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Admissible functions for the Dirichlet space

by

Javad Mashreghi (Québec) and Mahmood Shabankhah (Marseille)

Abstract. Zero sets and uniqueness sets of the classical Dirichlet space D are not
completely characterized yet. We define the concept of admissible functions for the Dirich-
let space and then apply them to obtain a new class of zero sets for D. Then we discuss
the relation between the zero sets of D and those of A∞.

1. Introduction. Let f(z) =
∑∞

n=0 anz
n be holomorphic on the open

unit disk D. Then, by direct verification, we obtain

D(f) :=
1
π

�

D
|f ′(z)|2 dA(z) =

∞∑
n=1

n|an|2,

where dA is the two-dimensional Lebesgue measure. The Dirichlet space is

D := {f ∈ Hol(D) : D(f) <∞}.
It is clear that the classical Hardy space H2(D) contains the Dirichlet space
D as a proper subclass [M, p. 104]. With the norm

‖f‖2D = D(f) + ‖f‖2H2 ,

the Dirichlet space becomes a Hilbert space of analytic functions on the
open unit disc whose inner product is given by

〈f, g〉 =
∞∑
n=0

(n+ 1)anb̄n,

where f(z) =
∑∞

n=0 anz
n and g(z) =

∑∞
n=0 bnz

n are arbitrary elements of D.
A sequence (zn)n≥1 in D is called a zero set for D provided that there is

an element f ∈ D, f 6≡ 0, such that f(zn) = 0, n ≥ 1. Since D ⊂ H2(D),
it is well-known that a necessary condition for a zero set is the Blaschke
condition

∞∑
n=1

(1− |zn|) <∞.
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The complete characterization of the zero sets of D is still an open question.
Carleson [Car2] took the first step in this direction and showed that if a
sequence (zn)n≥1 in D satisfies

∞∑
n=1

(
1

− log(1− |zn|)

)1−ε
<∞

for some ε > 0, then (zn)n≥1 is a zero set for D. Then Shapiro–Shields [SS]
improved this result by showing that

∞∑
n=1

1
− log(1− |zn|)

<∞

is enough to ensure that (zn)n≥1 is a zero set for D. This is an important
generalization of Carleson’s result, and in a sense, the best known result up
to now. This line of research has been continued by Bogdan [B], Caughran
[Cau1], Nagel–Rudin–Shapiro [NRS], and Richter–Ross–Sundberg [RRS].

In [MS], among other things, we showed that if a Blaschke sequence
(zn)n≥1 tends to the point 1 and satisfies

(1.1)
∞∑
n=1

exp
(
− β

dαn

)
<∞

for some 0 < α < 1 and β > 0, or

(1.2)
∞∑
n=1

exp
(
− β

dn log 1
dn

log2
1
dn
· · · log1+ε

k
1
dn

)
<∞

for some β > 0, ε > 0, and integer k ≥ 1, where dn = |1− zn|, then (zn)n≥1

is a zero set for D. We also slightly generalized the constructive method
of Carleson, given in [Cau1], to create a uniqueness set. In this paper, we
take further steps in this direction. In Section 2, we define the concept of
E-admissible functions, where E is a Carleson subset of T. Then we give
some sufficient conditions to create these functions. This concept is designed
to obtain zero sets of the Dirichlet space. In the last section, which is also of
independent interest, we generalize a result of Nelson on Carleson sets and
then apply it to show that a special class of zero sets of D and A∞ coincide.
We recall that Ak = {g ∈ Hol(D) : g(k) extends continuously to D} and
A∞ =

⋂
kAk.

2. E-admissible functions. In this section, we shall prove a theorem
which provides a fairly large class of zero sets for the Dirichlet space. In
what follows, Carleson sets will play a prominent role. A closed subset E of
the unit circle T is called a Carleson set if

(2.1)
�

T
log dist(ζ, E) |dζ| > −∞,
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where dist stands for the Euclidean distance. It is not difficult to show that
(2.1) is equivalent to |E| = 0 and

(2.2)
∑
n

|In| log |In| > −∞,

where In, n ≥ 1, are the complementary open intervals of E. Let

Et = {ζ ∈ T : d(ζ, E) ≤ t},

where d denotes the arc length on the unit circle. It is shown in [Car1] that
a closed set E is a Carleson set if and only if

(2.3)
�

0

|Et|
t
dt <∞.

It follows that a finite union of Carleson sets is itself a Carleson set.
The following result gives sufficient conditions for a Blaschke sequence

to be a zero set for the Dirichlet space. Note that if E is a Carleson set,
then, by [TW, Theorem 1.1], there is a function f ∈ A∞ = {f : f (n) ∈
H∞(D), n ≥ 0} which vanishes on E. Hence, in particular, f satisfies

|f(ζ)| ≤ C dist(ζ, E) (ζ ∈ T).

See also [Car1, Theorem 1] for a similar but weaker result.

Theorem 2.1. Let E be a closed subset of T, and let ϕ : [0, 2]→ [0,∞)
be an increasing function such that

S(E,ϕ) =
�

T

ϕ(adist(ζ, E))
dist2(ζ, E)

|dζ| <∞

for some 0 < a < 1. Suppose that there exists a non-zero f ∈ D such that

(2.4) |f(ζ)|2 ≤ ϕ(a dist(ζ, E)) (a.e. on T).

Then E is a Carleson set and every Blaschke sequence (zn)n≥1 satisfying
∞∑
n=1

ϕ(dist(zn, E)) <∞

is a zero set for D.

Proof. By assumption,
�

T
log
(
|f(ζ)|2

dist2(ζ, E)

)
|dζ| ≤

�

T
log
(
ϕ(a dist(ζ, E))

dist2(ζ, E)

)
|dζ| <∞

and, by a well-known result of F. Riesz,�

T
log |f(ζ)| |dζ| > −∞.
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Hence, we have �

T
log dist(ζ, E) |dζ| > −∞.

Consequently, E is a Carleson set.
Fix z ∈ D and set

Ez = {ζ ∈ T : dist(ζ, E) ≥ dist(z, E)/a}.

Let ζ0 be the closest point of E to z. Then, for each ζ ∈ Ez,

|ζ − z| ≥ |ζ − ζ0| − |ζ0 − z| = |ζ − ζ0| − dist(z, E)
≥ dist(ζ, E)− dist(z, E) ≥ (1− a) dist(ζ, E).

Hence,
�

Ez

|f(ζ)|2

|ζ − z|2
|dζ| ≤

�

Ez

ϕ(a dist(ζ, E))
|ζ − z|2

|dζ| ≤
(

1
1− a

)2

S(E,ϕ).

On the other hand, on T \ Ez, we have
�

T\Ez

|f(ζ)|2

|ζ − z|2
|dζ| ≤

�

T\Ez

ϕ(adist(ζ, E))
|ζ − z|2

|dζ|

≤ ϕ(dist(z, E))
�

T\Ez

|dζ|
|ζ − z|2

≤ 2π
1− |z|2

ϕ(dist(z, E)).

So, for every z ∈ D,

(1− |z|2)
�

T

∣∣∣∣ f(ζ)
ζ − z

∣∣∣∣2 |dζ| ≤ ( 1
1− a

)2

S(E,ϕ)(1− |z|2) + 2πϕ(dist(z, E)).

Therefore, by our assumption,
∞∑
n=1

(1− |zn|2)
�

T

∣∣∣∣ f(ζ)
ζ − zn

∣∣∣∣2 |dζ| <∞.
Let B be the Blaschke product formed by (zn)n≥1. It follows from Carleson’s
formula [Car3] that

D(Bf) = D(f) +
∞∑
n=1

(1− |zn|2)
�

T

∣∣∣∣ f(ζ)
ζ − zn

∣∣∣∣2 |dζ| <∞.
Thus, (zn)n≥1 is a zero set for the Dirichlet space.

An easy assumption which ensures S(E,ϕ) < ∞ is that ϕ(t) ≤ Ct2,
C > 0, which is fulfilled by all functions we consider in applications. But
the existence of f is more delicate and needs further considerations. The-
orem 2.1 suggests the following definition. For a Carleson set E, we define
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an increasing function ϕ : [0, 2]→ [0,∞) to be E-admissible if S(E,ϕ) <∞
and there is a non-zero function f ∈ D such that

|f(ζ)|2 ≤ ϕ(adist(ζ, E)) (a.e. on T)

for some a ∈ (0, 1). With this new terminology, the assumptions of Theo-
rem 2.1 simply mean that ϕ is E-admissible. Moreover, (1.1) and (1.2) both
become special cases of this result, and we can say that the functions

ϕ(t) = exp
(
− β
tα

)
,

where 0 < α < 1, β > 0, and

ϕ(t) = exp
(
− β

t log 1
t log2

1
t · · · log1+ε

k
1
t

)
,

where β > 0, ε > 0, and k ≥ 1, are {1}-admissible.
The key step in applying Theorem 2.1 is to find a proper admissible

function. The following result is an attempt to give sufficient conditions
under which such a function always exists. A prototype of the function ϕ
which is considered below is ϕ(t) = tα, α ≥ 2.

Proposition 2.2. Let ϕ : [0, 2] → [0,∞) be an increasing continuously
differentiable function with ϕ(0) = 0, ϕ(t) > 0 for t > 0, and such that
tϕ′(t)/ϕ(t) is increasing, and ϕ′(t)/t is bounded on (0, 2]. Then ϕ is E-
admissible for every Carleson set E.

Proof. Since ϕ′(t)/t is bounded, we have ϕ(0) = ϕ′(0) = 0 and also
ϕ(t) ≤ Ct2. Hence, S(E,ϕ) < ∞. Since E is a Carleson set, by a well-
known result of Carleson [Car1], there is an outer function g ∈ A1(D) which
vanishes on E. In particular, we have

|g(ζ)| ≤ C dist(ζ, E) (ζ ∈ T).

Multiplying g by a proper constant, without loss of generality, we may as-
sume that C = a ∈ (0, 1). Hence,

ϕ(|g(ζ)|) ≤ ϕ(a dist(ζ, E)) (ζ ∈ T).

Since tϕ′(t)/ϕ(t) and ϕ(t)ϕ′(t)/t are both bounded on (0, 2], it follows that,
for almost every ζ1, ζ2 ∈ T,∣∣logϕ(|g(ζ1)|)− logϕ(|g(ζ2)|)

∣∣ ≤ C∣∣log |g(ζ1)| − log |g(ζ2)|
∣∣,(2.5) ∣∣ϕ(|g(ζ1)|)− ϕ(|g(ζ2)|)

∣∣ ≤ C∣∣|g(ζ1)|2 − |g(ζ2)|2
∣∣,(2.6)

where C is a positive constant. On the other hand, since tϕ′(t)/ϕ(t) is in-
creasing, logϕ(t) is a convex function of log t. Hence, Jensen’s inequality
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together with the fact that log |g| is integrable implies that

1
2π

�

T
logϕ(|g(ζ)|) |dζ| ≥ logϕ

(
exp
{

1
2π

�

T
log |g(ζ)| |dζ|

})
> −∞.

Let f be the outer function such that |f(ζ)|2 = ϕ(|g(ζ)|), ζ ∈ T. Clearly,
f ∈ H2(T). Furthermore, by Carleson’s formula [Car3] and by (2.5)
and (2.6),

D(f) =
�

T

�

T

(log |f(ζ1)| − log |f(ζ2)|)(|f(ζ1)|2 − |f(ζ2)|2)
|ζ1 − ζ2|2

|dζ1| |dζ2|
4π2

≤ CD(g) <∞.

Therefore, f ∈ D.

Since Proposition 2.2 gives us an E-admissible function for any Carleson
set E, we can apply Theorem 2.1 to get a more practical way to obtain zero
sets for D. More precisely, every Blaschke sequence (zn)n≥1 satisfying

∞∑
n=1

ϕ(dist(zn, E)) <∞,

where E is a Carleson set and ϕ fulfills the conditions of Proposition 2.2, is
a zero set for D. In particular, if a Blaschke sequence (zn)n≥1 is such that

(2.7)
∞∑
n=1

dist(zn, E)α <∞

for some α > 0, then (zn)n≥1 is a zero set for D. A partial converse to this
last result will be discussed in the next section (Theorem 3.2).

Let us make a trivial, but useful, remark about the condition (2.7). For
a fixed α > 0, let Zα denote the family of all sequences which satisfy (2.7).
Then the chain (Zα)α>0 is increasing, i.e.

α ≤ β ⇒ Zα ⊂ Zβ.

Therefore, if (2.7) holds for some α, then it certainly holds for all β ≥ α, and
thus, without loss of generality, we can assume that α ≥ 2 and then apply
Proposition 2.2. Generally speaking, to prove any result whose hypothesis
is (2.7) with α > α0, we can assume that α is as large as we wish, and by
decreasing the value of α0 we do not increase the scope of result.

3. More on Carleson sets. In this section we will show that the prop-
erty that every Blaschke sequence (zn)n≥1 satisfying (2.7), with some α ≥ 1,
be a zero set for D is characteristic of Carleson sets E. We further conjecture
that this is true for all values of α > 0.
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It has already been proved by Nelson that if E is a Carleson set and
if (zn)n≥1 is a Blaschke sequence satisfying (2.7), then (zn)n≥1 is even a
zero set for A∞ [Ne, Theorem 1.3]. So, nothing new could be gained out
of Theorem 2.1 if one just considers the case of power functions ϕ(t) = tα,
α > 0.

Nelson’s proof goes as follows. In the first place, he shows, by using
delicate results of Caughran [Cau2, Theorem 2] and Novinger [No, Theo-
rem 4.3], that a Blaschke sequence (rneiθn)n≥1 ⊂ D is a zero set for A∞ if
and only if {eiθn : n ≥ 1} is a Carleson set [Ne, Theorem 1.2]. Armed with
this characterization, Nelson then completes his proof of [Ne, Theorem 1.3]
by showing that if (2.7) is satisfied by a Blaschke sequence (rneiθn)n≥1, then
{eiθn : n ≥ 1} is a Carleson set, and thus it has to be a zero set for A∞.

The following lemma slightly generalizes this last result of Nelson implic-
itly proved in the course of the proof of [Ne, Theorem 1.3], where he only
considers power functions ϕ(t) = tα, α ≥ 1. At the same time, our proof is
considerably shorter.

Lemma 3.1. Let ϕ : [0, 2]→ [0,∞), with ϕ(0) = 0, be a strictly increas-
ing continuously differentiable function such that

(i) lim sup
t→0+

tϕ′(t)
ϕ(t)

<∞,

(ii) lim inf
t→0+

logϕ(t)
log t

> 0.

Let E be a Carleson set and let (eiθn)n≥1 be a sequence on the unit circle T
such that

∞∑
n=1

ϕ(d(eiθn , E)) <∞.

Then {eiθn : n ≥ 1} is also a Carleson set.

Proof. We shall show that F = E∪{eiθn : n ≥ 1} is a Carleson set. Take
the integer k ≥ 1 such that

ϕ′(t)
ϕ(t)

≤ k

t
and ϕk(t) ≤ t (t ∈ (0, 2]).

Since we can divide and multiply the left side of the first equation by ϕk−1,
and the assumptions of the lemma hold clearly for ϕk, without loss of gen-
erality, we assume that k = 1, and ϕ satisfies

ϕ′(t)
ϕ(t)

≤ c

t
and ϕ(t) ≤ t (t ∈ (0, 2]),

where c ≥ 1 is a constant.
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Write ψ = ϕ−1. For t ∈ (0, 1], we have

Ft ⊂ E2t ∪
⋃

d(eiθn ,E)>t

[θn − t, θn + t] ⊂ E2ψ(t) ∪
⋃

d(eiθn ,E)>ψ(t)

[θn − t, θn + t].

Let

Nt = Card{n : ϕ(d(eiθn , E)) > t} = Card{n : d(eiθn , E) > ψ(t)}.
Hence , by assumption,

∞�

0

Nt dt =
∞∑
n=1

ϕ(d(eiθn , E)) <∞.

It now follows that
�

0

|Ft|
t
dt ≤

�

0

|E2ψ(t)|
t

dt+ 2
�

0

Nt dt =
�

0

|E2t|
ϕ(t)

ϕ′(t) dt+ 2
�

0

Nt dt

≤ c
�

0

|E2t|
t

dt+ 2
�

0

Nt dt <∞.

Therefore, F is a Carleson set.

Combined with [Ne, Theorem 1.2], Lemma 3.1 leads to the following
generalization of [Ne, Theorem 1.3]: If ϕ and E satisfy the hypotheses of
Lemma 3.1, then every Blaschke sequence (rneiθn)n≥1 satisfying

∞∑
n=1

ϕ(d(eiθn , E)) <∞

is a zero set for A∞. It is natural to ask whether the assumption on E could
be somehow weakened. The following result establishes a partial solution
to this problem in the case when ϕ(t) = tα, α ≥ 1. Note that due to the
inequalities

dist(eiθ, E)/2 ≤ dist(reiθ, E) ≤ (1− r) + dist(eiθ, E),

where reiθ∈D and E is a closed subset of T, the assumptions
∑

ndist(zn, E)α

< ∞ and
∑

n dist(eiθn , E)α < ∞ are interchangeable if α ≥ 1 and (zn)n≥1

is a Blaschke sequence.
We will also need the notion of Blaschke sets [B]. A set A ⊂ D is called

a Blaschke set for D if every Blaschke sequence in A is a zero set for D.

Theorem 3.2. Let α ≥ 1 and let E be a closed subset of T. Then the
following are equivalent:

(i) Every Blaschke sequence (zn)n≥1 satisfying
∞∑
n=1

dist(zn, E)α <∞

is a zero set for A∞.
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(ii) Every Blaschke sequence (zn)n≥1 satisfying
∞∑
n=1

dist(zn, E)α <∞

is a zero set for D.
(iii) E is a Carleson set.

Proof. The implication (i)⇒(ii) is trivial. That (iii)⇒(i) is Nelson’s re-
sult [Ne, Theorem 1.3]. So it remains to show that (ii)⇒(iii). To do so,
put

S = {reiθ ∈ D : 0 ≤ r < 1, eiθ ∈ E}
and let zn, n ≥ 1, be a Blaschke sequence in S. Since

∞∑
n=1

dist(zn, E)α ≤
∞∑
n=1

1− rn <∞,

it follows that (zn)n≥1 is a zero set for D. Therefore, by definition, S is a
Blaschke set for D and so by Bogdan’s theorem [B, Theorem 1],�

T
log dist(ζ, S) |dζ| > −∞.

In particular, E = S ∩ T is a Carleson set.

Remark 3.3. The equivalence (i)⇔(iii) above is in fact valid for every
α > 0. To see this, just note that zero sets of A∞ functions can only ac-
cumulate on Carleson sets on the unit circle. We also conjecture that the
equivalence (ii)⇔(iii) holds even when 0 < α < 1, but we have been unable
to verify this.
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