr2(z) = Φr1(z), z ∈ B′.

Moreover, Φr2 ◦ f(R(r2)) = R(r1/K2 ).
If r tends to 0, we get a conformal mapping

Φ0 : {z | 0 < |z| < 1} → {w | 0 < |w| < 1}
with a removable singularity at z = 0. If we define Φ0(0) = 0, then

Φ0 : {z | |z| < 1} → {w | |w| < 1}
is conformal and onto with Φ0(0) = 0 and limz→1 Φ0(z) = 1, and so

Φ0(z) = z, z ∈ ∆.
Because Φ0 is a conformal extension of Φr for any 0 ≤ r < 1, it follows that

Φr(z) = z, z ∈ f(R(r)), 0 ≤ r < 1.

Thus f(R(r)) = {w | r1/K < |w| < 1}. So f maps {z | |z| = r} onto
{w | |w| = r1/K}, and {z | |z| ≤ r} onto {w | |w| ≤ r1/K}. This finishes the
proof of Theorem 1.
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Now we consider the following problem:

Problem 1. Let K ≥ 1 and f(z) be a sense-preserving homeomorphism
of the unit disk ∆ onto itself , with f(0) = 0. If

modA ≤ K mod f(A) for any A = A(r1, r2; θ1, θ2) ⊂ ∆,
and

lim
z→0

|f(z)|
|z|1/K

= 1,

is it true that f(z) = λz|z|1/K−1 for any z ∈ ∆? Here λ is a constant with
|λ| = 1.

We will give two examples to show that the answer to the above problem
is negative.

Remark. The main result of [3] claims to give a positive answer to the
above problem. However, the argument in [3], from page 77, line 8 to page
78, line –9, is erroneous because a function of two variables is treated as a
function of only one variable.

Example 1. Let f0 : ∆→ ∆ be given by, for z = reiθ ∈ ∆,

f0(reiθ) = r1/Kei(θ+tr),

where t is a constant. This map is obtained as follows: first we take the affine
map f(z) = z|z|1/K−1, and then we perform a twist. Because a twist on a
sector A(r1, r2; θ1, θ2) increases its modulus, we see that f0(z) satisfies the
conditions of Problem 1. But f0(z) is not affine, so the answer to Problem 1
is negative. By direct computations, we find that the Beltrami coefficient of
f0(z) is

µ0(reiθ) =
(1−K) +Ktri

(1 +K) +Ktri
e2θi,

and

0 <
K − 1
K + 1

≤ |µ0(reiθ)| ≤
(

(1−K)2 +K2t2

(1 +K)2 +K2t2

)1/2

< 1.

So f0(z) is a quasiconformal mapping of ∆ to itself.
Actually, we can also give examples of mappings which satisfy all the

conditions in Problem 1 but they are not even quasiconformal.
If we can find an arc L connecting (0, 0) to a point on the unit circle

which is not a quasiarc, and the set {z | |z| = r} ∩ L consists of only one
point for any 0 ≤ r ≤ 1, then we can define f1 : ∆→ ∆ as follows: first let
R(θ) be the radius connecting z = 0 to z = eiθ, f1(0) = 0. For z = r, r > 0,
let {f1(r)} be equal to {z | |z| = r} ∩ L. Thus f1(R(0)) = L. The image
of R(θ) under f1 is obtained by rotating L = f1(R(0)) through an angle θ
about (0, 0). Thus we obtain a homeomorphism f1(z) of the unit disk. It
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is obvious that f1(z) satisfies all the conditions in Problem 1 for K = 1.
Because f1(R(0)) = L and L is not a quasiarc, we find that f1(z) is not
quasiconformal.

Next we give an example of an arc L satisfying the above conditions.

Example 2. Let L be a curve in the complex plane which consists of
two subcurves L1 and L2, defined as follows (we sometimes denote the point
corresponding to z = x+ iy by (x, y)):

L1 = (x1(y), y), x1(y) =
(

1
16
−
(
y − 1

4

)2)1/2

, 0 ≤ y ≤ 1/2,

L2 = (x2(y), y), x2(y) =
(

1
16
−
(
y − 3

4

)2)1/2

, 1/2 ≤ y ≤ 1.

Direct computations show that the point (0, 1/2) on L is a cusp point. Thus
L is not a quasiarc. Moreover, L satisfies all the desired assumptions, so
using it we can construct a map f1 : ∆→ ∆ that satisfies the conditions of
Problem 1 and is not even quasiconformal.

Proof of Theorem 2. Without loss of generality, we assume that f(1) = 1.
By Theorem 1, we know that for any z ∈ ∆, |f(z)| = |z|1/K . Fix r ∈ (0, 1)
and set A = A(r, 1; 0, θ), B = A(r, 1; θ, 2π), A1 = f(A), B1 = f(B). Then
by Lemma 2,

2Kπ
log 1

r

=
K

modA
+

K

modB
≤ 1

modA1
+

1
modB1

≤ 1
mod(int(A1 ∪ B̄1))

=
2Kπ
log 1

r

.

Hence
1

modA1
+

1
modB1

=
1

mod(int(A1 ∪B1))
,

as well as

modA1 =
modA
K

and modB1 =
modB
K

.

Thus by Lemma 3, A1 = A(r1/K , 1; 0, θ) and B1 = A(r1/K , 1; θ, 2π). Hence
f(z) = λz|z|1/K−1, where λ is a constant and |λ| = 1.

From Example 1, we know that condition (4) is necessary for the con-
clusion to hold.

Corollary 1. Let K ≥ 1 and f(z) be a sense-preserving homeomor-
phism of D = {z | r ≤ |z| ≤ 1} onto D1 = {w | r1/K ≤ |w| ≤ 1}. If

modA ≤ K mod f(A) for any annulus A = A(r1, r2) ⊂ A,
then |f(z)| = |z|1/K for any z ∈ D.
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Proof. Let A′ = {z | r < |z| < R} and A′′ = {z | R < |z| < 1}. Then by
Lemma 2,

1
2Kπ

log
1
r

=
1
K

modD =
1
K

(modA′ + modA′′)

≤ mod f(A′) + mod f(A′′) ≤ modD1 =
1

2Kπ
log

1
r
.

Hence
mod f(A′) + mod f(A′′) = modD1,

as well as

mod f(A′) =
modA′

K
and mod f(A′′) =

modA′′

K
.

Thus by Lemma 3, f(A′) = {w | r1/K < |w| < R1/K} and f(A′′) = {z |
R1/K < |z| < 1}. This completes the proof.

In the same way as in the proof of Theorem 2, from Corollary 1, we
obtain

Corollary 2. Let K ≥ 1 and f(z) be a sense-preserving homeomor-
phism of D = {z | r ≤ |z| ≤ 1} onto D1 = {w | r1/K ≤ |z| ≤ 1}. If

modA ≤ K mod f(A) for any annulus A = A(r1, r2) ⊂ D,
and

mod f(A) ≤ 1
K

modA for any A = A(r1, r2; θ1, θ2) ⊂ D,

then f(z) = λz|z|1/K−1 for any z ∈ D, where λ is a constant with |λ| = 1.

The following problem was suggested by Chen in [3].

Problem 2. Let f(z) be a sense-preserving homeomorphism of the unit
disk ∆ onto itself with f(0) = 0. If for some K ≥ 1,

mod f(A) ≤ K modA for any A = A(r1, r2; θ1, θ2) ⊂ ∆,
and

lim
z→0

|f(z)|
|z|K

= 1,

is it true that f(z) = λz|z|K−1 for any z ∈ ∆, where λ is a constant with
|λ| = 1?

We cannot give an answer to this problem although we think it is positive.
But Theorem 3 settles a weak form of the above problem.

Proof of Theorem 3. Without loss of generality, we assume that f(1) = 1.
Let A1 = A(r, 1; 0, θ) and A2 = A(r, 1; θ, 2π). Then

1
modA1

+
1

modA2
=

1
modD1

=
2π

log 1
r

,
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and
1

mod f(Ai)
≥ 1
K

1
modAi

, i = 1, 2.

By Lemma 2,
1

mod f(A1)
+

1
mod f(A2)

≤ 1
modD2

=
1
K

2π
log 1

r

.

Then
1
K

2π
log 1

r

=
1
K

(
1

modA1
+

1
modA2

)
≤ 1

mod f(A1)
+

1
mod f(A2)

≤ 1
K

2π
log 1

r

.

Hence
1

mod f(A1)
+

1
mod f(A2)

=
1
K

2π
log 1

r

,

as well as
mod f(Ai) = K modAi, i = 1, 2.

From Lemma 3 it follows that f(A1) = A(rK , 1; 0, θ) and f(A2) =
A(rK , 1; θ, 2π). This means that f(z) maps the radius {z = keiθ | r ≤ k ≤ 1}
onto the radius {w = kKeiθ | r ≤ k ≤ 1} for any 0 ≤ θ ≤ 2π.

Next we prove that |f(z)| = |z|K for every z ∈ D1. Indeed, suppose that
there exists z0 ∈ A such that |f(z0)| 6= |z0|K . We assume that |f(z0)| < |z0|K
(the case where |f(z0)| > |z0|K can be treated similarly). Let ε = |z0|K −
|f(z0)| > 0 and z0 = r0e

iθ0 . Then by the continuity of f(z), there exists δ > 0
such that |z|K − |f(z)| ≥ ε/2 for any z ∈ {z = r0e

i(θ0+θ) | −δ ≤ θ ≤ δ}. Let
A0 = A(|z0|, 1; θ0 − δ, θ0 + δ). By Lemma 1 and the above facts,

mod f(A0) ≥ modA(|z0|K − ε/2, 1; θ0 − δ, θ0 + δ)

> modA(|z0|K , 1; θ0 − δ, θ0 + δ) = K modA0,

a contradiction.
Combining the above facts, we obtain the conclusion.

From Theorem 3 we can conjecture that the answer to Problem 2 should
be positive.

Another proof of Theorem A. It is obvious that f(z) satisfies the con-
ditions of Theorem 1, so |f(z)| = |z|1/K . Take g = f−1 : ∆ → ∆. For any
0 < r ≤ 1, let Dr = {z | r ≤ |z| ≤ 1}. Then g : Dr → DrK satisfies the con-
ditions of Theorem 3, so g(z) = λz|z|K−1, |λ| = 1. Because r is arbitrarily
chosen, we conclude that f(z) = λz|z|1/K−1 on ∆.

Because the inverse of a K-quasiconformal mapping is still K-quasi-
conformal, we have:
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Corollary 3. If K ≥ 1 and f(z) is a K-quasiconformal mapping of ∆
onto itself which satisfies f(0) = 0 and

lim
z→0

|f(z)|
|z|K

= 1,

then f(z) = λz|z|K−1 for any z ∈ ∆, where λ is a constant with |λ| = 1.

It is natural to pose the following problem:

Problem 3. Let f(z) be a sense-preserving homeomorphism of the unit
disk ∆ onto itself , with f(0) = 0. Suppose that for some K ≥ 1,

(5) mod f(A) ≤ K modA for any A = A(r1, r2; θ1, θ2) ⊂ ∆.
Is then f(z) a quasiconformal mapping?

We give a negative answer to this problem by the following example:

Example 3. Let f :∆→∆ be defined by the equality f(z) = rK1(1+tr)eiθ

for z = reiθ, where t is a positive constant. By direct computation, its
Beltrami coefficient is

µ(reiθ) =
(−1 +K1) +K1tr(1 + log r)
(1 +K1) +K1tr(1 + log r)

e2iθ.

If we choose r and t such that 1 + tr(1 + log r) = 0, then |µ(reiθ| = 1. So
f(z) is not quasiconformal.

Next we show that for this example, (5) holds with K = K1 + K1t.
By symmetry and the definition of the modulus of sectors, it is sufficient
to show that for any fixed t > 0, there exists K > 0 such that for any
0 < r1 < r2 ≤ 1,

(6)
log r

K1(1+tr2)
2

r
K1(1+tr1)
1

log r2
r1

≤ K.

Let h(r) = r log r−log r. Then h′(r) = 1+log r−1/r for 0 < r ≤ 1. Hence
h′′(r) = 1/r + 1/r2 ≥ 0 for 0 < r ≤ 1. Because h′(1) = 0, h′(r) ≤ 0 for any
0 < r ≤ 1. So h(r) is decreasing when 0 < r ≤ 1. Thus for 0 < r1 < r2 ≤ 1,
r2 log r2 − log r2 ≤ r1 log r1 − log r1. Consequently,

r2 log r2 − r1 log r1
log r2 − log r1

≤ 1.

Let g(r) = r log r + log r. Then g′(r) = 1 + log r + 1/r and g′′(r) =
1/r − 1/r2 ≤ 0 for 0 < r ≤ 1. As g′(1) = 2 we know that g′(r) > 0 for
0 < r ≤ 1. So g(r) is increasing for 0 < r ≤ 1. Thus for 0 < r1 < r2 ≤ 1,
r2 log r2 + log r2 ≥ r1 log r1 + log r1. This implies that

r2 log r2 − r1 log r1
log r2 − log r1

≥ −1.
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Combining the above, we have

K1 −K1t ≤
log r

K1(1+tr2)
2

r
K1(1+tr1)
1

log r2
r1

≤ K1 +K1t = K.

So if we take t > 0, the mapping f(z) satisfies (5) with K = K1 +K1t,
but is not quasiconformal. This gives a negative answer to Problem 3.

Moreover, Example 3 shows that the answer to the following problem is
negative.

Problem 4. Let f(z) be a sense-preserving homeomorphism of the unit
disk ∆ onto itself , with f(0) = 0. Suppose that for some K ≥ 1,

modA ≤ K mod f(A) for any A = A(r1, r2; θ1, θ2) ⊂ ∆.
Is f(z) a quasiconformal mapping?
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