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Non-separable Banach spaces with non-meager Hamel basis
by

TARAS BANAKH (Kielce and Lviv), MIRNA DZAMONJA (Norwich) and
LORENZ HALBEISEN (Bern)

Abstract. We show that an infinite-dimensional complete linear space X has:

e a dense hereditarily Baire Hamel basis if | X| < ¢*;
e a dense non-meager Hamel basis if | X| = k* = 2" for some cardinal k.

According to Corollary 3.4 of [BDHMP]| each infinite-dimensional separ-
able Banach space X has a non-meager Hamel basis. This is a special case of
Theorem 3.3 of [ BDHMP], asserting that an infinite-dimensional Banach space
X has a non-meager Hamel basis provided 24X) = d(X)“, where d(X) is the
density of X. Having in mind those results the authors of [BDHMP)| asked if
each infinite-dimensional Banach space has a non-meager Hamel basis. In this
paper we shall give two partial answers to this question generalizing the above-
mentioned Corollary 3.4 and Theorem 3.3 of [BDHMP] in two directions.

THEOREM 1. Each infinite-dimensional linear complete metric space X
of size | X| < ¢ has a dense hereditarily Baire Hamel basis.

We recall that a topological space X is hereditarily Baire if each closed
subspace F' of X is Baire (in the sense that the intersection of a countable
family of open dense subsets of F' is dense in F).

Our next result treats Banach spaces of even larger size. We define a
subset A of a topological space X to be k-perfect for some cardinal x if each
non-empty open set U of A has size |U| > k. Note that a Hausdorff space
X is w-perfect if and only if it has no isolated points (so is perfect in the
standard sense).

It is well-known (see [BDHMP, 2.8]) that each Banach space X has
size | X| = d(X)“. Our second principal result generalizes Theorem 3.3 of

[BDHMP].
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THEOREM 2. If an infinite-dimensional linear complete linear space X
has size | X| = k¥ = 2% for some cardinal k, then X has a non-meager Hamel
basis H C X such that for any closed |X|-perfect subset C C X the space
C N H is Baire.

Let us observe that there are many cardinals x with k¥ = 2%.

PROPOSITION 1. For any sequence of cardinals (K;)icw with kiyq > 25,
i € w, the cardinal k = sup,¢,, k; has the property 2% = k.

Proof. Since k¥ < 2% always holds, it suffices to prove that k“ > 2*. For
this take a sequence (X;);cw of pairwise disjoint sets of size | X;| = k; and
let X = U, Xi- It is clear that | X| = x and the power set P(X) of X has
size [P(X)| = 2". Since each subset A = [ J;c,, AN X; of X can be uniquely
identified with the sequence (A N X;)icw, we get

[P =2 <[[rir1 <r. m

S 1EW 1EW

2" = [P(X)| =

In fact, one can make an easy observation about xk* which is helpful in
calculating this value, and in particular implies Proposition 1. We use cof (k)
to denote the cofinality of .

PROPOSITION 2. Suppose that cof(k) =Ng. Then 2% = (sup{2*: A< x})*.
If cof (k) > Rg then k¥ = k- sup{\“ : A < K}.

Proof. If kK = Ny then the proposed equality easily holds. Suppose that
k > Rg. Then clearly 2% = (2%)* > (sup{2* : A < &})¥. Let (\)icw be
a sequence of regular cardinals increasing to x, with A\g = 0, and let 6§ =
sup{2* : A < k}. Every subset A of s can be identified with the sequence
(AN [Ait1 \ Ni))icw, therefore 2% < |0 = 6«.

For the second equality, observe first that the left side of the equality
is always no smaller than the right side. If cof(k) > Ny and x is a limit
cardinal, then notice that every countable subset of k is already a subset
of some A < K, so kY < sup{\“ : A < k}, which does not exceed the
quantity on the right side of the equation. Finally, if K = AT for some A then
KY = UQG[A,R) o, and the latter set has size < - X\* < 2%, which is exactly
the quantity on the right side of the equation. m

COROLLARY 1. Suppose that a complete metric space X satisfies d(X) €
[k, 27] for some k with K = 2. Then X contains a non-meager Hamel basis.

Under the Generalized Continuum Hypothesis GCH, each cardinal k of
countable cofinality satisfies k¥ = k™. Consequently, each complete metric
space X with density d(X) € {k,k"} contains a non-meager Hamel basis.

Proof. Suppose that d(X) = XA € [k,k¥]. Then |X| = \¥ = ¥ = 2F,
so X contains a non-meager Hamel basis by Theorem 2. For the conclusion



Non-separable Banach spaces with non-meager Hamel basis 29

under GCH notice that by Konig’s lemma we have k% > k, and since k% < 2%
we may conclude that k¥ = k*. =

We comment that Corolllary 1 shows that our Theorem 2 is more general
then Theorem 3.3 of [BDHMP], since by assuming GCH and taking for exam-
ple X to be an infinite-dimensional Banach space of density A = R, 11 (such
as loo(Ny,)), we find that X has a non-meager Hamel basis by Corollary 1,
while A = X\ < 2* so Theorem 3.3 of [BDHMP] does not apply.

1. Proof of Theorem 1. The proof of Theorem 1 is divided into three
lemmas. The first of them supplies us with many linearly independent Cantor
sets.

A topological space X is called a Cantor set if it is homeomorphic to the
Cantor cube {0,1}*. This happens if and only if X is compact, metrizable,
zero-dimensional and has no isolated points (see [Ke, 7.4]).

By the algebraic dimension of a subset A of a linear space L we under-
stand the algebraic dimension (= the cardinality of a Hamel basis) of the
linear hull Lin(A) of A in L.

LEMMA 1. Let L be a linear metric space and Lo a linear subspace which
can be written as the countable union Loo = U, c,, Ln of a non-decreasing
sequence (Ly)new of closed linear subspaces of L. Denote by w: L — L/Ls
the quotient operator. Let X C L be a completely metrizable subspace of
L such that for every non-empty open set U C X the projection w(U) has
infinite algebraic dimension in L/Ls. Then X contains a Cantor set C C X
whose projection is linearly independent in L/ Ly, and has size c.

Proof. Fix a complete metric p on X. Let 2 = {0,1} and let 2<% =
Unew 2" denote the set of finite binary sequences. For a binary sequence
s = (s1,...,5) € 2<% and i € {0,1}, we denote by s% = (s1,...,8n,%) the
concatenation of s and .

By induction, to each sequence s € 2<% we shall assign a non-empty open
set Us C X so that the following conditions are satisfied for every n € w and

s€2™
(1) diam(Us) <27™;

(2) UsgUUs1 C Us;

(3) so N U = @

(4) for any points x; € U, t € 2", and real numbers )\, t € 2", the
inclusion ), on Aty € Ly, is possible only if all \; = 0.

We put Uy = X \ Lp. Assume that for some n the sets Us, s € 27,
have been constructed. The projection 7(U) of each open set U C X has
infinite algebraic dimension. Consequently, for every finite-dimensional linear
subspace F' of L the intersection (F'+ L) NU is nowhere dense in U. Using
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this fact, by finite induction of length 27*! in each set Uy, s € 27, we
can select two distinct points xgg, 251 € Us so that the indexed set {z; +
L, : t € 2"} is linearly independent in L/L,. Next we can select open
neighborhoods U of the points x; to satisfy the conditions (1)—(4). This
finishes the inductive construction.

Now it is easy to see that the intersection C' = (1, c,, Useon Us is a Can-
tor set in X. It follows from (4) that the image 7(C) in L/Ls is linearly
indepenedent and has size ¢. »

LEMMA 2. Let L be a complete linear metric space of size |L| < ¢ and
(Lp)new be a non-decreasing sequence of closed linear subspaces of L with
infinite-dimensional quotient space L/Loo where Log = J, ey, Ln- Let Hoo be
a Hamel basis for Leo such that for every n € w the intersection Hoo N Ly, is
a hereditarily Baire Hamel basis in L,,. Then Hy, can be enlarged to a dense
hereditarily Baire Hamel basis H for L.

Proof. Let w: L — L/Lq denote the quotient homomorphism and let
C be the family of Cantor sets C' C L whose projection m(C) on L/L, has
algebraic dimension ¢. The family C has size |C| < |L|* < ¢ because each
Cantor set C' € C is a continuous image of the Cantor cube 2* and each
continuous map f : 2¥ — L is uniquely determined by values of f on a
countable dense subset of 2¥. Let C = {C, : a < ¢} be an enumeration of
the family C by ordinals < «.

By transfinite induction we can construct a transfinite sequence of points
{zq < ¢} C Lsothat x4 € Cy\ (Loo + Lin{zg : § < a}). At each step a
the choice of the point x, is possible because each set 7(C,) has algebraic
dimension c.

After completing the inductive construction we will get a set E = {x, :
a < ¢} whose projection onto L/ L is injective and has linearly independent
image in L/Ly,. Then the union Hy, U F is a linearly independent subset of
L and can be enlarged to a Hamel basis H for L. Since Hy, is a Hamel basis
for Lo, we have H N Lo, = Hy,. We claim that the space H is hereditarily
Baire and dense in L.

To prove the density of H, take any non-empty open subset U C L. By
Lemma 1, the set U contains a Cantor set C' C U belonging to the family C.
By the inductive construction, E N C # () and hence H N U # ) too.

Next we show that H is hereditarily Baire. Assuming the converse and
applying [De|, we can find a closed countable subset C' C H without isolated
points. Then the closure C of C' in X is a Polish space without isolated points
and so is the complement C' \ C. We claim that for each open set U C C' the
set W = U\ H has an infinite-dimensional image 7(W) in L/ L. The density
of C\ H in C implies that U C W. Assuming that 7(W) is finite-dimensional,

we would find that W Cc U C W C Lo+ F = U L, + F) for some

new (
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finite-dimensional linear subspace F' C L with F'N Lo, = {0}. The Baire
theorem guarantees that some non-empty open subset of U lies in L, + F'.
Replacing U by this open set we can assume that U C L,, + F'. Since H,, =
HNL, =HsxNL,isaHamel basis for L,,, we have HN(L,+ F) = H,UB
for some finite set B disjoint from Lo. Then UNH =UN (L, + F)NH =
UN(H,UB)cUNL,U(UnNB). We claim that U N B = (). Assuming the
converse, we would infer that U N B is a non-empty closed subset of U N H,
which is not possible because U N H = U N C' has no isolated points. Thus
UNH=UnNAH, C L, is a countable set without isolated points in H,,
which contradicts the fact that H, = H N L, is a hereditarily Baire Hamel
basis for L,,. =

Applying Lemma 2 to the sequence (L;,) of trivial linear spaces L,, = {0}
we obtain a part of Theorem 1.

LEMMA 3. FEach infinite-dimensional linear complete metric space X
with | X| < ¢ contains a dense hereditarily Baire Hamel basis.

The remaining part of Theorem 1 is proved in

LEMMA 4. Each complete metric linear space X of size | X| = ¢ contains
a dense hereditarily Baire Hamel basis.

Proof. Given a complete linear metric space X of size | X| = ¢, write X
as the union X = (J, .+ Xq of an increasing transfinite sequence (X )q<c+
of closed linear subspaces of size | X, | = ¢ such that, for every a < ¢t

e the quotient X,1/X,, is infinite-dimensional,
e Xo=X_,= U5<a Xp if o has uncountable cofinality;

e X,/X -, is infinite-dimensional if & has countable infinite cofinality.

It is convenient to assume that X_; = {0}. By transfinite induction, for
every a < ¢ we shall construct a dense hereditarily Baire Hamel basis H,, in
X, so that H, D U,B<a Hpg. To start the inductive construction let Hy = 0.

Assume that for some ordinal «, dense hereditarily Baire Hamel bases
Hpg have been constructed in each space Xg for 3 < a. Now consider three
cases:

1) « = B+ 1 is a successor ordinal. In this case apply Lemma 2 with
L = X, and L, = X3, n € w, to enlarge the Hamel basis Hj to a dense
hereditarily Baire Hamel basis H, for the space X.

2) «v is a limit ordinal with countable cofinality. In this case we can find
an increasing sequence of ordinals (ay,)new With o = sup,, ay, and apply
Lemma 2 with L = X, L, = X, and He = |J,¢,, Ha, to enlarge the
Hamel basis Hy, to a dense hereditarily Baire Hamel basis H, for X,.

3) « is of uncountable cofinality. In this case X< = |J 3 X and we can
put H, = s<a Hp- The density of the Hamel bases in X3 implies the den-
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sity of H,, in X,. Let us show that the Hamel basis H,, is hereditarily Baire.
Assuming the converse, and applying [De|, we can find a closed countable
subset C' C H, without isolated points. Since o has uncountable cofinality,
C C Hpg for some 8 < a. Then Hg contains a closed meager subspace C' and
thus is not hereditarily Baire, which is a contradiction. =

2. Proof of Theorem 2. Given an infinite cardinal k, we denote by
¢/k the smallest infinite cardinal A\ with A\* > k. The proof of Theorem 2 is
similar to that of Theorem 1 and relies on

LEMMA 5. For every k-perfect complete metric space X and a comeager
subspace G C X there is a subspace II C G homeomorphic to the countable
product A, where the cardinal A = {/k is endowed with the discrete topology.

Proof. The complement X \ G, being meager in X, lies in the count-
able union UnEw Z, of closed nowhere dense subsets Z,, in X. Since X is
k-perfect, each non-empty open subset U C X has size |U| > k and density
d(U) > ¢/k = \. By the Erd6s—Tarski theorem [ET] (see also [En, 4.1.H]),
the metrizable space X \ Zj contains a family Uy consisting of A many open
subsets of X \ Zy of diameter < 1/2° such that the family Uy = {U :
U € Uy} is disjoint. Repeating this argument, inductively construct a se-
quence (Up)ney of families of non-empty open sets of X'\ Z,, having diameter
< 1/2" so that U = {U : U € Uy} is disjoint, | JUp+1 C UU, and for every
U € U, the family Uy,11(U) = {W € Up41 : W C U} has size \. It is easy to
see that the space F' =, UUn C X \ U, o, Zn C G is homeomorphic to
the product ], ., U, where each U, is endowed with the discrete topology,
and the latter product is homeomorphic to A“. =

With Lemma 5 in hand, we are now able to present

Proof of Theorem 2. Let X be an infinite-dimensional linear complete
metric space of size |X| = 2% = k“ for some cardinal x. Without loss of
generality,  is the smallest infinite cardinal with that property. If | X| < c,
then X has a hereditarily Baire Hamel basis by Theorem 1 and we are done.
So asume that |X| > ¢ and hence k > w.

Let IC denote the family of all subspaces K C X that are homeomorphic
to the countable product k“ where x is endowed with the discrete topology.
Observe that each embedding f : k“ — X is uniquely determined by the
values of f on a dense subset of k“. Since k* has density x, the family K
has size || < |X|® = (27)" = 2" = |X| and hence can be enumerated as
K ={K,:a<|X|}. Observe that each space K € K has size |K| = r“ > ¢
and algebraic dimension k“.

By transfinite induction we can construct a transfinite sequence of points
{zq : @ < ¢} C X so that z, € K, \ Lin{zg : § < a}. At each step a the
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choice of the point z,, is possible because each set K, has algebraic dimension
kY > a.

After completing the inductive construction we will get a linearly inde-
pendent set E = {x, : a < ¢} that meets each set K € K. Complete E to a
Hamel basis H D F.

We claim that for each closed | X|-perfect subset F' C X the intersection
F'N H is non-meager. Assuming the converse, we can apply Lemma 5 to find
a topological copy K C F'\ H of k*. It follows from the construction of H
that K N H # (), which contradicts the inclusion K C F\ H.

3. Some remarks and open problems. Our Theorem 2 generalizes
Corollary 3.4 of [BDHMP]| supplying a non-meager Hamel basis in each Ba-
nach space X whose density d(X) satisfies the equality 29X) = d(X)“. In
its turn, this corollary was derived from Theorem 3.3 of [BDHMP| guar-
anteeing the existence of a non-meager Hamel basis in each Banach space
X satisfying cof(Mx) < |X|, where cof(Mx) stands for the cofinality of
the ideal of meager sets in X. Having this result in mind, the authors of
[BDHMP| asked in [BDHMP, Question 2| if the inequality cof(Mx) > |X|
holds for a suitable Banach space X. This is indeed so if d(X) = |X|. We
shall prove a somewhat more general result giving lower and upper bounds
for the cardinal cof(Mx) via the weight w(X) and the cellularity ¢(X) of a
linear topological space X.

ProrosiTioON 3. Let X be a Baire topological space without isolated
points. Then

(1) cof(My) < w(X)“X);
(2) cof(Mx) > [U| for any disjoint family U of open sets in X.

Proof. (1) Fix a base B of the topology of X of size |B| = w(X). Let
N ={X\UU :U c B, U] < e(X)}. It is clear that |N| < w (X)X,
We claim that each nowhere dense subset Z C X lies in some set N € N.
Indeed, take a maximal disjoint subfamily &4 C B with | JU C X \ Z and
note that [U| < ¢(X). Then Z € X \ YU € N. It follows that the family
N = {UC : C is a countable subfamily of N'} is cofinal in Mx and has
size [Noo| < IN]¥ < (w(X)*F))® = w (X)X, Then cof(Mx) < [Nl <
w (X)),

(2) Assume conversely that cof(Mx) < || for some disjoint family U of
non-empty open sets in X. Pick a cofinal family M in Mx of size |IM| < |U|
and enumerate M = {My : U € U} by elements of the family &/. Each open
set U € U is not meager because X is Baire. Consequently, U ¢ My and
we can pick a point zyy € U \ My. Then the set A = {xy : U € U}, being
discrete, is nowhere dense in X. On the other hand, A lies in no set M € M,
which means that M is not cofinal in the ideal Mx. =
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Since each metrizable space X contains a disjont family &/ of open sets of
size |[U| = d(X) (see |[ET] or [En, 4.1.H|), Proposition 3 implies the following
corollary answering Question 2 of [ BDHMP]|.

COROLLARY 2. For any metrizable Baire space X without isolated points
we get d(X) < cof(My) < 24X,

A typical linear topological space with countable cellularity is the Tikho-
nov product R¥ of k many lines. Then repeating the argument of the proof
of Theorem 3.3 [BDHMP| we can prove

PROPOSITION 4. For any infinite cardinal k the linear topological space
X =R" has a non-meager Hamel basis and satisfies cof (M x) <r¥ <2F=|X|.

In spite of (partial) results proven in this paper we still do not know the
complete answer to the basic
PROBLEM 1. Let X be an infinite-dimensional Banach space.

(1) Does X have a non-meager Hamel basis?

(2) Does X have a non-meager Hamel basis if | X| = ¢t ?

(3) Does X have a Hamel basis containing no uncountable compact sub-
set?
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