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On the closed subspaces of universal series
in Banach spaces and Fréchet spaces

by

Stéphane Charpentier (Talence)

Abstract. We prove, in a general framework, the existence of a closed infinite-
dimensional subspace consisting of universal series.

Introduction. The study of universal series began in 1914, when Fekete
showed that there exists a Taylor series on [−1, 1] whose subsequences of par-
tial sums approximate uniformly any continuous function f on [−1, 1] such
that f(0) = 0. The main idea of this result is that whatever can be uniformly
approximated by polynomials can also be approximated by subsequences of
partial sums of a Taylor series. After this, a lot of examples of universal series
appeared in different spaces: Men’shov showed, for instance, the existence of
many trigonometric series which approximate almost everywhere, along sub-
sequences of their partial sums, any complex measurable 2π-periodic function
on the torus. Other pointwise universality results were obtained concerning
Faber series, Laurent series, Jacobi series, harmonic expansions, etc. For such
results, we refer to the two surveys [6] and [7].

It turns out that, when a universal series does exist, the set of universal
series has some nice properties. This was developed in [5] (in a more general
context) and later in [2] and [14], where an abstract theory of universal
series is presented. Precisely, it is shown there that, as soon as there exists
a universal series, then the set of universal series is both generic (it contains
a dense Gδ set) and algebraically generic (it contains a dense subspace,
without 0). This is done in a general framework which covers every known
example.

Independently, Bayart studied in [1] the existence of a closed infinite-
dimensional subspace of universal series. His work just deals with one par-
ticular example, that of universal Taylor series of holomorphic functions on
the unit disk D. Our aim, in this paper, is to combine the ideas of [1] and [2]
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in order to show that, in the abstract framework of [2], we can always find a
closed infinite-dimensional subspace (without 0) of universal series, as soon
as one universal series exists.

This topic is not new in the context of universality. Indeed, a similar
study was done for the so-called universal sequences of operators Tn : X → Y
(see [4] and [12]). However, the sufficient condition of [12] is not helpful here
(see Remark 2.3 below). It should be added that, in our context, no extra
assumption for the existence of a closed infinite-dimensional subspace of
universal series is needed.

The paper is organized as follows. The first section is devoted to the
presentation of all concepts and results involved in this work, the second
section presents the proof of the existence of a closed infinite-dimensional
subspace, with 0 removed, of universal series in the most simple general case,
namely when we deal with Banach spaces. In the third section, we partly
generalize this result to the case of Fréchet spaces; in the fourth section,
we are led to add some extra parameters, as the “center of expansion” of a
universal series, in order to be able to manage most of the examples. In the
last section, we give a brief glimpse of how our results can be illustrated by
usual examples of universality.

1. Framework and results. Let (X, dX) be a metrizable vector space
and let (xn)n∈N be a sequence in X. We suppose in the whole paper that dX
is translation-invariant and that the topology of X is defined by a countable
family of seminorms denoted by (‖ · ‖n)n≥0. Let also A ⊂ kN, k = R or C,
be a Fréchet space and (ei)i ⊂ kN be the sequence in kN defined by ei =
(0, . . . , 0, 1, 0, . . .) where 1 is at the ith position. We denote by dA the distance
in A which makes it a Fréchet space and consequently dA is translation-
invariant. We assume that A satisfies the following conditions:

(1) A contains the polynomials in kN, that is, the elements which can be
written as finite linear combinations of the ei’s with coefficients in k.

(2) The set of polynomials in kN, denoted by G, is dense in A.
(3) The coordinate projections

pi : A→ k, (an)n 7→ ai,

are continuous for any i ∈ N.

We will need the notions of valuation and degree of a polynomial in kN:

Definition 1.1. The valuation of a polynomial P ∈ kN is the index of
its first non-zero coefficient, and its degree is the index of its last non-zero
coefficient; we denote them respectively by v(P ) and d(P ).

We define the notion of unrestricted universality for an element of X,
with respect to the sequence (xn)n, as follows:
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Definition 1.2. We say that a = (an)n ∈ kN is unrestrictively universal
(with respect to (xn)n) if the family (

∑N
n=0 anxn)N is dense in X. We denote

by U the set of unrestricted universal sequences.

Remark 1.1. Notice that if U is non-empty, then X is necessarily sep-
arable. We can even observe that there exists a dense subsequence in X of
vectors of the form

∑N
n=0 anxn. These vectors are called polynomials in X

with respect to (xn)n.

This remark leads us to denote by the same letter a polynomial (an)n
in kN and the polynomial

∑
n anxn in X, if no confusion can arise. If a =

(an)n is more generally an element of A, we will denote by SN (a) the partial
sum of order N ,

∑N
n=0 anen in A, and we will distinguish it from SN (a,X) =∑N

n=0 anxn, the partial sum of a in X with respect to (xn)n.
In this paper, we will also be interested in the notion of restricted uni-

versality:

Definition 1.3. An element a = (an)n ∈ A is said to be restrictively
universal (with respect to (xn)n) if, for every x ∈ X, there exists an increas-
ing sequence (λN )N∈N of integers such that

(1)
∑λN

n=0 anxn converges to x when N goes to infinity,
(2)

∑λN
n=0 anen converges to a when N goes to infinity.

We denote by UA the set of restricted universal sequences.

Of course, every restricted universal sequence is unrestricted, and we
notice immediately that if (en)n is a Schauder basis of A, then U ∩A = UA;
so that the notion of restricted universal sequences has an interest when
(en)n is not a Schauder basis of A.

Our result is based on the following one, given in [2], which characterizes
the non-emptiness of the set UA.

Theorem 1.1. Under the previous assumptions, the following are equiv-
alent:

(1) UA is non-empty.
(2) For every ε > 0, every x ∈ X, and every integer p ≥ 0, there exists

a polynomial (an)n with valuation p such that

dX

(∑
n∈N

anxn, x
)
< ε and dA

(∑
n∈N

anen, 0
)
< ε.

(3) UA ∪ {0} is a dense Gδ subset of A and it contains a dense subspace
of A.

Our aim in this paper is to show that when UA is non-empty, it contains
automatically a closed infinite-dimensional subspace of A without 0. We will
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first give a proof when A is a Banach space; this proof will be partly based
on the possibility of building a convenient basic sequence of the Banach
space A. This trick fails when A is a Fréchet space. Thus, in the latter case,
we just show that U ∩A (and not UA) contains a closed infinite-dimensional
subspace of A without 0. However, in all concrete examples, UA is equal to
U ∩A. Therefore, we can say that the problem is solved in the main cases.

2. Universality in Banach spaces. In this section, we deal with the
case where A is a Banach space, with a norm ‖ · ‖A. For this, we will need
to show how to build a normalized basic sequence in A whose elements can
be chosen as polynomials with an arbitrary valuation. This is the purpose of
the following lemma:

Lemma 2.1. Let ε > 0, and let (u0, . . . , un) ⊆ A. For every integer v,
there exists a polynomial un+1 ∈ A such that v(un+1) ≥ v, ‖un+1‖A = 1 and

(2.1)
∥∥∥ n∑
k=0

λkuk

∥∥∥
A
≤ (1 + ε)

∥∥∥ n∑
k=0

λkuk + λun+1

∥∥∥
A

for any scalars λ and λk, 0 ≤ k ≤ n.

Remark 2.1. If (εn)n≥0 is a sequence of positive real numbers such that∏∞
n=0(1 + εn) converges to K, then defining for example u0 = e0/‖e0‖A, we

can construct by induction a basic sequence (un)n≥0 with basis constant not
greater than K, such that every term is built as in the previous lemma, by
taking ε = εn at step n.

Indeed, for every integer p and q with q ≥ p, Lemma 2.1 allows us to
construct polynomials uk, 0 ≤ k ≤ q, such that, for any scalars (λk)0≤k≤q,∥∥∥ p∑

k=0

λkuk

∥∥∥
A
≤

q−1∏
k=p

(1 + εk)
∥∥∥ q∑
k=0

λkuk

∥∥∥
A
≤ K

∥∥∥ q∑
k=0

λkuk

∥∥∥
A
.

Proof of Lemma 2.1. Let ε > 0 and (u0, . . . , un) ⊆ A. Let also v be an
integer. Let (zj)

ln+1

j=0 be an ε
1+ε -net of the unit sphere of span(u0, . . . , un) and

(ϕj)
ln+1

j=0 be continuous linear functionals on A of norm 1 such that, for every
0 ≤ j ≤ ln+1,

ϕj(zj) = 1.

As codim((
⋂ln+1

j=0 ker(ϕj)) ∩ (
⋂v
i=0 ker(e∗i ))) ≤ ln+1 + v + 2, there exists an

integer mn+1 such that, if we denote

Fn+1 = span(e0, . . . , emn+1),
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there exists un+1 ∈ Fn+1 of norm 1 such that

un+1 ∈
( ln+1⋂
j=0

ker(ϕj)
)
∩
( v⋂
i=0

ker(e∗i )
)
.

By construction, un+1 is a polynomial of valuation greater than v, and of
norm 1. It just remains to verify that un+1 satisfies (2.1). Let λ be an arbi-
trary scalar and let j0 be an index such that∥∥∥∥ ∑n

k=0 λkuk
‖
∑n

k=0 λkuk‖A
− zj0

∥∥∥∥
A

≤ ε

1 + ε
.

By definition, we have

1 = ϕj0(zj0 + λun+1) ≤ ‖zj0 + λun+1‖A

≤
∥∥∥∥zj0 − ∑n

k=0 λkuk
‖
∑n

k=0 λkuk‖A

∥∥∥∥
A

+
∥∥∥∥∑n

k=0 λkuk + λ‖
∑n

k=0 λkuk‖Aun+1

‖
∑n

k=0 λkuk‖A

∥∥∥∥
A

≤ ε

1 + ε
+
∥∥∥∥ ∑n+1

k=0 λkuk
‖
∑n

k=0 λkuk‖A

∥∥∥∥
A

, by denoting λn+1 = λ
∥∥∥ n∑
k=0

λkuk

∥∥∥
A
.

Hence (
1− ε

1 + ε

)∥∥∥ n∑
k=0

λkuk

∥∥∥
A
≤
∥∥∥ n+1∑
k=0

λkuk

∥∥∥
A
,

so ∥∥∥ n∑
k=0

λkuk

∥∥∥
A
≤ (1 + ε)

∥∥∥ n+1∑
k=0

λkuk

∥∥∥
A
.

Up to dividing λ by ‖
∑n

k=0 λkuk‖A, we obtain the result.

This lemma is just an improvement of the construction of a basic se-
quence in a Banach space, given by S. Mazur (see [10, Theorem 1.a.5, p. 4]).
When Theorem 1.1 is the main tool to show that the set U contains a
closed infinite-dimensional subspace of A, this lemma allows us to replace U
by UA.

Theorem 2.1. Under the previous assumptions and notations, if UA 6=∅,
then it contains a closed infinite-dimensional subspace of A without 0.

Proof. We will build by induction simultaneously a family (fn,k)n≥0, 0≤k≤n
of elements of A and a “convenient” basic sequence (uk)k of A, thanks to
which we will define a subspace as desired. For this purpose, let (Ql)l be a
sequence of polynomials dense in X and let ϕ,ψ : N → N be two functions
such that, given any (m, t) ∈ N2, there exists an infinite family (vk)k ⊆ N
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such that (ϕ(vk), ψ(vk)) = (m, t) for every k. Let also (εn)n≥0 be a sequence
of positive real numbers such that

∏∞
n=0(1 + εn) converges to a real num-

ber K.
The order of the inductive construction of the fn,k’s will be the following:

first, we define f0,0 from u0, then we build f1,0 from f0,0, then f1,1 from u1,
then f2,0 from f1,0, f2,1 from f1,1 and so on. This order is important because
we will take into account all the previous fl,t for the construction of fn,k. Each
fn,k will consist of a first part, gn,k, which will approximate the polynomial
Qϕ(n) in X and of a second part which will annihilate the value of gn,k in A.
This second part will be necessary to ensure convergence of (fn,k)n in A and
that its limit is close to uk.

First, we fix u0 = e0/‖e0‖A and approximate Qϕ(0) in X by g0,0 = u0+P ,
the polynomial in kN where P is given by Theorem 1.1(2) applied to the
spaces (A, dA) and (X, ‖ · ‖ψ(0)), with x = Qϕ(0)−u0, p = 2 and ε = 1/24K.
Next we put f0,0 = g0,0 +Q, where Q is given by Theorem 1.1(2) for (A, dA)
and (X, ‖ · ‖ψ(1)) with x = −g0,0, p = d(P ) + 1 and ε = 1/24K. Then g0,0
and f0,0 satisfy the following conditions:

‖g0,0 −Qϕ(0)‖ψ(0) <
1

24K
,

‖f0,0‖ψ(1) <
1

24K
,

‖f0,0 − u0‖A <
1

23K
.

Now, we turn to the inductive step. So, fix n ∈ N and suppose that poly-
nomials fj,l, for l ≤ j ≤ n − 1 have been built. We denote by ≺ the
lexicographical order on N2. We will construct the polynomials fn,k fol-
lowing the lexicographical order. First, we build fn,k for k < n as fol-
lows.

We approximate the polynomial Qϕ(n) in X by setting gn,k = fn−1,k + P ,
where P is given by Theorem 1.1, applied to (A, dA) and (X, ‖ · ‖ψ(n)) with
x = Qϕ(n) − fn−1,k, p = max(d(fj,l), (j, l) ≺ (n, k)) + 1 and ε = 1/2n+4K.
Then we set fn,k = gn,k + Q, where Q is given by Theorem 1.1 for (A, dA)
and (X, ‖ · ‖ψ(n+1)) with x = −gn,k, p = d(P ) + 1 and ε = 1/2n+4K.

We finally build un and fn,n. We deduce un from un−1 by induction and
fn,n from un. We put gn,n = un + P , with un given by Lemma 2.1 with
B = (u1, . . . , un−1), v = pn = max(d(fj,l), (j, l) ≺ (n, n)) + 1 and ε = εn,
and where P comes from Theorem 1.1, applied to the spaces (A, dA) and
(X, ‖ · ‖ψ(n)), where x = Qϕ(n)−un, p = d(un) + 1 and ε = 1/2n+4K. Notice
that as un is a polynomial, the definition of gn,n makes sense in X. Then
we define fn,n = gn,n +Q, where Q is given by Theorem 1.1 for (A, dA) and
(X, ‖ · ‖ψ(n+1)) with x = −gn,n, p = d(P ) + 1 and ε = 1/2n+4K. As above,
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for n ≥ k, gn,k, uk and fn,k satisfy

‖gn,k −Qϕ(n)‖ψ(n) <
1

2n+4K
,(2.2)

‖fn,k‖ψ(n+1) <
1

2n+4K
,(2.3)

‖fn+1,k − fn,k‖A <
1

2n+4K
,(2.4)

‖fk,k − uk‖A <
1

2k+3K
,(2.5)

and (uk)k is a basic sequence of A with basis constant not greater than K,
according to Remark 2.1.

Using inequality (2.4), we define for every k ∈ N an element fk of A by

fk =
∞∑
n=k

(fn+1,k − fn,k) + fk,k = lim
n→∞

fn,k.

By construction, the family (fk)k is linearly independent: indeed, as

d(fn1,k1) < v(fn2,k2) for (n1, k1) ≺ (n2, k2)

and as the linear coordinate projections pi (see the introduction) are sup-
posed to be continuous, an identity like

∑N
k=0 αkfk = 0 for an integer N can

hold only if αk = 0 for every k. Therefore, the subspace E of A defined by

E =
{ ∞∑
k=0

αkfk :
∞∑
k=0

αkfk converges
}

is infinite-dimensional and we will verify that the closed infinite-dimensional
subspace F = Ē answers our question, i.e. every non-zero element of F is
universal. First of all, observe that, in fact, every element h of F can be
written as

∑∞
k=0 αkfk with αk ∈ k, so that E is closed and F = E. Indeed,

by construction and using inequalities (2.4) and (2.5), for any k we have

‖fk − uk‖A =
∥∥∥ ∞∑
n=k

(fn+1,k − fn,k) + fk,k − uk
∥∥∥(2.6)

<

∞∑
n=k

1
2n+4K

+
1

2k+3K
<

1
2k+2K

.

Moreover, as (uk)k is a basic sequence with A with basis constant not greater
thanK, u∗k is well-defined and ‖u∗k‖A∗‖uk‖A≤2K; by construction, ‖uk‖A=1
for any k; therefore (2.6) gives us

∞∑
k=0

‖u∗k‖A∗‖fk − uk‖A <
∞∑
k=0

1
2k+1

= 1.

Then the Bessaga–Pełczyński criterion ensures that (fk)k is a basic sequence
of A equivalent to (uk)k so that E = Ē = F .
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Now we take a (non-zero) element h =
∑∞

k=0 αkfk ∈ E = F and we show
that h is universal. Given a polynomial Ql of the enumeration of polynomials
dense in A, it is sufficient to prove that there exists a sequence Nj (depending
on h and Ql) of integers such that

SNj (h,X) −−−→
j→∞

Ql for the topology of (X, dX),

and for this it is sufficient to prove that, for every n ∈ N,

‖SNj (h,X)−Ql‖n −−−→
n→∞

0.

We denote by k0 the smallest integer k such that αk 6= 0 and by Nj the de-
gree of the polynomial gvj+k0,k0 . By multiplying each αk by (αk0)−1, we may
suppose that αk0 = 1. By definition of ϕ and ψ, there exists an increasing
sequence (vj)j such that (ϕ(vj + k0), ψ(vj + k0)) = (l, n) for every j. Then

(2.7) ‖SNj (h,X)−Ql‖n =
∥∥∥SNj

( vj+k0∑
k=k0

αkfk, X
)
−Ql

∥∥∥
ψ(vj+k0)

=
∥∥∥ vj−1+k0∑

k=k0

αkfvj−1+k0,k + gvj+k0,k0 −Ql
∥∥∥
ψ(vj+k0)

≤
∥∥∥ vj−1+k0∑

k=k0

αkfvj−1+k0,k

∥∥∥
ψ(vj+k0)

+ ‖gvj+k0,k0 −Ql‖ψ(vj+k0)

≤
∥∥∥ vj−1+k0∑

k=k0

αkfvj−1+k0,k

∥∥∥
ψ(vj+k0)

+
1

2vj+k0+4K
,

using (2.2). Moreover, using (2.6), and the fact that ‖uk‖A = 1 for any k,
we get

|αk| ≤
2K ′

‖fk‖A
,

with ‖fk‖A ≥ 1− 1/2k+3K ′ for every k, where K ′ is the basis constant of
(fk)k. Thus the sequence (αk)k is bounded, say by M ; (2.7) entails that

‖SNj (h,X)−Ql‖n ≤ M

vj−1+k0∑
k=k0

‖fvj−1+k0,k‖ψ(vj+k0) +
1

2vj+k0+4K

≤ M(vj−1)

2vj+3+k0K
+ 1

2vj+k0+4K
by (2.3)

→ 0 as j →∞ since (vj)j is increasing,

which proves the universality of h.
The proof of the theorem will be finished after verifying that SNj (h)

converges to h in A. This easily comes from the construction of the fk’s by
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using the triangle inequality. Indeed, we have

‖h− SNj (h)‖A ≤
∥∥∥ ∑
k≥vj+k0+1

αkfk

∥∥∥
A

+
∥∥∥ vj+k0∑
k=k0

αk

( ∑
n≥vj+k0+1

(fn+1,k − fn,k)
)∥∥∥

A

+ ‖αvj+k0(fvj+k0,vj+k0 − gvj+k0,vj+k0)‖A

≤
∥∥∥ ∑
k≥vj+k0+1

αkfk

∥∥∥
A

+
vj+k0∑
k=k0

|αk|
( ∑
n≥vj+k0+1

1
2n+4K

)
+ |αvj+k0 |

1
2vj+k0+4K

≤
∥∥∥ ∑
k≥vj+k0+1

αkfk

∥∥∥
A

+
1

16K
sup
k≥k0
|αk|

vj+k0∑
k=k0

1
2vj+k0

+ |αvj+k0 |
1

2vj+k0+4K
→ 0 as j →∞,

since the series
∑

k≥0 αkfk is convergent and the sequence (αk)k is bounded,
which gives the result.

Remark 2.2. Notice that we only use implication (1)⇒(2) of The-
orem 1.1, which does not require the continuity of the projections pi’s. In
Theorem 1.1, this hypothesis is made to ensure that UA is “large”; this is also
the case in the last proof: continuity of the pi’s is crucial to show that the
subspace E which we construct is infinite-dimensional.

The calculation which allows us to show that an element of E is universal
is the main reason to assume that X has a topology induced by a family of
seminorms. If this is not the case, our method is not successful, because the
lack of homogeneity of the distance does not allow us to place the coeffi-
cients αk in front of the distance and use the fact that they are uniformly
bounded.

Remark 2.3. More generally, let (Tn)n be a sequence of operators from
X to Y where X and Y are two Banach spaces. A vector x ∈ X is called
universal for (Tn) if the set {Tnx : n ∈ N} is dense in Y . A sufficient condi-
tion for the set of universal vectors to contain a closed infinite-dimensional
subspace is given for instance in [12]. This condition requires that (Tn) satis-
fies the so-called Universality Criterion (see for instance [3]). In our context,
the operator (TN ) is simply the function which maps (an) ∈ A to the partial
sum SN (a) =

∑N
n=0 anxn in X. There is no reason why this sequence of
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maps should satisfy, in general, the Universality Criterion. Thus, the result
of [12] does not cover our Theorem 2.1.

Theorem 2.1 can be almost generalized to the case of Fréchet spaces; that
is the purpose of the forthcoming section.

3. Universality in Fréchet spaces. We keep the notations of the
introduction, and for instance A is now a Fréchet subspace of kN with a
translation-invariant metric dA; we also suppose that there is a norm ‖̂ · ‖
over (A, dA) such that there exists a constant C > 0 satisfying

(3.1) ‖̂x‖ ≤ CdA(x, 0), ∀x ∈ A.
This condition, which means that A admits a continuous norm, is of course
equivalent to the fact that the topology of A is generated by a family of
norms. This assumption is often made in similar contexts. For example, this
is the case in Theorem 3.1 of [4] where the authors give a sufficient condition
for some sets of universal vectors to contain a closed infinite-dimensional
subspace (see Remark 2.3). They exhibit a counterexample when this as-
sumption is removed ([4, Example 3.2]). Moreover, Fréchet spaces of complex
sequences which can be identified to spaces of holomorphic functions in one
variable are typical spaces which satisfy (3.1).

In the present case, we do not have a result as good as the one obtained in
Theorem 2.1 for Banach spaces: we will show that (A, dA) contains a closed
infinite-dimensional subspace whose non-zero elements are all universal (with
respect to X), so that U∪{0} contains a closed infinite-dimensional subspace
of A; but our methods fail to show that it is also the case of UA∪{0}, unless
of course we suppose that (en)n is a basis of A, i.e. UA = U , which never-
theless covers most of the reasonable cases (including spaces of holomorphic
functions in one variable). We state our result as follows:

Theorem 3.1. With the previous notations, if UA is non-empty, then
U contains a closed infinite-dimensional subspace of A without 0.

Proof. The hypothesis (3.1) will permit us to treat Fréchet spaces almost
as if they were Banach spaces from the point of view of basic sequences. In
fact, we consider the Banach space (Â, ‖̂ · ‖) obtained by completing A for
the norm ‖̂ · ‖ which satisfies (3.1). This idea was inspired by the second
part of the proof of Theorem 2 in [1]. Let (Ql)l≥1 be an enumeration of
a dense family of polynomials of X and let ϕ, ψ be two functions from
N to N such that for every couple of integers (l, t), there exist infinitely
many integers j such that (ϕ(j), ψ(j)) = (l, t). By using Theorem 1.1, we
simultaneously construct, as in the proof of Theorem 2.1 and with the same
notations, three families ((fn,k)n≥k)k≥0, ((gn,k)n≥k)k≥0 and (un)n≥0 of poly-
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nomials in A (or X, with no confusion possible), with convenient valuation
and degree, such that

‖gn,k −Qϕ(n)‖ψ(n) <
1

2n+4K
,(3.2)

‖fn,k‖ψ(n+1) <
1

2n+4K
,(3.3)

̂‖fn+1,k − fn,k‖ ≤ CdA(fn+1,k, fn,k) <
1

2n+4K
,(3.4)

̂‖fk,k − uk‖ ≤ CdA(fk,k, uk) <
1

2n+3K
,(3.5)

where the constructions of ((fn,k)n≥k)k≥0 and ((gn,k)n≥k)k≥0 are done in
(A, dA) and that of the basic sequence (un)n≥1 of the latter space in (Â, ‖̂ · ‖).
It is important to notice that Theorem 1.1 is only applied to (A, dA) and not
to the completion (Â, ‖̂ · ‖), even for the construction of fk,k and to obtain
inequality (3.5). Indeed, the un’s are built in (Â, ‖̂ · ‖) as polynomials, and
so they belong to (A, dA) so that we can use Theorem 1.1 to (A, dA) in order
to deduce the construction of fk,k in (A, dA) from uk. Moreover, this process
consisting in passing from (A, dA) to (Â, ‖̂ · ‖) is allowed by assumption (3.1).
We then define the fk’s in (A, dA) by

fk =
∑
n≥k

(fn+1,k − fn,k) + fk,k

and we consider the closed infinite-dimensional subspace F of (A, dA) defined
by

F = ĒdA

where E = {
∑

k≥0 αkfk : the series converges in (A, dA), αk ∈ k} and ĒdA is
the closure of E in (A, dA). Notice that the convergence in (A, dA) implies
the convergence in (Â, ‖̂ · ‖) according to (3.1), hence F ⊆ (Â, ‖̂ · ‖). To finish
the proof, it is sufficient to verify that every non-zero element of F , seen as
an element of (Â, ‖̂ · ‖), is universal (we are now working in X). For this, we
consider the set Ẽ = {

∑
k≥0 αkfk : the series converges in (Â, ‖̂ · ‖), αk ∈ k}

and we notice that F ⊆ Ẽ. Now, we obtain the universality of every non-zero
element of Ẽ directly from hypothesis (3.1), inequalities (3.2)–(3.5), and the
proof of Theorem 2.1, by using the fact that the sequence (un)n is basic and
normalized in the Banach space (Â, ‖̂ · ‖) and therefore (fk)k is also a basic
sequence in (Â, ‖̂ · ‖).

Let us recall

Theorem (Theorem 30 of [2]). Under the previous assumptions, the fol-
lowing are equivalent:
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(1) U ∩A is non-empty.
(2) U ∩A is a dense Gδ subset of A.
(3) For every ε > 0 and every x ∈ X, there exist m,n ∈ N, m ≥ n, and

a0, a1, . . . , am in k such that

dX

( n∑
j=0

ajxj , x
)
< ε and dA

( m∑
j=0

ajej , 0
)
< ε.

Looking at this result, our Theorem 3.1 may be a little disappointing.
Indeed, comparing our results in Banach spaces and in Fréchet spaces, we
can wonder if assuming UA 6= ∅ in the second case is not too strong, since
we just infer that U ∩A contains a closed infinite-dimensional subspace. At
this point, Theorem 30 of [2] can appear as the one to appeal to in the
Fréchet case. So a natural question can be: can we replace the hypothesis
UA 6= ∅ by U ∩ A 6= ∅ in Theorem 3.1? However, for technical reasons (like
the appearance of the two indices n and m that we cannot control), it turns
out that it is not so evident that we can apply Theorem 30 of [2] in order to
positively answer the last question. Moreover, notice that we do not know if
U ∩ A contains a dense subspace of A under the assumption U ∩ A 6= ∅. In
fact, it is not even clear that it contains a subspace of dimension 2.

4. Labeled universal series. In the theory of universal series, we may
deal with the “center of expansion” of the series. For instance, in the context
of Taylor or power series, we usually have to change the center of expansion,
that is, we have to consider a map en, for any n ∈ N, from a set L in k
into a convenient set of functions, with en(ξ) = (z − ξ)n. In the previous
sections, we did not care about this, by considering two fixed families in A
and X, respectively (en)n and (xn)n, and we just considered expansions with
respect to them. Moreover, most of the cases need working not only with a
single space X, but with a countable union of such sets, for example when
we work with entire functions that we approximate by universal series on
different sets. This case is no more covered by our previous studies.

In [2], the authors extend their abstract theory of universal series to
these “labeled universal series”. They show that everything works in this
latter context just as if we consider only one center of expansion and a single
set X. Essentially, they give a generalization of Theorem 1.1.

In this section, we will show that the existence of a closed infinite-
dimensional subspace consisting of universal series remains true in these
two more general frameworks, and even when we combine them to take into
account both the centers of expansions and the countable union of Fréchet
spaces. The generalization of Theorem 1.1 is still at the heart of the proof,
which is totally similar to the ones of Theorem 2.1 and Theorem 3.1, but
more technical. In fact, the more extra parameters we will deal with, the
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more technical and heavier will be the proof. That is why we will just ex-
plain what we have to add to the previous proofs, and why this works.

4.1. The “center of expansion”. We keep the notations G and X used
previously. We will consider a set of universal series more general than the
set A ⊆ kN in the first three sections, in order to work not only in a space of
real or complex sequences, but directly in a convenient general Fréchet space
on k, where the notion of centers of expansion makes more sense. We denote
by (E, dE) this space equipped with its complete translation-invariant metric
and we suppose that its topology is given by a family of norms. Let also L
be a compact space, let ξ0 be a fixed element of L, and suppose that, for any
n ∈ N, we have continuous maps

en : L→ E, xn : L→ X and Hn : L× E → kN,

with Hn linear with respect to the second coordinate satisfying the condition

(4.1) Hn(ξ0, em(ξ0)) = δn,m for every n,m ∈ N.
The maps en and xn generalize respectively the sequences en in A and xn in
X introduced in the first section.

Definition 4.1. For any a ∈ G, we denote by ga =
∑∞

n=0 anen(ξ0) the
“polynomial” in E associated to a. We define the valuation v(ga) and the
degree d(ga) by v(ga) = v(a) and d(ga) = d(a), with the notations of the
first section.

We make the following usual assumptions:

(1) The set {ga : a ∈ G} is dense in E.
(2) For every a ∈ G and every ξ ∈ L, the sets {n : Hn(ξ, ga) 6= 0} are

finite and uniformly bounded with respect to ξ.
(3) For every a ∈ G and every ξ ∈ L,

(4.2)
∞∑
n=0

Hn(ξ, ga)en(ξ) =
∞∑
n=0

anen(ξ0)

and the same is true in X:

(4.3)
∞∑
n=0

Hn(ξ, ga)xn(ξ) =
∞∑
n=0

anxn(ξ0).

For example, we may take for E the Fréchet space H(D) of holomorphic
functions on the disk, equipped with the standard metric of uniform conver-
gence on compact sets, for X the space A(K) of holomorphic functions on
K continuous on K, where K is a compact set with connected complement
and K ∩D = ∅, for L a compact subset of D and

en(ξ) = xn(ξ) = (z 7→ (z − ξ)n) and Hn(ξ, f) =
f (n)(ξ)
n!
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for ξ ∈ D and f ∈ H(D). The previous assumptions are clearly satisfied in
this case.

Note that if E = A and the maps en (resp. xn) are constant equal to
en(ξ0) = en ∈ A (resp. to xn ∈ X), and Hn(ξ, a) = an for every ξ ∈ L and
a = (an)n ∈ A, then we are precisely in the case covered by the previous
sections.

Definition 4.2. We say that an element f ∈ E is unrestrictively uni-
versal (in this framework) if, for every x ∈ X, there exists a sequence (λn)n
of integers such that

sup
ξ∈L

dX

( λN∑
n=0

Hn(ξ, f)xn(ξ), x
)
−−−−→
N→∞

0.

We denote by UE,L the set of all unrestricted universal series.

The generalized notion of restricted universal series is defined as follows:

Definition 4.3. We say that an element f ∈ E is restrictively universal
(in this framework) if, for every x ∈ X, there exists a sequence (λn)n of
integers such that

sup
ξ∈L

dE

( λN∑
n=0

Hn(ξ, f)en(ξ), f
)
−−−−→
N→∞

0,(4.4)

sup
ξ∈L

dX

( λN∑
n=0

Hn(ξ, f)xn(ξ), x
)
−−−−→
N→∞

0.(4.5)

We denote by URE,L the set of all restricted universal series.

Theorem 1.1 remains true in this context (see [2, Theorem 2, p. 8]):

Theorem 4.1. Under the previous assumptions, the following are equiv-
alent:

(1) URE,L is non-empty.
(2) For every ε > 0, every x ∈ X, and every integer p ≥ 0, there exists

a polynomial (an)n with valuation p such that

sup
ξ∈L

dX

(∑
n∈N

Hn(ξ, ga)xn(ξ), x
)
< ε,

sup
ξ∈L

dE

(∑
n∈N

Hn(ξ, ga)en(ξ), 0
)
< ε.

(3) For every ε > 0, every x ∈ X, and every integer p ≥ 0, there exists
a polynomial (an)n with valuation p such that

dX

(∑
n∈N

anxn(ξ0), x
)
< ε and dE

(∑
n∈N

anen(ξ0), 0
)
< ε.

(4) URE,L ∪ {0} contains a dense subspace of E.
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We are now able to give a generalization of Theorem 3.1 in the context
of labeled universal series, taking into account the center of expansion:

Theorem 4.2. With the previous assumptions, if URE,L is not empty,
then UE,L contains a closed infinite-dimensional subspace of E, without 0.

Idea of the proof. We keep the notations (Ql)l∈N and ϕ,ψ introduced in
Theorem 3.1 By proceeding exactly as in the proof of the latter, by con-
sidering (en(ξ0))n instead of (en)n (resp. (xn(ξ0))n instead of (xn)n) and
by the assumptions (4.2) and (4.3), we construct three families (gn,k)n≥k≥0,
(fn,k)n≥k≥0 and (un)n≥0 of polynomials in E (or X with no confusion pos-
sible) with convenient valuation and degree as in the proof of Theorem 3.1,
such that

sup
ξ∈L

∥∥∥ ∞∑
j=0

Hj(ξ, gn,k)xj(ξ)−Qϕ(n)

∥∥∥
ψ(n)

<
1

2N+4K
,(4.6)

sup
ξ∈L

∥∥∥ ∞∑
j=0

Hj(ξ, fn,k)xj(ξ)
∥∥∥
ψ(n)

<
1

2n+4K
,(4.7)

dE(fn+1,k, fn,k) <
1

2n+4K
,(4.8)

̂‖fk,k − uk‖ <
1

2n+3K
,(4.9)

and (un)n≥0 being a basic sequence in (Ê, ‖̂ · ‖), the completion of E for ‖·‖,
one of the norms defining the topology of E. Then we construct a family
(fk)k≥0 in E, using inequality (4.8), by

fk =
∑
n≥k

(fn+1,k − fn,k) + fk,k

for every k ∈ N, and we define the closed subspace F of E

F =
{∑
k≥0

αkfk : the series converges in (E, dE), αk ∈ k
}dE

.

Then F is infinite-dimensional because of the assumption (4.1) and the con-
struction of the fk’s. The proof of the universality of every element of F
is quite similar to the one used for Theorem 3.1 and works after noticing
that the “sup” is not an obstacle for the calculation. We do not go into
details.

4.2. Universality in a countable family of Fréchet spaces. We
keep the notations G, E, L, en, Hn and ξ0 of the previous section. In the
proofs of Theorems 2.1, 3.1, or 4.2, the construction of the family (fk)k≥0,
which is at the core of the proof, is such that certain parameters were taken
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into account. Namely, in the latter, the procedure was to approximate, for a
countable family of norms, a countable family of polynomials simultaneously
by some convenient countable families of other polynomials. For this, the
strategy is to build a sequence of polynomials with multiple indices; each of
these indices should correspond to an extra parameter through the functions
ϕ and ψ. More generally, this method allows us to add some extra “countable”
parameters, making the formalism more complicated.

Therefore, we can extend Theorem 4.2 to the case of a countable family
of Fréchet spaces ((Xn, dn))n≥0 (where dn is the metric of Xn) instead of a
single one X, and we can even work with a space L which is not compact,
but which is the union of an exhaustive sequence (Lm)m of compact subsets
such that ξ0 ∈ L0. Let also (xn,k)k≥0 be a sequence of continuous maps from
L to Xn, for any n ∈ N. We shall modify the assumptions (1)–(3) given after
Definition 4.1 as follows:

(1) The set {ga : a ∈ G} is dense in E.
(2) For every a ∈ G and every ξ ∈ L, the sets {n : Hn(ξ, ga) 6= 0} are

finite and uniformly bounded with respect to ξ ∈ Lm, for any m ∈ N.
(3) For every a ∈ G and every ξ ∈ L,

(4.10)
∞∑
n=0

Hn(ξ, ga)en(ξ) =
∞∑
n=0

anen(ξ0).

(4) For every a ∈ G, every ξ ∈ L and every n ≥ 0,

(4.11)
∞∑
k=0

Hk(ξ, ga)xn,k(ξ) =
∞∑
k=0

akxk(ξ0).

In this context, we redefine the notion of unrestricted universal series as
follows:

Definition 4.4. We say that an element f ∈ E is unrestrictively uni-
versal (in this framework) if, for every n ∈ N and every x ∈ Xn, there exists
a sequence (λn)n of integers such that, for every m ≥ 0,

sup
ξ∈Lm

dX

( λN∑
k=0

Hk(ξ, f)xn,k(ξ), x
)
−−−−→
N→∞

0.

We denote by UE,L the set of all unrestricted universal series.

Next, we modify, the notion of restricted universal series:

Definition 4.5. We say that an element f ∈ E is restrictively universal
(in this framework) if, for every n ∈ N and every x ∈ Xn, there exists a
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sequence (λn)n of integers such that, for every m ≥ 0,

sup
ξ∈Lm

dE

( λN∑
k=0

Hk(ξ, f)ek(ξ), f
)
−−−−→
N→∞

0,(4.12)

sup
ξ∈Lm

dX

( λN∑
n=0

Hk(ξ, f)xn,k(ξ), x
)
−−−−→
N→∞

0.(4.13)

We denote by URE,L the set of all restricted universal series.

As Theorem 4.1 also extends to this framework ([2, Theorem 3]), it
suffices to consider four functions ϕ, ψ, ν, κ from N to N such that, for
every (l,m, t, i) ∈ N4, there exists an increasing sequence (vk)k such that
(ϕ(vk), ψ(vk), ν(vk), κ(vk)) = (l,m, t, i) for every k, and to follow the same
proof as usual. Then, in this more general framework, we also have:

Theorem 4.3. With the previous assumptions, if URE,L is non-empty,
then UE,L contains a closed infinite-dimensional subspace of E without 0.

5. Applications. This section is devoted to a short illustration of the
previous results in some different frameworks, through classical examples of
universality.

5.1. Applications in Banach spaces. We may first illustrate Theo-
rem 2.1 by taking A to be the Banach spaces c0 or lp, 1 ≤ p <∞; with their
natural topologies, they are Banach subspaces of CN satisfying hypothesies
(1)–(3) of Section 1, and the canonical sequence (en)n is basic. In [2], the
authors apply their abstract theory to get the following:

Proposition 5.1. Let A = c0 or A = lp, 1 ≤ p < ∞, endowed with
their natural topologies. Then there exists a sequence a = (an)n in A with
the following property: For every compact set K ⊆ C with K ∩ D = ∅ and
with connected complement, and for every function h ∈ A(K), there exists a
sequence (λn)n in N such that∥∥∥ λn∑

j=0

ajz
j − h(z)

∥∥∥
∞,K

−−−→
n→∞

0

where ‖·‖∞,K is the supremum norm on K. Moreover, if we denote by UA the
set of such sequences a, then UA is a dense Gδ subset of A, and it contains
a dense vector subspace of A without 0.

Let us also notice that, combining results in Sections 1 and 4, it is clear
that working with a Banach space A on the one hand and a countable family
of Fréchet spaces (Xn, dn) on the other hand yields the same conclusion as
in Theorem 2.1 under the same usual assumptions. Then, with the previous
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notations, let (Xn, dn) be (A(Kn), ‖ · ‖∞,n) where A(Kn) is the set of con-
tinuous functions on Kn, holomorphic on K̊n, and where (Kn)n is a family
of compact sets of C, with Kn ∩D = ∅ and Kc

n connected, and such that
every compact set K ⊆ C with K ∩D = ∅ and Kc connected is contained in
some Kn. Thanks to such a sequence (Kn)n, it is clear that an application
of Proposition 5.1 and of Theorem 4.3 in the present easier context gives the
following result:

Proposition 5.2. With the notations of Proposition 5.1, the set UA
contains a closed infinite-dimensional subspace of A with 0 removed.

As in [2], we shall state a similar result in the context of Hardy or
Bergman spaces, i.e. when A = Hp(D) or A = Ap(D), 1 ≤ p < ∞. In-
deed, as before, Corollary 8 in [2] ensures that we have the following:

Proposition 5.3. Let A = Hp(D) or A = Ap(D), 1 ≤ p < ∞. Then
there exists a closed infinite-dimensional subspace F of A, without 0, consist-
ing of universal Taylor series, in the sense that for every f =

∑
n anz

n ∈ F ,
every compact set K ⊆ C with K ∩ D = ∅ and Kc connected, and every
h ∈ A(K), there exists a sequence (λn)n ⊆ N such that∥∥∥ λn∑

n=0

anz
n − h(z)

∥∥∥
∞,K

−−−→
n→∞

0,

where ‖ · ‖∞,K is the supremum norm on K.

A classical example of universal series is that of universal trigonometric
series of Men’shov in the periodic case; see [11], [8] and [2].

The difference from our assumptions in Section 1 is that the topology
of X is not induced by a countable family of seminorms. X is the space
of complex measurable functions on T = {z ∈ C : |z| = 1} modulo the
equivalence relation identifying two functions if they are identical off a subset
with zero Lebesgue measure. If f, g ∈ X then

pX(f, g) =
�

T

|f − g|
1 + |f − g|

dλ

where λ is the Lebesgue measure on T. However, one can easily check that
all our results hold in this case with A = c0 or A = lp, p > 2. The universal
series obtained in this way realize approximations in measure; but it turns
out that these universal trigonometric series are identical with the universal
trigonometric series realizing approximations in the almost everywhere sense.
Thus we obtain the following:

Proposition 5.4. Let A = c0 or lp, p > 2. There exists a sequence a =
(an)n≥0 ∈ A such that, for every 2π-periodic complex measurable function h :
R→ C, there exists a sequence (λn)n>1 ⊆ N such that

∑λn
j=0 aje

ijx converges
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to h(x) almost everywhere as n goes to infinity. The set of such sequences
a ∈ A contains a closed infinite-dimensional subspace of A without 0.

We can also have an analogous result on the torus TN (see [2]).
Now, let p0 ≥ 0. If for every p > p0 there exists a universal series in lp,

then there exists a universal series in
⋂
p>p0

lp. This follows from the abstract
theory ([2]) in combination with the definition of the topology in the Fréchet
space

⋂
p>p0

lp and is established in [15]. This fact, for p0 = 2, in combination
with the fact that there exists a universal trigonometric series in each lp,
p > 2, implies the existence of a universal trigonometric series in

⋂
p>2 l

p.
The result of Section 3 implies now that

⋂
p>2 l

p contains a closed infinite-
dimensional subspace whose non-zero elements define universal trigonometric
series of analytic type.

5.2. Applications in Fréchet spaces. In [9], the authors show the
existence of universal series in A =

⋂
p>1 l

p with respect to some sequences
(xn)n in abstract Fréchet spaces X, up to a special condition on (xn)n. More
precisely, besides the usual assumptions made in the previous sections, they
introduce the following condition, which they call (D):

Condition (D). For every finite set I ⊂ N, there exist distinct indices
jn(i), n ∈ N, i ∈ I, such that xjn(i) → xi as n→∞.

We suppose that A =
⋂
p>1 l

p is endowed with its usual topology of
Fréchet space induced by a family of norms. The main abstract theorem
they obtain is:

Theorem 5.1. With the current notations, assume that (xn)n satisfies
Condition (D) and that the set of all finite linear combinations of xn’s is
dense in X. Then UT

p>1 l
p 6= ∅. Moreover, UT

p>1 l
p is a dense Gδ subset of

A =
⋂
p>1 l

p and it contains a dense vector subspace of A without 0.

Notice that the assumption that the set of all finite linear combinations
of xn’s is dense in X is not a restriction for us, since it is a consequence of
the fact that UA is non-empty, which we have to assume in all our results
in Sections 2 and 3. Theorem 5.1 just reveals that, in this context, we can
replace the hypothesis UA 6= ∅ by Condition (D) and span(xn, n ∈ N) = X.
With this in mind, Theorems 5.1 and 4.3 yield this partially abstract result:

Theorem 5.2. With the usual notations, set A =
⋂
p>1 l

p and assume
that (xn)n ⊆ X satisfies Condition (D) and that span(xn, n ∈ N) = X. Then
U ∩A = UA contains a closed infinite-dimensional subspace without 0.

Remark 5.3. We can easily see that Theorems 5.1 and 5.2 remain true
if we replace

⋂
p>1 l

p by any lp with 1 < p < ∞ or c0. Therefore, it may be
seen as a generalization of examples given in Section 5.1, except for the case
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A = l1; indeed, the authors of [9] give an example where the statement of
Theorem 5.1 does not hold when A = l1.

We now give some “concrete” examples.

Example 5.1. The simplest non-trivial couple (X, (xn)n) satisfying the
hypothesis of Theorem 5.2 is (R, (xn) = 1). Indeed, (xn)n satisfies Condition
(D) and, of course, R = span(xn, n ∈ N). In this setting, Theorem 5.1
first ensures that there exists a restricted universal sequence a = (an)n ∈
A =

⋂
p>1 l

p(R) such that the set of all partial sums
∑N

n=0 an is dense in R
and, denoting by UA the set of all such sequences a, Theorem 5.2 yields the
following result:

Proposition 5.5. With the previous notations, UA contains a closed
infinite-dimensional subspace of A without 0.

Example 5.2. A classical example of universal series is the one of uni-
versal trigonometric series. Set X = C(R), the set of all continuous complex
functions on R, equipped with the topology of uniform convergence on com-
pact sets. Let us fix a sequence (βn)n ⊆ R without isolated points and define
xn(t) = eiβnt for every t ∈ R. As explained in [9, Section 5], (xn)n satisfies
Condition (D) and X = span(xn, n ∈ N). Therefore, Theorems 5.1 and 5.2
give the following result:

Theorem 5.4. With the previous notations, there exists a restricted uni-
versal sequence a = (an)n ∈ A =

⋂
p>1 l

p(C), i.e. such that for every con-
tinuous complex function f on R, there exists a sequence (λn)n ⊆ N such
that

λn∑
n=0

ane
iβnt −−−→

n→∞
f(t) uniformly on every compact subset of R.

Moreover, the set UA of all such sequences a is a dense Gδ subset of A and
it contains a closed infinite-dimensional subspace without 0.

For further applications, [9] provides a lot of examples which may illus-
trate Sections 2 and 3 of the present paper.

5.3. Universal series in simply connected domains. In [2], the
authors gave a proof of the following theorem, using their abstract results
on universality:

Theorem 5.5. Let Ω be a simply connected domain in C. There exists
a holomorphic function f on Ω such that its partial sums

SN (f, ξ)(z) =
N∑
n=0

f (n)(ξ)
n!

(z − ξ)n, ξ ∈ Ω, N ∈ N,

have the following property (P):



Closed subspaces of universal series 141

For every compact set K ⊆ C with K ∩ Ω = ∅ and Kc connected, and
every function h ∈ H(C), there exists a sequence (λn)n of integers such that,
for every compact set L ⊆ Ω and every l ∈ N, we have:

(1) sup
ξ∈L

sup
z∈L
|Sλn(f, ξ)(z)− f(z)| → 0 as n→∞,

(2) sup
ξ∈L

sup
z∈K

∣∣∣∣ dldzl (Sλn(f, ξ))(z)− h(l)(z)
∣∣∣∣→ 0 as n→∞.

With the notations of the fourth section, set E = H(Ω), endowed with
the topology of uniform convergence on compacta, and let d be the tran-
slation-invariant metric on E defined by the family of seminorms ‖f‖n =
supz∈Ln

|f(z)|, where f ∈ E and (Ln)n is an exhausting family of compact
sets of Ω =

⋃∞
n=0 Ln. Let also Xn, n ≥ 0, denote H(C) equipped with the

metric dn induced by the family of seminorms supz∈Kn
|f (l)(z)|, l ≥ 0, where

Kn is a family of compact sets of C with Kn ∩ Ω = ∅ and Kc
n connected,

and such that every compact set K ⊆ C with K ∩Ω = ∅ and Kc connected
is contained in some Kn (see [2, B-2] for the existence of such a sequence).
Moreover, for ξ ∈ Ω, f ∈ E and k ≥ 0, define ek(ξ) = (z 7→ (z − ξ)k) ∈ E,
xn,k = (z 7→ (z − ξ)k) ∈ Xn and Hk(ξ, f) = f (k)(ξ)/k! ∈ C. As explained
in [2], all the assumptions of the fourth section are satisfied and the pre-
vious theorem ensures that UE,L 6= ∅ with L = Ω. Hence, Theorem 4.3
gives:

Theorem 5.6. Let Ω be a simply connected domain in C. There exists
a closed infinite-dimensional subspace of (E, d) = (H(Ω), d) consisting of
holomorphic functions such that all their partial sums (apart from 0) have
the property (P) of Theorem 5.5.

Since universal Taylor series of the previous type in simply connected
domains have Ostrowski’s gaps ([13]), condition (P) of Theorem 5.5 is equiv-
alent to the corresponding condition for only one center. Thus, the result of
Section 3 suffices for the proof of Theorem 5.6. This is not the case if we as-
sume that the universal approximation is valid on part of the boundary, that
the universal function is smooth on another part of the boundary and that
the supremum with respect to ζ in (2) is taken on some sets L which may
contain parts of the boundary ([2]). Then a result analogue to Theorem 5.6
holds.

5.4. Fekete’s theorem. We finish the illustration of our abstract study
by an example which shows one of the limits of Theorem 2.1 or Theorem 3.1.
It may appear a little ironical as it is known to be at the beginning of
universal series study. Indeed, as far as we know, the first universal series
was given by Fekete in 1914 (see [16]):
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Theorem 5.7 (Fekete’s theorem (1914)). There exists a real sequence
(an)n≥0 such that, for any continuous real function f on [−1, 1] satisfying
f(0) = 0, there exists a sequence of integers (λn)n≥0 such that

λN∑
n=0

anx
n −−−−→

N→∞
f uniformly on [−1, 1].

With the notations of the second section, we set A = RN with the Carte-
sian topology; let also X be the space of all continuous real functions on
[−1, 1] vanishing at 0, with the topology of uniform convergence. Fekete’s
theorem ensures that UA is not empty, and Theorem 1.1 applies and gives
the following result:

Theorem 5.8. Denote by UA the set of all sequences (an)n≥0 such that,
for every continuous real function f on [−1, 1] vanishing at 0, there exists a
sequence (λn)n>0 of integers such that

λN∑
n=1

anx
n −−−−→

N→∞
f uniformly on [−1, 1].

Then UA is a dense Gδ subset of A and it contains a dense vector subspace
of A without 0.

Although this context is covered by Theorem 1.1, it is not the case of
our Theorem 3.1: for technical reasons, the latter requires the existence of
a continuous norm on A (condition (3.1)) and it is well-known that there is
no continuous norm on KN. As we said at the beginning of Section 3, the
authors of [4] show that if (3.1) is removed, then the existence of a closed
infinite-dimensional subspace of universal vectors in similar contexts fails.
We can legitimately wonder if in Fekete’s context there does not exist a
closed infinite-dimensional subspace with 0 removed consisting of universal
series. The next result positively answers this question:

Theorem 5.9. In Fekete’s context, there does not exist a closed infinite-
dimensional subspace without 0 consisting of universal series.

The proof is essentially based on the following general lemma:

Lemma 5.1. Let F be an infinite-dimensional subspace of RN. Denote by
(en)n the canonical sequence in RN; as in Section 1, v(u) is the valuation of
u ∈ RN, with respect to (en)n. Then there exists a sequence (un)n in F −{0}
such that (v(un))n is increasing.

Proof of Lemma 5.1. The construction of (un)n uses the following obser-
vation:

Claim. Let (u0, . . . , un) be a finite family of non-zero elements of F such
that
(5.1) v(u0) < v(u1) < · · · < v(un)
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and if u ∈ F − {0} satisfies v(u) ≤ v(un), then v(u) = v(ui) for some i,
0 ≤ i ≤ n. Then there exists w ∈ F such that v(w) > v(un).

Proof of the Claim. Denote

En = {w ∈ F : v(w) > v(un)}.
By contradiction, suppose that En = {0}. Because of (5.1), if w ∈ F − {0}
then there exist real λ0, . . . , λn such that one of the following two cases holds:

(1) w − (λ0u0 + · · ·+ λnun) = 0 or
(2) v(w − (λ0u0 + · · ·+ λnun)) > v(un).

As the second case is impossible since we supposed that En = {0}, it follows
that w is a finite linear combination of ui’s, 0 ≤ i ≤ n. This contradicts the
fact that F is infinite-dimensional.

We now finish the proof of Lemma 5.1. We construct a sequence (un)n of
non-zero elements of F such that, for any integer n, the sequence (u0, . . . , un)
satisfies the assumptions of the claim. We define u0 to be a non-zero element
of F with minimal valuation. Next, suppose that (u0, . . . , un) has been built
and apply the Claim to this family. We know that there exists w ∈ F such
that v(w) > v(un). We define un+1 to be such an element with v(un+1)
minimal. It remains to show that (u0, . . . , un+1) still satisfies the assumption
of the Claim. Pick u ∈ F with v(u) ≤ v(un+1). If v(u) ≤ v(un), then we may
apply the induction hypothesis. Otherwise, v(u) = v(un+1) by minimality
of v(un+1). The sequence (un)n which we construct following this process
clearly satisfies the conclusion of Lemma 5.1.

We turn to the proof of Theorem 5.9:

Proof of Theorem 5.9. Let (un)n be a sequence as in Lemma 5.1. Because

v(un) < v(un+1) for every n ∈ N,
we observe that for any real sequence (αn)n,

∑∞
n=0 αnun is convergent in RN.

Now, in the notation of Section 2, we can find a sequence (αn)n ∈ RN such
that, for any n ≥ 0,

(5.2) ‖Sp(α0u0 + · · ·+ αnun, X)‖∞ > 1 for p ∈ [v(un), v(un+1)[.

Indeed, we may choose α0 ∈ R such that

‖Sp(α0u0, X)‖∞ > 1

for any p ∈ [v(u0), v(u1)[, because Sp(u0, X) 6= 0 for any p in this interval. If
α0, . . . , αn have been built, we construct αn+1 as follows. We observe that

‖Sp(α0u0 + · · ·+ αnun + αn+1un+1, X)‖∞

= |αn+1|
∥∥∥∥Sp( α0

αn+1
u0 + · · ·+ αn

αn+1
un + un+1, X

)∥∥∥∥
∞
,
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and since Sp(un+1, X) 6= 0 for any p ∈ [v(un+1), v(un+2)[, we can choose
|αn+1| sufficiently large in order to have (5.2). Now, by construction, it fol-
lows that for every p ∈ N, there exists n ∈ N such that p ∈ [v(un), v(un+1)[
and ∥∥∥Sp( ∞∑

k=0

αkuk, X
)∥∥∥
∞

=
∥∥∥Sp( n∑

k=0

αkuk, X
)∥∥∥
∞
> 1.

This means that every partial sum of
∑∞

n=0 αnun in X has supremum norm
greater than 1, hence no continuous function with range in ]−1, 1[ can be
approximated by subsequences of partial sums of h :=

∑∞
n=0 αnun. Therefore

h fails to be universal in Fekete’s sense; now, as F has been supposed to be
closed, h ∈ F and the proof is complete.
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