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Exponential bounds for noncommuting systems of matrices

by

Brian Jefferies (Sydney, NSW)

Abstract. It is shown that a finite system T of matrices whose real linear combina-
tions have real spectrum satisfies a bound of the form ‖ei〈T,ζ〉‖ ≤ C(1 + |ζ|)ser|=ζ|. The
proof appeals to the monogenic functional calculus.

Introduction. For a system T = (T1, . . . , Td) of n × n matrices with
the property that the spectrum σ(〈T, ξ〉) of the matrix 〈T, ξ〉 :=

∑d
j=1 Tjξj

is real for every ξ ∈ Rd, a symmetric functional calculus for T has been
defined in [7]. The matrices T1, . . . , Td do not necessarily commute with
each other. The functional calculus has the property that if p : Rd → C
is a polynomial in d real variables, then p(T ) is the matrix obtained by
replacing the expressions xj1 . . . xjk in p by symmetrised products of the
matrices Tj1 , . . . , Tjk .

In the case that T is a d-tuple of hermitian matrices, the Weyl functional
calculus [12], [10], [1] is also defined for T and it associates the same matrix
p(T ) with the polynomial p : Rd → C. If the assumption that T consists of
hermitian matrices is replaced by the assumption that there exist numbers
C > 0 and r, s ≥ 0 such that

(1) ‖ei〈T,ζ〉‖ ≤ C(1 + |ζ|)ser|=ζ| for all ζ ∈ Cd,
then the Paley–Wiener Theorem still guarantees the existence of the Weyl
functional calculus. Moreover, it is proved in [6] that the Weyl functional
calculus and the functional calculus mentioned above agree on their common
domain and the two related notions of “joint spectrum” γ(T ) for the system
T coincide.

It is well known that the bound (1) implies that

(2) σ(〈T, ξ〉) ⊆ R for all ξ ∈ Rd,
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even for a system T of bounded linear operators acting on a Banach space
[4, Theorem 4.5, p. 160]. The purpose of this note is to prove that condition
(2) implies the bound (1) for a system of matrices. It is a simple matter to
write down an example of a commuting pair T of bounded linear operators
acting on `2(N) such that condition (2) holds but the bound (1) fails [7,
Example 2.1].

Although 〈T, ζ〉 may be put into its Jordan normal form for each ζ ∈ Cd
so that the eigenvalues are real if ζ ∈ Rd, it is not obvious how the imaginary
parts of the eigenvalues will grow as |=ζ| → ∞. A further difficulty is that
the similarity transformations U(ζ) which put 〈T, ζ〉 into its Jordan normal
form J(ζ) are only holomorphic in an open set in which J(ζ) has constant
structure [2, Theorem 3, p. 387]. This difficulty is bypassed by appealing to
a formula of E. Nelson [10], [5] expressing the exponential ei〈T,ζ〉 in terms
of powers of 〈T, ζ〉 up to order n− 1.

In Theorem 2 it is shown that, in the language of A. Pryde [11], a sys-
tem of matrices satisfying (2) is of Paley–Wiener type (s, r), that is, the
bound (1) holds. A system of simultaneously triangularisable matrices with
real spectrum satisfies (2), so Theorem 2 is a generalisation of [11, Theo-
rem 4.5].

In order to prove Theorem 2, we use the fact, proved in Theorem 1,
that the imaginary part of the spectrum of At + iB is uniformly bounded
for all t ∈ R provided that the bounded linear operators A, B have the
property that every real linear combination of them has real spectrum. This
observation may be of independent interest. The proof appeals to properties
of the monogenic functional calculus studied in [7] and quoted in the section
on the monogenic calculus.

Another proof that condition (1) follows from condition (2) may be de-
duced from the theory of the hyperbolic system

(3)
∂u

∂t
+

d∑

j=1

Tj
∂u

∂xj
= 0, u(x, 0) = δ0(x)v, v ∈ Rn,

of partial differential equations. Condition (2) is an expression of G̊arding’s
hyperbolicity condition [8, pp. 149–151], which is equivalent to the statement
that the system (3) has a suitable fundamental solution. From Holmgren’s
uniqueness theorem [8, p. 83], we know that the domain of dependence of
the distributional solution u of (3) is a cone with finite diameter in Rd+1

(see [8, p. 153]), from which the bound (1) follows.
Estimates for the parameters C and r are obtained in the course of the

proof of Theorem 2 below. Moreover, parts of the proof have the advantage
of generalising to systems of bounded linear operators, provided that the
assumption (2) is strengthened.
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Perturbation. Suppose that A, B are (n× n) matrices and the spec-
trum σ(A) of A is real. If A and B commute, then for each t ∈ R, the
spectrum σ(At + iB) of the matrix At + iB is contained in the set of
complex numbers λt + iµ with λ ∈ σ(A) and µ ∈ σ(B). It follows that
supt∈R |=(σ(At + iB))| < ∞. However, if A and B do not commute, this
bound can fail.

By finite-dimensional perturbation theory [9, Theorem II.5.1], the un-
ordered set of eigenvalues of At + iB is a continuous function of t, so for
any T > 0, the set

⋃
|t|≤T =(σ(At+ iB)) is a compact subset of R. On the

other hand, because σ(A) is real, =(σ(A+ iB/t))→ {0} as |t| → ∞, so that
=(σ(At + iB)) = {o(|t|)} as |t| → ∞. The following example shows that if
n ≥ 2, the set =(σ(At+ iB)) may not be bounded as |t| → ∞.

Example. Let A =
( 1

0
1
1

)
and B =

( 1
1

0
1

)
. Then σ(At+ iB) = {t+ i±

eiπ/4
√
t} for all t ≥ 0. On the other hand, if B′ =

( 1
0

1
−1

)
, then σ(At+iB′) =

{t± i}.
The matrices A and B′ above are both upper triangular and each real

linear combination of them has real spectrum. By contrast, the matrices A
and B each have real spectrum but σ(A−B) = {±i}. Moreover,

ei(A−B)t = cosh(t)I + sinh(t)
(

0 i
−i 0

)
,

so the bound (1) certainly fails.
To prove Theorem 2 we only need the following result for matrices, but

the proof of Theorem 1 is also valid for bounded linear operators acting on
a Banach space.

Theorem 1. Let A, B be bounded linear operators acting on the Banach
space X with the property that σ(Aξ1 +Bξ2) ⊂ R for all ξ ∈ R2. Then there
exist q, r > 0 such that

(4) σ(At+ iB) ⊆ [−q, q]t+ i[−r, r] for all t ∈ R.
Moreover , q and r are bounded by (1 +

√
2)(‖A‖2 + ‖B‖2)1/2.

Monogenic functional calculus. In order to bound the imaginary
part of the spectrum σ(At+ iB) for large t, we need to determine for which
λ ∈ C the resolvent operator (λI − At − iB)−1 of At + iB is defined as t
varies. To this end, the resolvent operator (λI − At − iB)−1 is represented
as a function fλ,t(A,B) of the pair of operators A,B with fλ,t(x1, x2) =
(λI − x1t− ix2)−1.

Now the operators A and B do not necessarily commute, so it is not yet
clear how to form functions f(A,B) of A and B. If an estimate like (1) held
for the pair T = (A,B), then the Weyl functional calculus WT would exist
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and the equality
(λI −At− iB)−1 =WT (fλ,t)

would hold for all λ 6∈ {x1t + ix2 : (x1, x2) ∈ supp(WT )}. However, we are
trying to deduce the exponential estimate (1) for the case that A and B
are matrices. What we need is a functional calculus f 7→ f(A,B) valid just
under the assumption that σ(Aξ1 +Bξ2) ⊂ R for all ξ ∈ R2 so that

fλ,t(A,B) = (λI − At− iB)−1.

The monogenic functional calculus developed in [7] is useful in this context.
Its description follows.

The notation of [3] concerning Clifford algebras is used. If F denotes the
field R or C, then F(m) denotes the Clifford algebra over F generated by
e0, e1, . . . , em. For a Banach space X, the family of sums T =

∑
S TSeS

for TS ∈ L(X) and S ⊆ {1, . . . ,m} forms a Banach module L(m)(X(m))
under left and right multiplication by elements of F(m). The norm is given
by ‖T‖ = (

∑
S ‖TS‖2L(X))

1/2.

Let D be the differential operator D =
∑m
j=0 ej∂/∂xj . A function f :

U → F(m) is called left monogenic in an open set U if Df = 0 in U . It is right
monogenic in U if fD = 0 in U . The expression two-sided monogenic is used
for functions which are both left and right monogenic. For each ω ∈ Rm+1,
the function Gω defined by

(5) Gω(x) =
1
σm

ω − x
|ω − x|m+1 for each x 6= ω

is two-sided monogenic. Here σm = 2π(m+1)/2/Γ ((m+ 1)/2) is the volume
of the unit m-sphere in Rm+1 and Rm+1 is itself identified with a linear
subspace of R(m) spanned by the basis vectors e0, e1, . . . , em. The notation
E(ω − x) = Gω(x) is used in [3].

Suppose that Ω ⊂ Rm+1 is a bounded open set with smooth boundary
∂Ω and exterior unit normal n(ω) defined for all ω ∈ ∂Ω. For any left mono-
genic function f defined in a neighbourhood U of Ω, the Cauchy integral
formula

(6)
�
∂Ω

Gω(x)n(ω)f(ω) dµ(ω) =
{
f(x) if x ∈ Ω,
0 if x ∈ U \Ω,

is valid. Here µ is the surface measure of ∂Ω. The result is proved in [3,
Corollary 9.6]. If g is right monogenic in U then �

∂Ω
g(ω)n(ω)f(ω) dµ(ω) = 0

(see [3, Corollary 9.3]).
These results extend to the vector- and operator-valued setting in a

routine fashion. In this case, “monogenic” means that the partial derivatives
are evaluated in the underlying topology of the space.
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In the monogenic functional calculus for a suitable m-tuple A of bounded
operators acting on a Banach space X, the operator f(A) is defined for all
F-valued functions f of m-real variables analytic in an open neighbourhood
U of the monogenic spectrum γ(A) (see [7, Section 3]). The operator f(A) is
defined analogously to the Cauchy integral formula (6), where Gω is replaced
by a suitable element Gω(A) of L(m)(X(m)) for each ω ∈ Rm+1 \ γ(A) and
f is extended monogenically off {0} × U into Rm+1.

In [7], the Cauchy kernel ω 7→ Gω(A), ω ∈ Rm+1 \ γ(A), is identified by
employing he plane wave decomposition of the Cauchy kernel (5).

According to [7], there exists a compact subset γ(A,B) of R2 and an
L(2)(X(2))-valued monogenic function ω 7→ Gω(A,B) defined for all ω ∈ R3

off {0} × γ(A,B) such that

(7) f(A,B) =
�
∂Ω

Gω(A,B)n(ω)f(ω) dµ(ω).

Here Ω ⊂ R3 is a bounded open set with smooth boundary ∂Ω and exterior
unit normal n(ω) defined for all ω ∈ ∂Ω such that Ω contains {0}×γ(A,B).
The surface measure of ∂Ω is µ and f is a C(n)-valued function that is mono-
genic in a neighbourhood of Ω. According to [7, Lemma 2.5], the formula
for Gω(A,B) for ω off {0} × R2 is

Gy+y0e0(A,B) = − sgn(y0)
8π2

�
S1

(〈y, s〉I − As1 −Bs2 − y0sI)−2 dµ(s),

y ∈ R2, y0 6= 0.

Here µ is arclength measure on the unit circle S1 in R2 and the inverse
(〈y, s〉I−As1−Bs2−y0sI)−2 is calculated in the Banach module L(2)(X(2)).

In the case that f is a complex-valued analytic function of two real
variables in an open neighbourhood of the compact subset γ(A,B) of R2,
we obtain an operator f(A,B) ∈ L(X) from formula (7) by extending f
monogenically to an open neighbourhood of {0} × γ(A,B) in R3 (see [7,
Theorem 3.5(iv)]).

The nonempty compact subset γ(A,B) of R2 is the monogenic spectrum
of the pair (A,B). In the case that an exponential bound like (1) holds,
γ(A,B) coincides with the support of the Weyl functional calculus for (A,B)
(see [6]). As is usual in spectral theory, γ(A,B) is just the set of singularities
of the Cauchy kernel ω 7→ Gω(A,B) in the same way that the spectrum of
a single operator is the set of singularities of its resolvent family.

Once we have the notion of the monogenic functional calculus, the proof
of the following lemma is straightforward.

Lemma 1. Let A, B be bounded linear operators acting on the Banach
space X with the property that σ(Aξ1 +Bξ2) ⊂ R for all ξ ∈ R2. Let γ(A,B)
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be the monogenic spectrum of the pair (A,B). For every λ ∈ C and t ∈ R,
set

fλ,t(x) = (λ− x1t− ix2)−1

for all x = (x1, x2) ∈ R2 such that x1t+ ix2 6= λ. Then for every t ∈ R, the
complement Rt(A,B) of the set {x1t+ ix2 : (x1, x2) ∈ γ(A,B)} is contained
in the resolvent set of the operator At+ iB and the equality

(8) fλ,t(A,B) = (λI − At− iB)−1, λ ∈ Rt(A,B),

is valid.

Proof. For each j = 1, 2, the unique left and right monogenic extension
of the coordinate function x 7→ xj , x ∈ R2, is ω 7→ ωje0 − ω0ej , ω =
(ω0, ω1, ω2) ∈ R3.

Let f̃λ,t be the C(2)-valued function given by

f̃λ,t(ω) = (λe0 − (ω1e0 − ω0e1)t− i(ω2e0 − ω0e2))−1

=
(λ− ω1t+ iω2)e0 − ω0te1 + iω0e2

|λ− ω1t− iω2|2 + ω2
0(t2 + 1)

for all ω ∈ R3 for which the denominator is nonzero. The restriction of
f̃λ,t to R2 is equal to fλ,t, that is, on putting ω0 = 0. The function f̃λ,t
takes its values in the linear subspace spanned by e0, e1, e2 in C(2) and is
left and right monogenic. Then for every complex number λ ∈ Rt(A,B),
the operator f̃λ,t(A,B) is defined by formula (7) for a suitable choice of the
open set Ω.

The Neumann series expansion
∞∑

k=0

1
λk+1 (At+ iB)k

of (λI − At− iB)−1 converges for |λ| large enough. Moreover, the sums

fλ,t(x) =
∞∑

k=0

1
λk+1 (x1t+ ix2)k,

f̃λ,t(ω) =
∞∑

k=0

1
λk+1 ((ω1e0 − ω0e1)t+ i(ω2e0 − ω0e2))k

converge uniformly as x ∈ R2 and ω ∈ R3 range over compact sets and λ is
outside a sufficiently large ball. Set

pk,t(x) = (x1t+ ix2)k, x ∈ R2,

p̃k,t(ω) = ((ω1e0 − ω0e1)t+ i(ω2e0 − ω0e2))k, ω ∈ R3,

for each k = 0, 1, 2, . . .
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Now fλ,t(A,B) = f̃λ,t(A,B), by definition, for all λ ∈ Rt(A,B). Accord-
ing to [7, Theorem 3.5(ii)], the equality

pk,t(A,B) = p̃k,t(A,B) = (At+ iB)k

holds for all k = 0, 1, 2 . . . , so by the continuity of the monogenic functional
calculus f 7→ f(A,B) (see [7, Proposition 3.3]), we have

fλ,t(A,B) =
∞∑

k=0

1
λk+1 (At+ iB)k = (λI − At− iB)−1,

that is,

(9) (λI − At− iB)fλ,t(A,B) = fλ,t(A,B)(λI − At− iB) = I

for all λ ∈ C with |λ| sufficiently large.
Now fλ,t(A,B) is defined by formula (7) for all λ ∈ Rt(A,B), and by dif-

ferentiation under the integral (7), we see that λ 7→ fλ,t(A,B), λ ∈ Rt(A,B),
is a complex-analytic L(X)-valued function. It follows that equation (9)
holds for all λ ∈ Rt(A,B), so that the resolvent set of the operator At+ iB
contains the Rt(A,B) and the equality (8) holds.

Proof of Theorem 1. Put

q = sup{|x1| : (x1, x2) ∈ γ(A,B)},
r = sup{|x2| : (x1, x2) ∈ γ(A,B)}.

Then for every t ∈ R, the complement of the rectangle [−q, q]t+ i[−r, r] is
contained in the set Rt(A,B) defined in Lemma 1. The inclusion (4) follows
from Lemma 1.

The bound for q, r follows from the expansion for Gω(A,B) which con-
verges for |ω| > (1 +

√
2)(‖A‖2 + ‖B‖2)1/2 (see [7, equation (5)]).

Remark. For bounded selfadjoint operators A,B acting on a Hilbert
space, the spectrum σ(At+iB) is contained in the numerical range of At+iB,
so the result follows immediately.

The bound. This section is devoted to proving the following result, in
which an algebraic condition implies a matrix-norm bound on exponentials.
Let n ≥ 2 be an integer.

Theorem 2. Let T = (T1, . . . , Td) be a d-tuple of n × n matrices such
that

σ(〈T, ξ〉) ⊆ R for all ξ ∈ Rd.
Then there exist numbers C > 0 and r ≥ 0 such that

‖ei〈T,ζ〉‖ ≤ C(1 + |ζ|)n−1er|=ζ| for all ζ ∈ Cd.
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We first observe that for all ζ ∈ Cd satisfying |<ζ| ≤ 1, the bound

‖ei〈T,ζ〉‖ ≤ eReR|=ζ|

holds for R = (
∑d
j=1 ‖Tj‖2)1/2, so we need only consider the case |<ζ| ≥ 1.

For any n × n matrix M , and k = 1, . . . , n, let φk(M) be the sum of
the principal minors of M of order k and set φ0(M) = 1. The characteristic
polynomial pM of M is defined by pM (z) = det(M − zI) for all z ∈ C. For
each n × n matrix M , let the complex numbers a0(M), . . . , an(M) be the
coefficients of the characteristic polynomial pM of M . The coefficients of the
characteristic polynomial of an n×n matrix M are calculated from the sums
of the principal minors by virtue of the equality as(M) = (−1)sφn−s(M),
for all s = 0, . . . , n − 1. In particular, as(tM) = tn−sas(M) for each t > 0
and s = 0, . . . , n.

The equality

pM (z)I = (zI −M)
n−1∑

k=0

( n−k−1∑

j=0

aj+k+1(M)zj
)
Mk

is easily verified from the Cayley–Hamilton theorem.
Now suppose that C is a simple closed curved in C surrounding the set

σ(M) of eigenvalues of the n × n matrix M . Then by the Cauchy–Riesz
functional calculus,

eiM =
1

2πi

�
C

eiz(zI −M)−1 dz(10)

=
1

2πi

n−1∑

k=0

( n−k−1∑

j=0

aj+k+1(M)
�
C

eizzj

pM (z)
dz

)
Mk.

Let T be a d-tuple of (n×n) matrices such that σ(〈T, ξ〉) is real for each
ξ ∈ Rd. On setting M = 〈T, ζ〉 with ζ ∈ Cd in equation (10), we have

ei〈T,ζ〉 =
1

2πi

n−1∑

k=0

( n−k−1∑

j=0

aj+k+1(〈T, ζ〉)
�
C

eizzj

p〈T,ζ〉(z)
dz

)
〈T, ζ〉k.

Here C is any simple closed contour with the finite set σ(〈T, ζ〉) in its interior.
Let S(d−1) = {ζ ∈ Cd : |ζ| = 1} and u, v ≥ 0. It follows from [9, Theo-

rem 5.14] and the compactness of S(d−1) in Cd that

(11)
⋃
{σ(〈T,<ζ〉u+ i〈T,=ζ〉v) : ζ ∈ S(d−1)}

is a compact subset of C.
According to Theorem 1, there exists r > 0 such that for every ξ, η ∈ Rd

with ξ + iη ∈ S(d−1) and t > 0, the spectrum σ (〈T, ξ〉t+ i〈T, η〉) of the
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matrix 〈T, ξ〉t+ i〈T, η〉 is contained in t[−r, r] + i[−r, r]. The number

r = sup{|x| : x ∈ γ(〈T, ξ〉, 〈T, η〉), ξ + iη ∈ S(d−1)}
is bounded by (1 +

√
2)(
∑d
j=1 ‖Tj‖2)1/2.

If u, v > 0, then setting t = u/v, we find that the spectrum of 〈T, ξ〉u+
i〈T, η〉v is contained in u[−r, r] + iv[−r, r]. Hence, for every u, v > 0, the set
(11) is contained in the rectangle u[−r, r] + iv[−r, r].

Fix ξ, η ∈ Rd with ξ+ iη ∈ S(d−1) and set A = 〈T, ξ〉 and B = 〈T, η〉. Let
r′ > r and let C[u, v] be the positively oriented closed contour bounding the
rectangle u[−r′, r′] + i(1 + v)[−r′, r′]. Then for every u, v ≥ 0, the contour
C[u, v] contains the spectrum σ(Au+ iBv) in its interior and it is bounded
away from the x-axis as v → 0+.

Furthermore, the bound

(12)
∣∣∣∣

�
C[u,v]

eizzj

pAu+iBv(z)
dz

∣∣∣∣

≤ er′evr′((r′u)2 + (r′(1 + v))2)j/2
�

C[u,v]

|dz|
|pAu+iBv(z)|

≤ er′evr′(r′)j(1 +
√
u2 + v2)j

�
C[u,v]

|dz|
|pAu+iBv(z)|

holds. Arclength measure is denoted by |dz|. All the roots of the polynomial
pAu+iBv are contained in the rectangle u[−r, r] + iv[−r, r].

For all t > 0 and 0 ≤ w ≤ 1, the function x 7→ pAt+iBw(−x + ir′) is a
polynomial of degree n ≥ 2 whose modulus is bounded below by (r′−wr)n,
so for all u ≥ 0 and v ≥ 0, the upper part of the integral (12) about C[u, v]
is bounded by
r′u�
−r′u

dx

|pAu+iBv(−x+ i(1 + v)r′)| ≤
∞�
−∞

dx

|pAu+iBv(−x+ i(1 + v)r′)|

=
1

(1 + v)n−1

∞�
−∞

dx

|pAu′+iBv′(−x+ ir′)| ,

where u′ = u/(1 + v), v′ = v/(1 + v),

≤ sup
t>0, 0≤w≤1

∞�
−∞

dx

|pAt+iBw(−x+ ir′)| .

To see that the supremum is finite, for each t > 0 and 0 ≤ w ≤ 1,
let Γ (t, w) be the unordered n-tuple of eigenvalues of the (n × n) matrix
At+ iBw, counting the possible multiplicity of eigenvalues. Then |<λ| ≤ rt
and |=λ| ≤ r for each element λ ∈ Γ (t, w).



206 B. Jefferies

Because |pAt+iBw(z)| =
∏
λ∈Γ (t,w) |z − λ|, Hölder’s inequality implies

that
∞�
−∞

dx

|pAt+iBw(−x+ ir′)| ≤
∏

λ∈Γ (t,w)

( ∞�
−∞

dx

| − x+ ir′ − λ|n
)1/n

=
∏

λ∈Γ (t,w)

( ∞�
−∞

dx

(x2 + (r′ − =λ)2)n/2

)1/n

≤
∞�
−∞

dx

(x2 + (r′ − r)2)n/2
=
√
πΓ ((n− 1)/2)

(r′ − r)n−1Γ (n/2)
.

For all t > 0, the function y 7→ pA+iBt(r′ + iy), y ∈ R, is a polynomial
of degree n whose modulus is bounded below by (r′ − r)n, so an argument
similar to that above shows that for all u ≥ 1, the right hand part of the
integral (12) is bounded by

r′(1+v)�
−r′(1+v)

dy

|pAu+iBv(ur′ + iy)| ≤
∞�
−∞

dy

|pAu+iBv(ur′ + iy)|

≤ sup
t>0

∞�
−∞

dy

|pA+iBt(r′ + iy)| .

Let Nr′(ξ + iη) be the maximum of the numbers

sup
t>0, 0≤w≤1

∞�
−∞

dx

|pAt+iBw(±(−x+ ir′))| , sup
t>0

∞�
−∞

dy

|pA+iBt(±(r′ + iy))| .

For ζ ∈ Cn with |<ζ| ≥ 1, let ζ ′ = ζ/|ζ|. Then

‖ei〈T,ζ〉‖ ≤ 1
2π

n−1∑

k=0

|〈T, ζ ′〉|k
n−k−1∑

j=0

|aj+k+1(〈T, ζ ′〉)|
∣∣∣∣

�
C

eizzj

p〈T,ζ〉(z)
dz

∣∣∣∣|ζ|n−j−1

≤ Nr′(ζ ′)er
′
er
′|=ζ|

2π

×
n−1∑

k=0

|〈T, ζ ′〉|k
n−k−1∑

j=0

|aj+k+1(〈T, ζ ′〉)|(r′)j(1 + |ζ|)j | · |ζ|n−j−1

≤ Nr′(ζ ′)er
′

2π

( n−1∑

k=0

|〈T, ζ ′〉|k
n−k−1∑

j=0

|aj+k+1(〈T, ζ ′〉)|(r′)j
)

× (1 + |ζ|)n−1er
′|=ζ|

≤ Cr′(1 + |ζ|)n−1er
′|=ζ|.
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The constant Cr′ is the supremum of

Nr′(ζ ′)er
′

2π

( n−1∑

k=0

|〈T, ζ ′〉|k
n−k−1∑

j=0

|aj+k+1(〈T, ζ ′〉)|(r′)j
)

for ζ ′ ∈ S(d−1).
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