STUDIA MATHEMATICA 198 (2) (2010)

On L;-subspaces of holomorphic functions
by

ANAHIT HARUTYUNYAN (Yerevan) and WOLFGANG LUSKY (Paderborn)

Abstract. We study the spaces
R 27
H,(2)= {f : 2 — C holomorphic : S S |f(re'®)| do du(r) < oo}
00

where (2 is a disc with radius R and p is a given probability measure on [0, R[. We show
that, depending on p, H,(£2) is either isomorphic to l; or to (32 @An) . Here Ay is the
space of all polynomials of degree < n endowed with the Li-norm on the unit sphere.

1. Introduction. Let R>0and 2 =R-D={z€ C:|z| <R}, or 2=
C and R = oo. We want to study Banach spaces of holomorphic functions
endowed with a norm {, |f(2)|dv(2) where v is a given bounded positive
measure on {2. In the present note we consider the case dv(re'¥) = dpdu(r)
where p is a given bounded positive measure on [0, R[. We put

2w R
Mi(for) = o= S UFGe ) dg, 1 F = | M (S ) dutr)
0 0

and
H, =H,(£2) ={f : 2 — C holomorphic : || f||,, < oo}.

Recall that Mi(f,r) is increasing in r if f is holomorphic. It is easily seen
that H,, is a Banach space. We can assume without loss of generality that

(1.1) p([r,R[) >0 for any r < R.

(Otherwise we restrict our functions to pD where p = sup{7 : u([r,7[) > 0
for all » < 7} and put R = p.) Moreover we assume

R
(1.2) S r"du(r) < oo for any n > 0.
0
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Certainly (1.2) is automatically satisfied if R < co. But in the case of entire
functions, without (1.2), H, might be finite-dimensional.

We easily see that the polynomials are dense in H,,. Indeed, fix f € H,.
Let o, f be the nth Cesaro mean of f (see Section 4 below for definition).
Then o, f — f pointwise as n — oo, and M (o, f,r) < Mi(f,r) for all n.
Moreover o, f is a polynomial. The dominated convergence theorem implies
lim,, o0 ||Unf - f“u =0.

EXAMPLES. (i) 2 = D: duy = rdr. Hy, is the classical Djrbashian or
Bergman space ([2, [3]). It is known to be isomorphic to {; ([10, 5]). Even if
we consider dus = (1 — r)arﬁdr for some av > 0 and 3 > 0 we have H,, ~ [
(see e.g. [I]; “~ 7 means “is isomorphic t0”). Furthermore consider

dr > 1
dpiz = f L du=S ——— 6, o
M= A log (e/(1—r)) O oomen=5h dm ;k(kﬂ) 12k

(0q is the Dirac measure at a). It was shown in [7] that in both cases H, is
not isomorphic to ;.

(ii) £2 = C: Consider dus = e "dr and dug = e~ log’r gy, 15 was investi-
gated e.g. in [4]. There it was shown that H,, ~ l; (see Section 2).

We want to give a complete isomorphic classification of the Banach spaces
H,,(£2). To this end let A,, be the space of all polynomials of degree < n
endowed with the norm M (-, 1).

1.1. THEOREM. Each H,, is isomorphic to either Iy or (307 ®An)(1)-

Theorem 1.1 is an extension of [§] where a similar result was shown only
for measures on [0, 1] under additional rather restrictive assumptions on
excluding many examples. To decide to which isomorphism class a given
space H,, belongs we focus on purely non-atomic measures p. This is no
restriction since we have

1.2. PROPOSITION. Let p be any probability measure on [0, R and e > 0.
Then there is a purely non-atomic bounded measure py on [0, R[ such that
H,=H,, and

=l <M llwo < Nfllws f € Hpe

Let us assume now that p is purely non-atomic. Fix b > 5. Then we use
induction to define 0 < m; < mo < --- and 0 < 51 < 81 < --- < R as
follows. Put my = 0. If we already have m,,, consider s,, with

Sn, R
(1.3) S " dp = b S ™ dpy.

0 Sn,



L1 -subspaces of holomorphic functions 159

Then find my41 > m, with

Sn, R
(1.4) S et dy = S et dp.
0 Sn,

It is easily seen that lim,, o s, = R and lim,,_.o, m,, = co. We have

1.3. THEOREM. There are c; >0, c2 > 0 and t,, 3, > 0 such that

[e’e} Sn Mn—1 R Mp+1
alfles S anss) (J(5) " as T (5) T du) <alsl,
el n n

0 Sn

for all f € H,, where T,(> 72, ap2t) = Zmnf1sk<mn+1 aktnykzk,

Moreover:

1.4. THEOREM. H, ~ Iy if and only if there are o, 3,y > 0 such that,
for each n,

(1.5) a< ———— < B or mpr1—Mmp—1<7.
Mmp — Mp—1

The paper is organized as follows. In Section 2 we discuss the two ex-
amples on C that we already mentioned, and compute explicitly the in-
dices my. In Section 3 we prove Proposition 1.2 while in Section 4 we collect
a few technical lemmas. Then we prove Theorem 1.3 in Section 5. Section 6
is dedicated to the proofs of Theorems 1.1, 1.4 and 1.5 (below).

Our results have many similarities with the isomorphic classification of
weighted sup-norm spaces of holomorphic functions ([9]). However, they can-
not be inferred directly from those results via duality. This follows e.g. from
[11, Theorem 2| which states that, if H, with a “weighting” measure y is the
dual of a weighted sup-norm space, then H,, is complemented in an L;-space.

Finally, we note that the isomorphic classification for the spaces

R2m
Hy,, = {f : £2 — C holomorphic : S S | f(re?)|P dy du(r) < oo}
00
is much easier if 1 < p < co.

1.5. THEOREM. If1 < p < oo then H,, is always isomorphic to l,.

For the proof see end of Section 6.

2. Two examples. Here we construct explicitly the indices m,, men-
tioned in Theorem 1.3 and 1.4 for two examples.

(a) Put du(r) = exp(—log? r)dr. Then, using the substitution
r = exp(s/V2 + (m +1)/2),

for any x > 0 and m > 0 we obtain
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x (m+1)2/4 (log z—(m+1)/2)V2
Srme_ log?rg. — &
O ﬂ
In particular, {° r™ exp(— log?r) dr = /mexp((m+1)?/4). Using the tables
of the normal distribution ([I]) we get, for fixed m,, and s,, = exp(1.3/v/2 +
(mn +1)/2),

Sn

S pmn e 108% T g T emnt?/4 Ghere ¢ >0.9.

e=5/2 ds.

—00

0
Hence
Sn o0
S L Ty S pmne= 108" g where b = %, ie.b>9.
0 Sn
Now if
(2.1) Mpg1 = My +V2-1.3

we have exp(1.3/v/2 + (my +1)/2) = exp((my41 + 1)/2). Hence

Sn (m +1)2/4 0

a2 e\"Mn+1 2
S FMntle log T dr = \/» S e~5 /2dS
0 2 —00

[e.o]

\/> mn+1+1 /4 — S rmn+1eflog2r dr
72 .

Sn

Now (2.1) tells us that the assumptions of Theorem 1.4 are satisfied. Hence
H, ~ li. Moreover, since sup,,(Mp4+1 — my) < oo the “summands” in the
equivalent norm in Theorem 1.3 have uniformly bounded length. This cannot
happen for any measure on [0, R[ if R < oo (see Proposition 2.1).

(b) We next consider the measure du(r) = exp(—r)dr on [0, cc[. Here

[e.e]

S r"exp(—r)dr=I(m+1)

0
is the gamma function. Using the substitution ¢ = 2r we obtain, for any
x>0, {;rmexp(—r)dr = 271 ng t™ exp(—t/2) dt, which is the distribu-
tion function (up to the factor I'(m+1)"1) of a x2-distribution. A well-known
limit theorem (|1, 26.4.11]) tells us that

2x (z—m—1)/v/m+1

N N S L e\
Tgnoo<2m+1p(m+ )St dt)(m SOO e dt)] =1.

So, if s, = 1.3v/m,, + 1 +m,, + 1 we have (s, —m,, —1)/v/m, +1 = 1.3 and

§or 7™ exp(—r) dr ~ cI'(my + 1) where ¢ > 0.9. Hence (" r™ exp(—r) dr ~

b Szj r™n exp(—r) dr where b > 9 if n is large enough. If we put
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(2.2) Mpr1 =My + 1.3vVm, +1

then

Sn 0

S Pt o e o F(anrl + 1) S 6—t2/2 dt — F(anZrl + 1) )

0 V21 —00
Thus {§" 7™+t exp(—r)dr ~ (7 r™ntexp(—r)dr. Using this and (2.2),
Theorem 1.4 again shows that H, ~ [;.

Next we prove that for R < oo the length of the summands in Theorem
1.3 necessarily tends to oo.

2.1. PROPOSITION. Let p be a purely non-atomic probability measure
on [0, R[ where R < oo. Fiz b > 1 and, for any m > 0, pick t,, with

m . Mm R m
Sé r™dp = by, ™ dpy.
(a) For any a with 0 < a < R we have
tm m
lim u =
m—oo Stam rm du
(b) Ifn=n(m) is such that Sg’” rdu= an ™ dp then limy, oo (n(m)—m)
= 0.
Proof. (a) First we observe
Sg’" ™ du _ §o(r/a)™dp + Szm (r/a)™du
Si’" ™ dy Sflm (r/a)™du
Clearly, limy, o0 §o(r/a)™ dp = 0 and limp, oo SZm (r/a)™du = oo since
lim;;, o0 t, = R. This proves (a).

(b) Assume that there are a constant ¢ > 0 and, for all £, numbers my > k
with n(mg) —mg < ¢. Fix a < R and € > 0 such that (b —¢)(a/R)¢ > 1.
Let k be large enough and pick t = t,,,, n = n(my) such that SZ ™ dy >
(b —e) Sf ™ dp and SZ r™du # 0. This is possible in view of (a). Since
n > my we obtain
t r\" a ct o\ a\© R -\ Mk
() w2 (7) $(&) = (5) e-0f(5) o

a
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3. Approximation by purely non-atomic measures. First we show
3.1. LEMMA. Let 0 <r <sand 0 <m <n.

(a) If f(z) = Zm<k§n,k€Z akzk then Ml(far) S (T/S)li(.ﬂ 3)-
(b) If g(2) = Zogkgn,kez apzF then Mi(g,s) < (s/r)"Mi(g,7).
Proof. (a) Put h(z) = X o<k<n_fm]-1,kez Ot [m] 412" where [m] is the
largest integer < m. Then f(z) = z™*1h(2) and
My (f7 T) = T[m}JrlMl(h’ T) < T[m]JrlMl (ha S) = (T/S)[m]+1M1(fu S)
< (r/s)"Mi(f, ).
(b) Put hy(2) = g(1/2) and ha(z) = 2l"g(1/2). Then
Mi(g,5) = Mi(h,1/5) = s" My (o, 1/5)
< s My (ho, 1/7) = (s/m) My (R, 1/7)
= (s/r)"IMi(g,7) < (s/r)"Mi(g, 7). =
3.2. LEMMA. Let f(2) =Y 1o ax2® € H,,.
(a) loels*1a([s, R]) < |l for any k and 5 € [0, R,
(b) For any o € [0, R[, ng > 0 and € > 0 there is n > ng (independent
of f) such that Mi(f — fn,7) < €|[fllp if 7 < 10 where fr(z) =
POHIYCTELS

(¢) For anyrg €]0, R[ and any € > 0 there is r1 < 1¢, independent of f,
such that ro — r1 < € and

(1= M (Fyr0) = el <~ | Ma(for) dr < D (.m0

1
Proof. (a) Clearly we have |ay|s® < Mi(f,s). Hence

R
Jakls*u(ls, RI) < | Mu(f,r) dpa < | fl] e

s

(b) Fix s with rg < s < R. Let n > ng be such that

Then, for any r < rg,

0 k
Ml(f—fmr) < M1(f—fn,7“o) < Z ‘ak‘8k<20>

k=n+1

: <0>+< )ttty < Al
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(¢) The second inequality is trivial. To prove the first inequality we use
(b) to obtain, for any § > 0, some n with

Mi(fasr) = 0\ fllp < Ma(for) < Ma(frr) + 0| fll i 7 < 1o

Hence, if 71 < ro then, by Lemma 3.1(b),

0 o

] 1
N _
ro — 11 ,Sl My (f,r)dr > T — 71 ,Sl Mi(fo,r) dr = | fl,
70 n
s Mlfr) | <> dr — 8| £l
o —"T1 70

T1

!

<7~0> Mi(fu, o) — O11 £l

> (2) o= (14 (2) )l

Now put 6 = €/2 and take r; so close to rg that (r1/rg)* >1—¢€. n

v

3.3. Proof of Proposition 1.2. Split u into p = v 4 p1 where v is purely
non-atomic and g1 = Y, axds, for some positive oy with >, o < 1 and
some s, with 0 < s, < R. Fix e > 0 and let 0 < ¢ < ¢ be such that
1—2¢ >1—¢€. Find r; < s, with

Sk

S Ml(f,’l”) dr < Ml(fa Sk)v

Tk

(1= €YM(f, sk) — €| fllp < Sk — %

which is possible according to Lemma 3.2. Put

Qg
dpo =dv+ s s dr
k

Then we obtain (1 — 2€)||fllx < | fllu < [If||, for all f € H,,. This implies
Proposition 1.2. =

4. Classical convolution operators. For a harmonic function f : 2 —
C with f(re'?) => 1z apr®e* % and n > m > 0 let

(4.1) (onf)(re?) = 3 ["][;]‘k'akrlkleikw

|k|<n,keZ

and
[n]onf — [monf

[n] = [m]

Vomf = if [m] < [n].
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Hence
<4~2) (Vn,mf)(rew)

=Y apeter S [n] — |K| ¥l ek
|k|<m, keZ m<|k|<n, kEZ [n] — m]

(4.2) also makes sense if [m] = [n]. Then V,,,, is a Dirichlet projection.
Finally put (Rf)(2) = 3 <), arz®.

In the following lemma fix 7 > 0 and let ||T|| be the norm of a bounded
operator on the space of all harmonic functions f with My(f,r) < oo (en-
dowed with the norm M;(-,r)).

4.1. LEMMA. We have
[n] + [m]
[n] — [m]
(b) My(Rh,r) < |1+ [n][;l][mng(h,r) for any r > 0 and h €

span{r!®l exp(iky) : k € Z, m < |k| < n}.

[n4] — [n1] [n4] — [n1]\
) Waurs ~Voum < 4( oy =1} ) (3 + 4=y ) 70 < <
ng < ng < ng.

() [Vasns=Vagn | < 2([na]=[na]) and [[R(Voy g = Vg )| < [na]=[na].
foranyng, k=1,...,4, with 0 <n; <ne < ng < ny.

(a) HVn,mH <

The proof is literally the same as the proof of [9, 3.3. Lemma].
In the following lemma we restrict the preceding operators to holomorphic
functions.

4.2. LEMMA. Fixb>0,c>1/band0<m <n, 0<s < R such that

s R R s
(4.3) Srmduzbgrmdu and Sr”d,uchr”d,u
0 s s 0
(a) Consider f(2) = 3 g<k<m. kez ap2® and g(z) = > k>n keZ apz®. Then
b+1 . : .
| fll. < 2 \f+gllp with ¢y =min(c, 1), ca =min(1/c,1).
C1 — C2
(b) We have

b+1
C1 — Co

[Vimbllp < <181 ; + 88) |kl for all h € Hy,.

Proof. (a) For s < r we have My(f,r) < (r/s)™M;(f,s) according to
Lemma 3.1. Then (4.3) implies
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R

Hence SORM1(f,7“) dp < (1+1/b) §

c§M1<g,r> dn < cM1<g,s>§ (Z)ndu < M1<g,s>g (Z)Hdu

< ]ng(g,r)(j)n(:)ndu - §M1<g,r> dn.

1(f,7r) dp. Similarly we obtain

This implies

R s R
{MU(f+g.r)dpn > et \Ma(f + gor)dp+ e | Mi(f +g,7) dps
0 0 s
s s R R
> ey \ My(f,r)dp— e \ My(g,r) dpu+ ca | Mi(g,r) dp— s |
0 0

Ml(f,T') dp

S S
g be —cR
_<01—>SM1 "> LI
0

> = (S)Ml(f,r)dp.
This proves (a).

(b) If [n] > 2[m] then ||Vim|l < ([n] + [m])([n] — [m])~! < 3 in view of
Lemma 4.1.

Now let [n] < 2[m], i.e. 2[m] — [n] > 0. Put

oo
= ZOéka, f(Z) = Z akzk7 g(Z) = Zakzk-
k=0 k<m k>n
Moreover, let T' = Vap—mn — Vinom—n and S =V, , T In view of (4.2) this
means S = Vi m — Vin2m—n. Lemma 4.1 implies ||T']| < 180 and ||.S]| < 88
Finally, put f = (id—

(id—=T)f and g = (id—T)g. Then we obtain h = f+g+Th
Vamf = f and V,, ;g = 0. Now (a) yields

Vamhlly = 1f +Shlly < £l + 1Sk,

b+1
< g IF + gl + 1S

C1 —

b—l— b+1

Th Shll,+——||Th
< oo 1 + 9+ Thl+ 1Bl + 5 [Thll
b+1

< (181 .
< < 8 b61_62+88>||h|]u .
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4.3. LEMMA. Let 0 <m <n <p and f(2) =3, <r<p kez agzk. Then
My(Vpnf,r) <2Mi(f,r) and Mi(Vomf,r) < Mi(f,r)
for any r > 0.
Proof. Let (U;f)(re'?) = Y% f(re*#). Then we have
Vo = Um0 m)U~fm).f - and Vo f = Upj(id = opp) ) U f-

This implies Lemma 4.3 since the Cesaro means as well as the operators U;
are all contractive. m

5. Proof of Theorem 1.3. We need a few lemmas.

5.1. LEMMA. Let 0 <m <mn and s € [0, R[. Assume there is ¢ > 0 with

s R R s

Srmdugcxrmd,u and Sr”duﬁc&r”du.

0 s s 0
Then, for any f(z) = ngkgmkez a2k, we have

i< (§ (;“)mdmg (2) @) (s < el

0
Proof. Using Lemma 3.1 we get

[ (o) e < A, 9§ (Z)mdwg (2) )

0

5.2. LEMMA. Fizb>1and0<c<b. Let0<m<nandd<s<t< R

be such that
R t R

§rmd,u§c8rmd,u and Sr"duzbgr”du-
0 E 0 t

Then, for any f(z) = 3, <k<n ez apz®, we have

t
I < 0 (5250 ) D) du
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Proof. First we obtain

Mor(;c)ver t L
§M1(fﬂ“) dp < §M1<f, r)dp+ Mi(f,1) § <t> d
SEMl(f,r)dqu 1(bf’t)§<:>ndu
< <1+i>SM1(f’T)d”+ Ml(bf’t)g(:;)ndu
(o i ST
< <1+11)>SM1( ,r)du+M1g’S)§)<Z>mdﬂ
< <1+ll))EMl(f,r)du%—ch(éf’s)E(:)md,u

This implies
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and hence

b+c+1

e < @+ o (S fancr

—C

5.3. LEMMA. Letb>1,0<m<n, 0<s<t< R and assume that

S R s R ¢ R
Vrmdp <o\ dp, Nt dp =Nty {rtdp=b " dp.
0 S 0 s 0 t

Then there is N = N (b) with SE ™ dp < 3Vb Sf r"™du; N does not depend
onm,n, s, t.

Proof. For j =0,1,..., put b; = 3/b, ¢; = (2b;)~*. Moreover put ty = s.
Find ty < t1 <ty < --- with

t; ti—1
(5.1) S rdp =c;_, S r" du.
ti—1 0
We actually take
u tj—1
tj = sup {u >t S rdp = cj_1 S r" d,u}.
tj—l 0
Then we claim
tj R
(5.2) S rmdu < 37b S r™ du.
0 t;

J

We prove (5.2) by induction. (5.2) is clear if j = 0. Assume it holds for
some j. Then we obtain

tj+1 r m tj+1 r n j r n
| (5) = ) (5) ol (5) o
t. J t. J J

J J 0

Hence
tjt1 tj R
S r™dp < ¢ S r™dp < bjc; ST du
t] 0 t;
R ti1
m ]' m
= S " dp + B S r"du
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This implies Si?“ r™du < Sfﬂ r™ dy and
J J

tit1 tj tj+1
S rmdu§Sdeu+ S r'"™du
0 0 t;
R ti+1
<3]b8rmd,u—|— S r™du
t] t]
R tit1
=3b S ™ dp 4 (37 4 1) S "™ du
i+l t
R R
<(2-3b+1) S ™ dp < 3 S r™ dp.
tit1 tj+1

We claim that there is N, depending only on b, such that ¢tx > ¢, which
proves the lemma in view of (5.2). Indeed, (5.1) implies
¢

tj+1 t; tit1 ;
S T”du=§r"du+ S TndN:(Cj+1)ST”du
tj—1 J s
= (cj+D(eja+1) | rdp=-=][(e+1)§r" dp.
0 j=0 0
On the other hand we have
t R s
b 2b
Mdp =\ dp = m
Vot = gy Yt = e Ve

0 0
To prove the claim we need to show []224(c; +1) > 2b(b+ 1)~! since f(u) =
(§o ™ dp)(§o 7™ dp)~t is increasing. Indeed,
- 26+ 1\ (2-3b+1) (2-3°b+1 2b
4+1) = 220+ 1 .
[+ ( 2% >< 5-3b >< 5. 3% > SR

j=0

Conclusion of the proof of Theorem 1.3. Consider m, n, s, with (1.3)
and (1.4) for b > 5. Take a polynomial f € H,, and put

(5.3) Inf = (an+1,mn - an,mnﬂ)f-
Here take Vi, m_, = 0, i.e. T1 = Vipym, f. (Recall that only finitely many
summands are different from zero since f is a polynomial.)

Then we have f =) T, f. An application of Lemma 5.2 with s = s,,_2
and t = spi1 yields || Tofll, < di §;°7) My(T, f,7) dp for a universal con-
stant d; (independent of f and n). We claim that there is another universal
constant dy with
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(5.4) \ Mi(Tofr)du<dy | Mi(f,r)dp.

Sn—2 Sn—2

Then we conclude
Sn+1
(55) Il <D N Tufllu < di Y | Mi(Tuf,r)du
n n Sp—2
Sn+1 R
<didy» | Mi(f,r)dp < 3didy | My(f,7) dps.
n Sp—2 0

Now we apply Lemma 5.3 with s = 5,1 and { = s, to obtain SS” rMme=1dy <

Sn

3V an r™n=1dpu. Since we also have Si Pt dy = (" ™+t dy Lemma 5.1
implies

s R
n r Mp—1 r Mn41

ITuf e < (3 () dut | () du>M1(Tnf, 5n) < ds 1T f
0 n Sn n

for some universal constant d3. Since the polynomials are dense in H,, this
together with (5.5) proves Theorem 1.3.
It remains to show (5.4). To this end we apply Lemma 4.2 for the measure

dv =1, _, .., du. We prove
Snt1 sn
e
Sn Sn—
(5.6) o .
—5 S ™ dp < S ™ du.
Sn Sn—2

Then Vi, m, is uniformly bounded on H, since (b—1)*(2b+2)~! > 1 if
b>5.
Moreover we show
b N 1 Sn—1 Sn+41
S r’rdp < S r™ du,

n—2 Sn—1

bil
(5.7)

Sn+1 Sn—1
S rmrldpy < S r’r=t dp.

Sn—1 Sn—2

b—1
2

By Lemma 4.2, Vi, m,_, is uniformly bounded on H, since we have
(b—1)2(2b+2)"! > 1if b > 5. Hence T}, is uniformly bounded on H,,
which proves (5.4).

To show (5.6) we note that, by (1.4), {i" r™n+ dy =271 Sg rntl dp, and
by (1.3), g™ r™nttdp = b(b 4 1)1 S(}f r™Mnt1 dy. Hence
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Sn+1 R Sn
b—1 b—1
Mn+1 d — Mn41 d — Mn+1 d
) rmtdp = g Vet = e e dp
Sn 0 0
b—1 7
> — r’ntld
> s .
Sn—2
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Similarly we have SZ:_1 7™ dy = (b—1)(2b+2)~ ! SOR r"n dp and therefore

Sn41 R 1 Sn
S r’mndy < S r’ndy = 5 S ' dp
Sn Sn 0
Sn—1 Sn
1 1
0 Sn—1
R s
1 1 7
:%Srm dﬂ‘i‘g S ™ du
0 Sn—1
20 +1) 1\ T . e
= - ndpy < —— mn d
<2b(b—1) b> J rmrdps gy ) e
Sn—1 Sn—2
which shows (5.6).
To prove (5.7) we start with
Sn—1 Sn—1 R
m. m. 1 m.
S rrdu < S r"duzigr " du
Sn—2 0 0
1 2+2 b+1"
mdu < —— M dyy,.
=3 31 )T 1 ) Tk
Sn—1 Sn,1
Furthermore
Sn—1 R
b—1
Mn—1 d _ Mp—1 d
| AT )7 a
Sn—2 0
R 5n+1
b—1 b—
5 S pmn—1 d,u > 5 S pmn—1 dﬂa
Sn—1 Sn—1

which completes the proof of (5.7). =

6. Final proofs. Now we consider sequences (m,) and (s,) satisfying
(1.3) and (1.4) for some b > 5. Let T}, be as in Theorem 1.3 (see (5.3)). Using

(4.2) we see that
T,f=0 if f€span{z": [k| <mn_q or [k| > muy1}.
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In particular
(6.1) TaTw =0if [n—n/| >2, To(Tp_1 + T+ Tpy1) = T}, for all .
Put X = (3, ®An)(1)- In [8] it was shown that

(6.2) X~ (XOXD..)ay~ <Z€BAM)(1) if supy nx = oc.
k

Moreover put

Sn r Mp—1 R r Mn+41

n on
Let B, = span{zF : m, 1 < k < mus1} be endowed with the norm
Ml('wsn)an-

For any function h and s > 0 put hs(z) = h(sz). If 0 < m < n,
f(2) = Xo<k<n—m] a2 and g(z) = 2™ f(2) then we have s M (f,,1) =
Mi (g, s). This implies that A
phic.

1] —[mn_1) and By are isometrically isomor-

6.1. PROPOSITION.

(a) H, is isomorphic to a complemented subspace of (3, ©An)()-
(b) If (my,) satisfies (1.5) then H, is isomorphic to a complemented sub-
space of 1.
Proof. (a) It suffices to show that H), is isomorphic to a complemented
subspace of (3, ®By)(1)-
Define Sf = (T, f), f € H,. Then S is an isomorphism into (3, ©Bn)q)
according to Theorem 1.3. For (gn) € (3_, ®Bn)1) put

Ay — a
P(gn) = < T, (Zl In—1+gn + Z+1 gn+1>>-

n n

Then Lemma 4.3 tells us that P is well-defined and bounded. (Recall that
Vinnst,mnlBar = idp,_, and Vi .1 |B,,, = 0.) Using (6.1) we see that P
is a projection onto SH,.

(b) Let L,, be the completion of {f : f a trigonometric polynomial} with
respect to M (+, sp)a,. Then L, is an Li-space which contains B,,. All B,, are
finite-dimensional. Hence we find finite-dimensional spaces C,, D B,, consist-
ing of trigonometric polynomials, where Cy, C L,,, such that sup,, d(C, lcliim C")
< co. Here d(X1, Xo)=inf{||T|| - |T~Y|:T: X1 — X3 an onto-isomorphism}
is the Banach-Mazur distance. Then clearly (}_, ®©Cp)y ~ l1. By defini-
tion all V}, ;, are well-defined on the C}, (see (4.2)) and the norm estimates
of Lemma 4.1 hold for M;(-, s,)ay instead of Mi(-,r). So the operators T,
are well-defined on all Cj. Again (6.1) holds.
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For (hy) € (32, ®Cn)q) put

Q(hy) = (RTn <an1 Bt + hp + 221 hn+1)>'

n an

(Recall R is the Riesz projection.) By (1.5), according to Lemma 4.1, the
operators R1T,, are uniformly bounded. Indeed, for any r > 0 we have

My (RT,h,7) < <1 4 [t = n F 0 = m"_1>M1(Tnh, r)
Mp—1
< <1 (B + ) W)Ml(Tnh, )
n—1

< (1+ B+ B*)My(Tyh, )
unless my41 —mp—1 < v or my —mpu—o < 7. In the latter cases we get similar
estimates. In any case we obtain
Mi(RTh,r) < max((1+ 5+ 5%), (1+ (8 + 1)7)) Mi(Tuh, 7).
Hence in view of (6.1), @ is a well-defined bounded projection onto SH,,. =
We need another lemma.
6.2. LEMMA.

(a) Fiz p,q € Zy+ and let N = {p+ jq : j € Z} N Z4. For f(z) =
Sort ooz put (Pnf)(2) =3 jen axz™. Then My(Py f,r) <M (f,r
for any r > 0.
(b) Let ni,ne € Zy and m < min(ni,ng). Then there is an isometry
it Am — (An, ©Any) (1) and a projection Q = (Ap, © Any) (1) — i(Am)
with [|Q] <2 and Q(27,0) =0 = Q(0,27) for all j > m.
(c) Let ni,ng € Zy and m < min(ni,ng). Then there is an isometry
J Am — (An, ®Any) 1) and a projection P : (Ap, ©Any) 1) — 7(Am)
with || P|| < 2 and P(2!,0) = 0 = P(0,2") for all I < min(ny,ng)—m.
Proof. (a) The proof is the same as the proof of [9, Lemma 4.3].
(b) This is [8, Lemma 2.1].
(c) Let i and @ be as in (b). Let S : (An, © Any)1)y — (Any © Any)(1)
be the isometry with S(2!,2%) = (217! 2"2=%). Then put j = S o and
P=SQS ! =

Recall that if [n1 —ng| > 2 then (By, © By, ) (1) is isomorphic to a subspace
of H,. Indeed, take f € By, , k = 1,2. Then, by Lemmas 5.1 and 5.3,

(64) clek”M < Ml(fkysnk)ank < CQ”fk”lM k= ]-7 27

for universal constants cq, co. We have

Y Tulfi+ f2) = Toy 11+ Tuy fr + Doy i1 f1 + Trp1f2 + Tn fo + Tnyi1 fo
n
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in view of (6.1). Hence Theorem 1.3 implies
(6.5) dillfi + follu < Ml frllw + I f2llu < dallf1 + fall,

for universal constants dy, ds.

6.3. PROPOSITION. Assume that (my) does not satisfy (1.5). Then H,
contains a complemented subspace isomorphic to (3, ©An)(1)-

Proof. Case 1: There are 0 < nqy < ng < --- with
(Mg, — Min—1)k < M1 — My, and k< My, 1 — My —1

for all k. Put gx = [my, | — [mn,—1] and Ny = {[my, | + jar : j € Z} N Z.
Recall that in view of (4.2) we have

(6.6) P (T, + Togn) (D ")
k=0

= Z oejzj + Z aj’yjzj

(M, | <G <[mn +1] My +1<J<Mny 42
JENK JENK

for some 7;. Let p, = max{j € Ny : [my,] + jax < Mp,42} and pj, =
max{j € Ny : [mn, ] + jqx < [Mn,+1]}. Moreover let Sy, : (A4, @ Apk+1)( ) —
(Bny, © Buyyy)(1) be defined by

s = () () ) GG )

which is an isometry. Put I = min(p},p}_ ). Let i : A;, — (Ap, @ Apk+1)( 1)

be an isometry and Qy : (A, @ Apir) ) — i(Ay,) a projection with 1Qkll
< 2 and Qx(27,0) = 0 = Qx(0, 2%) if j < It (Lemma 6.2(b)). Then put, for
[ € H,,

Qk‘f = Sk@ksk_l(Tnkfv Tnk+1f) (Bnk S¥ Bnk+1)( 1)-

The latter space can be identified with a subspace of H,, (by (6.4) and (6.5)).
Taking (6.6) into account we see that Q) is a projection onto a space which
is isomorphic to A;,. Then Qf = >, Qorf is a bounded projection onto
a subspace of H,, which is isomorphic to (3, ®Ay,, )1). This proves the
proposition in Case 1 (in view of (6.2)).

Case 2: There are 0 < n; < ng < --- with

(Mngt1 — My )k <y — M1 and k<m0 — My —1-
Then proceed exactly as in Case 1 and use Lemma 6.2(c) instead of (b). =

Concluding remarks. If (1.5) is satisfied then H, is complemented
in /1, hence isomorphic to Iy ([6]). If (1.5) is not satisfied then, using Petczyn-
ski’s decomposition method, (6.2), Proposition 6.1(b) and Proposition 6.3
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we see that Hy, ~ (3, @A) The spaces A, are never uniformly com-
plemented in ly. Therefore (), ®A;)1) cannot be isomorphic to /3. This
finishes the proofs of Theorems 1.1 and 1.4.

For H, ,, 1 < p < oo, we proceed exactly as before. Here we can replace

Vi,m by the Dirichlet projections V;;, ,,, and use that Sgﬂ |(Vinm f) (re™?) [P dep
<c Sgﬂ | f(re?®)|P dyp where c is independent of r, m and f. Then we conclude
that H, , is always complemented in [, and hence isomorphic to [,.
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