On L_{1}-subspaces of holomorphic functions

by
Anahit Harutyunyan (Yerevan) and Wolfgang Lusky (Paderborn)

Abstract. We study the spaces

$$
H_{\mu}(\Omega)=\left\{f: \Omega \rightarrow \mathbb{C} \text { holomorphic }: \int_{0}^{R} \int_{0}^{2 \pi}\left|f\left(r e^{i \varphi}\right)\right| d \varphi d \mu(r)<\infty\right\}
$$

where Ω is a disc with radius R and μ is a given probability measure on $[0, R[$. We show that, depending on $\mu, H_{\mu}(\Omega)$ is either isomorphic to l_{1} or to $\left(\sum \oplus A_{n}\right)_{(1)}$. Here A_{n} is the space of all polynomials of degree $\leq n$ endowed with the L_{1}-norm on the unit sphere.

1. Introduction. Let $R>0$ and $\Omega=R \cdot \mathbb{D}=\{z \in \mathbb{C}:|z|<R\}$, or $\Omega=$ \mathbb{C} and $R=\infty$. We want to study Banach spaces of holomorphic functions endowed with a norm $\int_{\Omega}|f(z)| d \nu(z)$ where ν is a given bounded positive measure on Ω. In the present note we consider the case $d \nu\left(r e^{i \varphi}\right)=d \varphi d \mu(r)$ where μ is a given bounded positive measure on $[0, R[$. We put

$$
M_{1}(f, r)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \varphi}\right)\right| d \varphi, \quad\|f\|_{\mu}=\int_{0}^{R} M_{1}(f, r) d \mu(r)
$$

and

$$
H_{\mu}=H_{\mu}(\Omega)=\left\{f: \Omega \rightarrow \mathbb{C} \text { holomorphic }:\|f\|_{\mu}<\infty\right\}
$$

Recall that $M_{1}(f, r)$ is increasing in r if f is holomorphic. It is easily seen that H_{μ} is a Banach space. We can assume without loss of generality that

$$
\begin{equation*}
\mu([r, R[)>0 \quad \text { for any } r<R . \tag{1.1}
\end{equation*}
$$

(Otherwise we restrict our functions to $\rho \mathbb{D}$ where $\rho=\sup \{\tau: \mu([r, \tau[)>0$ for all $r<\tau\}$ and put $R=\rho$.) Moreover we assume

$$
\begin{equation*}
\int_{0}^{R} r^{n} d \mu(r)<\infty \quad \text { for any } n \geq 0 \tag{1.2}
\end{equation*}
$$

[^0]Certainly (1.2) is automatically satisfied if $R<\infty$. But in the case of entire functions, without (1.2), H_{μ} might be finite-dimensional.

We easily see that the polynomials are dense in H_{μ}. Indeed, fix $f \in H_{\mu}$. Let $\sigma_{n} f$ be the nth Cesàro mean of f (see Section 4 below for definition). Then $\sigma_{n} f \rightarrow f$ pointwise as $n \rightarrow \infty$, and $M_{1}\left(\sigma_{n} f, r\right) \leq M_{1}(f, r)$ for all n. Moreover $\sigma_{n} f$ is a polynomial. The dominated convergence theorem implies $\lim _{n \rightarrow \infty}\left\|\sigma_{n} f-f\right\|_{\mu}=0$.

Examples. (i) $\Omega=\mathbb{D}: d \mu_{1}=r d r . H_{\mu_{1}}$ is the classical Djrbashian or Bergman space ($[2,3]$). It is known to be isomorphic to $l_{1}([10, ~[5])$. Even if we consider $d \mu_{2}=(1-r)^{\alpha} r^{\beta} d r$ for some $\alpha \geq 0$ and $\beta \geq 0$ we have $H_{\mu_{2}} \sim l_{1}$ (see e.g. [11]; " \sim " means "is isomorphic to"). Furthermore consider

$$
d \mu_{3}=\frac{d r}{(1-r) \log ^{\gamma}(e /(1-r))} \quad \text { for some } \gamma>1, \quad d \mu_{4}=\sum_{k=1}^{\infty} \frac{1}{k(k+1)} \delta_{1-2^{-k}}
$$

(δ_{a} is the Dirac measure at a). It was shown in [7] that in both cases H_{μ} is not isomorphic to l_{1}.
(ii) $\Omega=\mathbb{C}$: Consider $d \mu_{5}=e^{-r} d r$ and $d \mu_{6}=e^{-\log ^{2} r} d r$. μ_{5} was investigated e.g. in [4]. There it was shown that $H_{\mu_{5}} \sim l_{1}$ (see Section 2).

We want to give a complete isomorphic classification of the Banach spaces $H_{\mu}(\Omega)$. To this end let A_{n} be the space of all polynomials of degree $\leq n$ endowed with the norm $M_{1}(\cdot, 1)$.
1.1. Theorem. Each H_{μ} is isomorphic to either l_{1} or $\left(\sum_{n=1}^{\infty} \oplus A_{n}\right)_{(1)}$.

Theorem 1.1 is an extension of 8 where a similar result was shown only for measures on $[0,1$ [under additional rather restrictive assumptions on μ excluding many examples. To decide to which isomorphism class a given space H_{μ} belongs we focus on purely non-atomic measures μ. This is no restriction since we have
1.2. Proposition. Let μ be any probability measure on $[0, R[$ and $\epsilon>0$. Then there is a purely non-atomic bounded measure μ_{0} on $[0, R[$ such that $H_{\mu}=H_{\mu_{0}}$ and

$$
(1-\epsilon)\|f\|_{\mu} \leq\|f\|_{\mu_{0}} \leq\|f\|_{\mu}, \quad f \in H_{\mu} .
$$

Let us assume now that μ is purely non-atomic. Fix $b \geq 5$. Then we use induction to define $0 \leq m_{1}<m_{2}<\cdots$ and $0 \leq s_{1}<s_{1}<\cdots<R$ as follows. Put $m_{1}=0$. If we already have m_{n}, consider s_{n} with

$$
\begin{equation*}
\int_{0}^{s_{n}} r^{m_{n}} d \mu=b \int_{s_{n}}^{R} r^{m_{n}} d \mu . \tag{1.3}
\end{equation*}
$$

Then find $m_{n+1}>m_{n}$ with

$$
\begin{equation*}
\int_{0}^{s_{n}} r^{m_{n+1}} d \mu=\int_{s_{n}}^{R} r^{m_{n+1}} d \mu \tag{1.4}
\end{equation*}
$$

It is easily seen that $\lim _{n \rightarrow \infty} s_{n}=R$ and $\lim _{n \rightarrow \infty} m_{n}=\infty$. We have
1.3. THEOREM. There are $c_{1}>0, c_{2}>0$ and $t_{n, k} \geq 0$ such that $c_{1}\|f\|_{\mu} \leq \sum_{n=1}^{\infty} M_{1}\left(T_{n} f, s_{n}\right)\left(\int_{0}^{s_{n}}\left(\frac{r}{s_{n}}\right)^{m_{n-1}} d \mu+\int_{s_{n}}^{R}\left(\frac{r}{s_{n}}\right)^{m_{n+1}} d \mu\right) \leq c_{2}\|f\|_{\mu}$ for all $f \in H_{\mu}$ where $T_{n}\left(\sum_{k=0}^{\infty} \alpha_{k} z^{k}\right)=\sum_{m_{n-1} \leq k<m_{n+1}} \alpha_{k} t_{n, k} z^{k}$.

Moreover:
1.4. Theorem. $H_{\mu} \sim l_{1}$ if and only if there are $\alpha, \beta, \gamma>0$ such that, for each n,

$$
\begin{equation*}
\alpha \leq \frac{m_{n+1}-m_{n}}{m_{n}-m_{n-1}} \leq \beta \quad \text { or } \quad m_{n+1}-m_{n-1} \leq \gamma \tag{1.5}
\end{equation*}
$$

The paper is organized as follows. In Section 2 we discuss the two examples on \mathbb{C} that we already mentioned, and compute explicitly the indices m_{n}. In Section 3 we prove Proposition 1.2 while in Section 4 we collect a few technical lemmas. Then we prove Theorem 1.3 in Section 5. Section 6 is dedicated to the proofs of Theorems 1.1, 1.4 and 1.5 (below).

Our results have many similarities with the isomorphic classification of weighted sup-norm spaces of holomorphic functions ([9]). However, they cannot be inferred directly from those results via duality. This follows e.g. from [11, Theorem 2] which states that, if H_{μ} with a "weighting" measure μ is the dual of a weighted sup-norm space, then H_{μ} is complemented in an L_{1}-space.

Finally, we note that the isomorphic classification for the spaces

$$
H_{p, \mu}=\left\{f: \Omega \rightarrow \mathbb{C} \text { holomorphic }: \int_{0}^{R} \int_{0}^{2 \pi}\left|f\left(r e^{i \varphi}\right)\right|^{p} d \varphi d \mu(r)<\infty\right\}
$$

is much easier if $1<p<\infty$.
1.5. THEOREM. If $1<p<\infty$ then $H_{p, \mu}$ is always isomorphic to l_{p}.

For the proof see end of Section 6.
2. Two examples. Here we construct explicitly the indices m_{n} mentioned in Theorem 1.3 and 1.4 for two examples.
(a) Put $d \mu(r)=\exp \left(-\log ^{2} r\right) d r$. Then, using the substitution

$$
r=\exp (s / \sqrt{2}+(m+1) / 2)
$$

for any $x \geq 0$ and $m \geq 0$ we obtain

$$
\int_{0}^{x} r^{m} e^{-\log ^{2} r} d r=\frac{e^{(m+1)^{2} / 4}}{\sqrt{2}} \int_{-\infty}^{(\log x-(m+1) / 2) \sqrt{2}} e^{-s^{2} / 2} d s
$$

In particular, $\int_{0}^{\infty} r^{m} \exp \left(-\log ^{2} r\right) d r=\sqrt{\pi} \exp \left((m+1)^{2} / 4\right)$. Using the tables of the normal distribution ([1]) we get, for fixed m_{n} and $s_{n}=\exp (1.3 / \sqrt{2}+$ $\left.\left(m_{n}+1\right) / 2\right)$,

$$
\int_{0}^{s_{n}} r^{m_{n}} e^{-\log ^{2} r} d r=c \sqrt{\pi} e^{\left(m_{n}+1\right)^{2} / 4} \quad \text { where } \quad c \geq 0.9
$$

Hence

$$
\int_{0}^{s_{n}} r^{m_{n}} e^{-\log ^{2} r} d r=b \int_{s_{n}}^{\infty} r^{m_{n}} e^{-\log ^{2} r} d r \quad \text { where } \quad b=\frac{c}{1-c}, \text { i.e. } b \geq 9
$$

Now if

$$
\begin{equation*}
m_{n+1}=m_{n}+\sqrt{2} \cdot 1.3 \tag{2.1}
\end{equation*}
$$

we have $\exp \left(1.3 / \sqrt{2}+\left(m_{n}+1\right) / 2\right)=\exp \left(\left(m_{n+1}+1\right) / 2\right)$. Hence

$$
\begin{aligned}
\int_{0}^{s_{n}} r^{m_{n+1}} e^{-\log ^{2} r} d r & =\frac{e^{\left(m_{n+1}+1\right)^{2} / 4}}{\sqrt{2}} \int_{-\infty}^{0} e^{-s^{2} / 2} d s \\
& =\frac{\sqrt{\pi}}{2} e^{\left(m_{n+1}+1\right)^{2} / 4}=\int_{s_{n}}^{\infty} r^{m_{n+1}} e^{-\log ^{2} r} d r
\end{aligned}
$$

Now (2.1) tells us that the assumptions of Theorem 1.4 are satisfied. Hence $H_{\mu} \sim l_{1}$. Moreover, since $\sup _{n}\left(m_{n+1}-m_{n}\right)<\infty$ the "summands" in the equivalent norm in Theorem 1.3 have uniformly bounded length. This cannot happen for any measure on $[0, R[$ if $R<\infty$ (see Proposition 2.1).
(b) We next consider the measure $d \mu(r)=\exp (-r) d r$ on $[0, \infty[$. Here

$$
\int_{0}^{\infty} r^{m} \exp (-r) d r=\Gamma(m+1)
$$

is the gamma function. Using the substitution $t=2 r$ we obtain, for any $x>0, \int_{0}^{x} r^{m} \exp (-r) d r=2^{-m-1} \int_{0}^{2 x} t^{m} \exp (-t / 2) d t$, which is the distribution function (up to the factor $\Gamma(m+1)^{-1}$) of a χ^{2}-distribution. A well-known limit theorem ([1, 26.4.11]) tells us that
$\lim _{m \rightarrow \infty}\left(\frac{1}{2^{m+1} \Gamma(m+1)} \int_{0}^{2 x} t^{m} e^{-t / 2} d t\right)\left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{(x-m-1) / \sqrt{m+1}} e^{-t^{2} / 2} d t\right)^{-1}=1$.
So, if $s_{n}=1.3 \sqrt{m_{n}+1}+m_{n}+1$ we have $\left(s_{n}-m_{n}-1\right) / \sqrt{m_{n}+1}=1.3$ and $\int_{0}^{s_{n}} r^{m_{n}} \exp (-r) d r \sim c \Gamma\left(m_{n}+1\right)$ where $c \geq 0.9$. Hence $\int_{0}^{s_{n}} r^{m_{n}} \exp (-r) d r \sim$ $b \int_{s_{n}}^{\infty} r^{m_{n}} \exp (-r) d r$ where $b \geq 9$ if n is large enough. If we put

$$
\begin{equation*}
m_{n+1}=m_{n}+1.3 \sqrt{m_{n}+1} \tag{2.2}
\end{equation*}
$$

then

$$
\int_{0}^{s_{n}} r^{m_{n+1}} e^{-r} d r \sim \frac{\Gamma\left(m_{n+1}+1\right)}{\sqrt{2 \pi}} \int_{-\infty}^{0} e^{-t^{2} / 2} d t=\frac{\Gamma\left(m_{n+1}+1\right)}{2}
$$

Thus $\int_{0}^{s_{n}} r^{m_{n+1}} \exp (-r) d r \sim \int_{s_{n}}^{\infty} r^{m_{n+1}} \exp (-r) d r$. Using this and (2.2), Theorem 1.4 again shows that $H_{\mu} \sim l_{1}$.

Next we prove that for $R<\infty$ the length of the summands in Theorem 1.3 necessarily tends to ∞.
2.1. Proposition. Let μ be a purely non-atomic probability measure on $\left[0, R\left[\right.\right.$ where $R<\infty$. Fix $b>1$ and, for any $m>0$, pick t_{m} with $\int_{0}^{t_{m}} r^{m} d \mu=b \int_{t_{m}}^{R} r^{m} d \mu$.
(a) For any a with $0<a<R$ we have

$$
\lim _{m \rightarrow \infty} \frac{\int_{0}^{t_{m}} r^{m} d \mu}{\int_{a}^{t_{m}} r^{m} d \mu}=1
$$

(b) If $n=n(m)$ is such that $\int_{0}^{t_{m}} r^{n} d \mu=\int_{t_{m}}^{R} r^{n} d \mu$ then $\lim _{m \rightarrow \infty}(n(m)-m)$ $=\infty$.

Proof. (a) First we observe

$$
\frac{\int_{0}^{t_{m}} r^{m} d \mu}{\int_{a}^{t_{m}} r^{m} d \mu}=\frac{\int_{0}^{a}(r / a)^{m} d \mu+\int_{a}^{t_{m}}(r / a)^{m} d \mu}{\int_{a}^{t_{m}}(r / a)^{m} d \mu}
$$

Clearly, $\lim _{m \rightarrow \infty} \int_{0}^{a}(r / a)^{m} d \mu=0$ and $\lim _{m \rightarrow \infty} \int_{a}^{t_{m}}(r / a)^{m} d \mu=\infty$ since $\lim _{m \rightarrow \infty} t_{m}=R$. This proves (a).
(b) Assume that there are a constant $c>0$ and, for all k, numbers $m_{k}>k$ with $n\left(m_{k}\right)-m_{k} \leq c$. Fix $a<R$ and $\epsilon>0$ such that $(b-\epsilon)(a / R)^{c}>1$. Let k be large enough and pick $t=t_{m_{k}}, n=n\left(m_{k}\right)$ such that $\int_{a}^{t} r^{m_{k}} d \mu \geq$ $(b-\epsilon) \int_{t}^{R} r^{m_{k}} d \mu$ and $\int_{a}^{t} r^{n} d \mu \neq 0$. This is possible in view of (a). Since $n>m_{k}$ we obtain

$$
\begin{aligned}
\int_{a}^{t}\left(\frac{r}{R}\right)^{n} d \mu & \geq\left(\frac{a}{R}\right)^{c} \int_{a}^{t}\left(\frac{r}{R}\right)^{m_{k}} d \mu \geq\left(\frac{a}{R}\right)^{c}(b-\epsilon) \int_{t}^{R}\left(\frac{r}{R}\right)^{m_{k}} d \mu \\
& \geq\left(\frac{a}{R}\right)^{c}(b-\epsilon) \int_{t}^{R}\left(\frac{r}{R}\right)^{n} d \mu \\
& \geq\left(\frac{a}{R}\right)^{c}(b-\epsilon) \int_{0}^{t}\left(\frac{r}{R}\right)^{n} d \mu \geq\left(\frac{a}{R}\right)^{c}(b-\epsilon) \int_{a}^{t}\left(\frac{r}{R}\right)^{n} d \mu .
\end{aligned}
$$

This is a contradiction since $(a / R)^{c}(b-\epsilon)>1$.
3. Approximation by purely non-atomic measures. First we show
3.1. Lemma. Let $0<r<s$ and $0<m<n$.
(a) If $f(z)=\sum_{m<k \leq n, k \in \mathbb{Z}} \alpha_{k} z^{k}$ then $M_{1}(f, r) \leq(r / s)^{m} M_{1}(f, s)$.
(b) If $g(z)=\sum_{0 \leq k \leq n, k \in \mathbb{Z}} \alpha_{k} z^{k}$ then $M_{1}(g, s) \leq(s / r)^{n} M_{1}(g, r)$.

Proof. (a) Put $h(z)=\sum_{0 \leq k \leq n-[m]-1, k \in \mathbb{Z}} \alpha_{k+[m]+1} z^{k}$ where $[m]$ is the largest integer $\leq m$. Then $f(z)=z^{[m]+1} h(z)$ and

$$
\begin{aligned}
M_{1}(f, r)=r^{[m]+1} M_{1}(h, r) & \leq r^{[m]+1} M_{1}(h, s)=(r / s)^{[m]+1} M_{1}(f, s) \\
& \leq(r / s)^{m} M_{1}(f, s)
\end{aligned}
$$

(b) Put $h_{1}(z)=g(1 / z)$ and $h_{2}(z)=z^{[n]} g(1 / z)$. Then

$$
\begin{aligned}
M_{1}(g, s) & =M_{1}\left(h_{1}, 1 / s\right)=s^{[n]} M_{1}\left(h_{2}, 1 / s\right) \\
& \leq s^{[n]} M_{1}\left(h_{2}, 1 / r\right)=(s / r)^{[n]} M_{1}\left(h_{1}, 1 / r\right) \\
& =(s / r)^{[n]} M_{1}(g, r) \leq(s / r)^{n} M_{1}(g, r)
\end{aligned}
$$

3.2. LEMMA. Let $f(z)=\sum_{k=0}^{\infty} \alpha_{k} z^{k} \in H_{\mu}$.
(a) $\left|\alpha_{k}\right| s^{k} \mu\left(\left[s, R[) \leq\|f\|_{\mu}\right.\right.$ for any k and $s \in[0, R[$.
(b) For any $r_{0} \in\left[0, R\left[, n_{0}>0\right.\right.$ and $\epsilon>0$ there is $n \geq n_{0}$ (independent of f) such that $M_{1}\left(f-f_{n}, r\right) \leq \epsilon\|f\|_{\mu}$ if $r \leq r_{0}$ where $f_{n}(z)=$ $\sum_{k=0}^{n} \alpha_{k} z^{k}$.
(c) For any $\left.r_{0} \in\right] 0, R\left[\right.$ and any $\epsilon>0$ there is $r_{1}<r_{0}$, independent of f, such that $r_{0}-r_{1}<\epsilon$ and

$$
(1-\epsilon) M_{1}\left(f, r_{0}\right)-\epsilon\|f\|_{\mu} \leq \frac{1}{r_{0}-r_{1}} \int_{r_{1}}^{r_{0}} M_{1}(f, r) d r \leq M_{1}\left(f, r_{0}\right)
$$

Proof. (a) Clearly we have $\left|\alpha_{k}\right| s^{k} \leq M_{1}(f, s)$. Hence

$$
\left|\alpha_{k}\right| s^{k} \mu\left(\left[s, R[) \leq \int_{s}^{R} M_{1}(f, r) d \mu \leq\|f\|_{\mu}\right.\right.
$$

(b) Fix s with $r_{0}<s<R$. Let $n>n_{0}$ be such that

$$
\left(\frac{r_{0}}{s}\right)^{n+1} \frac{s}{s-r_{0}} \leq \epsilon \mu([s, R[)
$$

Then, for any $r \leq r_{0}$,

$$
\begin{aligned}
M_{1}\left(f-f_{n}, r\right) & \leq M_{1}\left(f-f_{n}, r_{0}\right) \leq \sum_{k=n+1}^{\infty}\left|\alpha_{k}\right| s^{k}\left(\frac{r_{0}}{s}\right)^{k} \\
& \leq\left(\frac{r_{0}}{s}\right)^{n+1}\left(\frac{s}{s-r_{0}}\right) \frac{\|f\|_{\mu}}{\mu([s, R[)} \leq \epsilon\|f\|_{\mu}
\end{aligned}
$$

(c) The second inequality is trivial. To prove the first inequality we use (b) to obtain, for any $\delta>0$, some n with

$$
M_{1}\left(f_{n}, r\right)-\delta\|f\|_{\mu} \leq M_{1}(f, r) \leq M_{1}\left(f_{n}, r\right)+\delta\|f\|_{\mu} \quad \text { if } r \leq r_{0}
$$

Hence, if $r_{1}<r_{0}$ then, by Lemma 3.1(b),

$$
\begin{aligned}
\frac{1}{r_{0}-r_{1}} \int_{r_{1}}^{r_{0}} M_{1}(f, r) d r & \geq \frac{1}{r_{0}-r_{1}} \int_{r_{1}}^{r_{0}} M_{1}\left(f_{n}, r\right) d r-\delta\|f\|_{\mu} \\
& \geq \frac{M_{1}\left(f_{n}, r_{0}\right)}{r_{0}-r_{1}} \int_{r_{1}}^{r_{0}}\left(\frac{r}{r_{0}}\right)^{n} d r-\delta\|f\|_{\mu} \\
& \geq\left(\frac{r_{1}}{r_{0}}\right)^{n} M_{1}\left(f_{n}, r_{0}\right)-\delta\|f\|_{\mu} \\
& \geq\left(\frac{r_{1}}{r_{0}}\right)^{n} M_{1}\left(f, r_{0}\right)-\left(1+\left(\frac{r_{1}}{r_{0}}\right)^{n}\right) \delta\|f\|_{\mu}
\end{aligned}
$$

Now put $\delta=\epsilon / 2$ and take r_{1} so close to r_{0} that $\left(r_{1} / r_{0}\right)^{n} \geq 1-\epsilon$.
3.3. Proof of Proposition 1.2. Split μ into $\mu=\nu+\mu_{1}$ where ν is purely non-atomic and $\mu_{1}=\sum_{k} \alpha_{k} \delta_{s_{k}}$ for some positive α_{k} with $\sum_{k} \alpha_{k} \leq 1$ and some s_{k} with $0 \leq s_{k}<R$. Fix $\epsilon>0$ and let $0<\epsilon^{\prime}<\epsilon$ be such that $1-2 \epsilon^{\prime} \geq 1-\epsilon$. Find $r_{k}<s_{k}$ with

$$
\left(1-\epsilon^{\prime}\right) M_{1}\left(f, s_{k}\right)-\epsilon^{\prime}\|f\|_{\mu} \leq \frac{1}{s_{k}-r_{k}} \int_{r_{k}}^{s_{k}} M_{1}(f, r) d r \leq M_{1}\left(f, s_{k}\right)
$$

which is possible according to Lemma 3.2. Put

$$
d \mu_{0}=d \nu+\sum_{k} \frac{\alpha_{k}}{s_{k}-r_{k}} 1_{\left[r_{k}, s_{k}\right]} d r
$$

Then we obtain $\left(1-2 \epsilon^{\prime}\right)\|f\|_{\mu} \leq\|f\|_{\mu_{0}} \leq\|f\|_{\mu}$ for all $f \in H_{\mu}$. This implies Proposition 1.2.
4. Classical convolution operators. For a harmonic function $f: \Omega \rightarrow$ \mathbb{C} with $f\left(r e^{i \varphi}\right)=\sum_{k \in \mathbb{Z}} \alpha_{k} r^{|k|} e^{i k \varphi}$ and $n>m>0$ let

$$
\begin{equation*}
\left(\sigma_{n} f\right)\left(r e^{i \varphi}\right)=\sum_{|k|<n, k \in \mathbb{Z}} \frac{[n]-|k|}{[n]} \alpha_{k} r^{|k|} e^{i k \varphi} \tag{4.1}
\end{equation*}
$$

and

$$
V_{n, m} f=\frac{[n] \sigma_{n} f-[m] \sigma_{m} f}{[n]-[m]} \quad \text { if }[m]<[n]
$$

Hence

$$
\begin{align*}
& \left(V_{n, m} f\right)\left(r e^{i \varphi}\right) \tag{4.2}\\
& \quad=\sum_{|k| \leq m, k \in \mathbb{Z}} \alpha_{k} r^{|k|} e^{i k \varphi}+\sum_{m<|k|<n, k \in \mathbb{Z}} \frac{[n]-|k|}{[n]-[m]} \alpha_{k} r^{|k|} e^{i k \varphi} .
\end{align*}
$$

(4.2) also makes sense if $[m]=[n]$. Then $V_{n, m}$ is a Dirichlet projection. Finally put $(R f)(z)=\sum_{0 \leq k} \alpha_{k} z^{k}$.

In the following lemma fix $r>0$ and let $\|T\|$ be the norm of a bounded operator on the space of all harmonic functions f with $M_{1}(f, r)<\infty$ (endowed with the norm $\left.M_{1}(\cdot, r)\right)$.
4.1. Lemma. We have
(a) $\left\|V_{n, m}\right\| \leq \frac{[n]+[m]}{[n]-[m]}$.
(b) $M_{1}(R h, r) \leq\left(1+\frac{[n]-[m]}{[m]}\right) M_{1}(h, r)$ for any $r>0$ and $h \in$ $\operatorname{span}\left\{r^{|k|} \exp (i k \varphi): k \in \mathbb{Z}, m<|k| \leq n\right\}$.
(c) $\left\|V_{n_{4}, n_{3}}-V_{n_{2}, n_{1}}\right\| \leq 4\left(\frac{\left[n_{4}\right]-\left[n_{1}\right]}{\left[n_{2}\right]-\left[n_{1}\right]}\right)\left(3+4 \frac{\left[n_{4}\right]-\left[n_{1}\right]}{\left[n_{4}\right]-\left[n_{3}\right]}\right)$ if $0<n_{1}<$ $n_{2}<n_{3}<n_{4}$.
(d) $\left\|V_{n_{4}, n_{3}}-V_{n_{2}, n_{1}}\right\| \leq 2\left(\left[n_{4}\right]-\left[n_{1}\right]\right)$ and $\left\|R\left(V_{n_{4}, n_{3}}-V_{n_{2}, n_{1}}\right)\right\| \leq\left[n_{4}\right]-\left[n_{1}\right]$. for any $n_{k}, k=1, \ldots, 4$, with $0<n_{1}<n_{2}<n_{3}<n_{4}$.

The proof is literally the same as the proof of [9, 3.3. Lemma].
In the following lemma we restrict the preceding operators to holomorphic functions.
4.2. Lemma. Fix $b>0, c>1 / b$ and $0<m<n, 0<s<R$ such that

$$
\begin{equation*}
\int_{0}^{s} r^{m} d \mu \geq b \int_{s}^{R} r^{m} d \mu \quad \text { and } \quad \int_{s}^{R} r^{n} d \mu \geq c \int_{0}^{s} r^{n} d \mu \tag{4.3}
\end{equation*}
$$

(a) Consider $f(z)=\sum_{0 \leq k \leq m, k \in \mathbb{Z}} \alpha_{k} z^{k}$ and $g(z)=\sum_{k \geq n, k \in \mathbb{Z}} \alpha_{k} z^{k}$. Then $\|f\|_{\mu} \leq \frac{b+1}{b c_{1}-c_{2}}\|f+g\|_{\mu} \quad$ with $\quad c_{1}=\min (c, 1), c_{2}=\min (1 / c, 1)$.
(b) We have

$$
\left\|V_{n, m} h\right\|_{\mu} \leq\left(181 \frac{b+1}{b c_{1}-c_{2}}+88\right)\|h\|_{\mu} \quad \text { for all } h \in H_{\mu}
$$

Proof. (a) For $s \leq r$ we have $M_{1}(f, r) \leq(r / s)^{m} M_{1}(f, s)$ according to Lemma 3.1. Then (4.3) implies

$$
\begin{aligned}
\int_{s}^{R} M_{1}(f, r) d \mu & \leq M_{1}(f, s) \int_{s}^{R}\left(\frac{r}{s}\right)^{m} d \mu \leq \frac{1}{b} M_{1}(f, s) \int_{0}^{s}\left(\frac{r}{s}\right)^{m} d \mu \\
& \leq \frac{1}{b} \int_{0}^{s} M_{1}(f, r)\left(\frac{s}{r}\right)^{m}\left(\frac{r}{s}\right)^{m} d \mu=\frac{1}{b} \int_{0}^{m} M_{1}(f, r) d \mu
\end{aligned}
$$

Hence $\int_{0}^{R} M_{1}(f, r) d \mu \leq(1+1 / b) \int_{0}^{s} M_{1}(f, r) d \mu$. Similarly we obtain

$$
\begin{aligned}
c \int_{0}^{s} M_{1}(g, r) d \mu & \leq c M_{1}(g, s) \int_{0}^{s}\left(\frac{r}{s}\right)^{n} d \mu \leq M_{1}(g, s) \int_{s}^{R}\left(\frac{r}{s}\right)^{n} d \mu \\
& \leq \int_{s}^{R} M_{1}(g, r)\left(\frac{s}{r}\right)^{n}\left(\frac{r}{s}\right)^{n} d \mu=\int_{s}^{R} M_{1}(g, r) d \mu
\end{aligned}
$$

This implies

$$
\begin{aligned}
& \int_{0}^{R} M_{1}(f+g, r) d \mu \geq c_{1} \int_{0}^{s} M_{1}(f+g, r) d \mu+c_{2} \int_{s}^{R} M_{1}(f+g, r) d \mu \\
& \quad \geq c_{1} \int_{0}^{s} M_{1}(f, r) d \mu-c_{1} \int_{0}^{s} M_{1}(g, r) d \mu+c_{2} \int_{s}^{R} M_{1}(g, r) d \mu-c_{2} \int_{s}^{R} M_{1}(f, r) d \mu \\
& \quad \geq\left(c_{1}-\frac{c_{2}}{b}\right) \int_{0}^{s} M_{1}(f, r) d \mu \geq \frac{b c_{1}-c_{2}}{b+1} \int_{0}^{R} M_{1}(f, r) d \mu
\end{aligned}
$$

This proves (a).
(b) If $[n] \geq 2[m]$ then $\left\|V_{n, m}\right\| \leq([n]+[m])([n]-[m])^{-1} \leq 3$ in view of Lemma 4.1.

Now let $[n]<2[m]$, i.e. $2[m]-[n]>0$. Put

$$
h(z)=\sum_{k=0}^{\infty} \alpha_{k} z^{k}, \quad \tilde{f}(z)=\sum_{k \leq m} \alpha_{k} z^{k}, \quad \tilde{g}(z)=\sum_{k \geq n} \alpha_{k} z^{k}
$$

Moreover, let $T=V_{2 n-m, n}-V_{m, 2 m-n}$ and $S=V_{n, m} T$. In view of (4.2) this means $S=V_{n, m}-V_{m, 2 m-n}$. Lemma 4.1 implies $\|T\| \leq 180$ and $\|S\| \leq 88$. Finally, put $f=(\mathrm{id}-T) \tilde{f}$ and $g=(\mathrm{id}-T) \tilde{g}$. Then we obtain $h=f+g+T h$, $V_{n, m} f=f$ and $V_{n, m} g=0$. Now (a) yields

$$
\begin{aligned}
\left\|V_{n, m} h\right\|_{\mu} & =\|f+S h\|_{\mu} \leq\|f\|_{\mu}+\|S h\|_{\mu} \\
& \leq \frac{b+1}{b c_{1}-c_{2}}\|f+g\|_{\mu}+\|S h\|_{\mu} \\
& \leq \frac{b+1}{b c_{1}-c_{2}}\|f+g+T h\|_{\mu}+\|S h\|_{\mu}+\frac{b+1}{b c_{1}-c_{2}}\|T h\|_{\mu} \\
& \leq\left(181 \frac{b+1}{b c_{1}-c_{2}}+88\right)\|h\|_{\mu} .
\end{aligned}
$$

4.3. Lemma. Let $0 \leq m<n<p$ and $f(z)=\sum_{m \leq k \leq p, k \in \mathbb{Z}} \alpha_{k} z^{k}$. Then

$$
M_{1}\left(V_{p, n} f, r\right) \leq 2 M_{1}(f, r) \quad \text { and } \quad M_{1}\left(V_{n, m} f, r\right) \leq M_{1}(f, r)
$$

for any $r>0$.
Proof. Let $\left(U_{j} f\right)\left(r e^{i \varphi}\right)=e^{i j \varphi} f\left(r e^{i \varphi}\right)$. Then we have

$$
V_{n, m} f=U_{[m]} \sigma_{[n]-[m]} U_{-[m]} f \quad \text { and } \quad V_{p, n} f=U_{[p]}\left(i d-\sigma_{[p]-[n]}\right) U_{-[p]} f
$$

This implies Lemma 4.3 since the Cesàro means as well as the operators U_{j} are all contractive.
5. Proof of Theorem $\mathbf{1 . 3}$. We need a few lemmas.
5.1. Lemma. Let $0 \leq m \leq n$ and $s \in[0, R[$. Assume there is $c>0$ with

$$
\int_{0}^{s} r^{m} d \mu \leq c \int_{s}^{R} r^{m} d \mu \quad \text { and } \quad \int_{s}^{R} r^{n} d \mu \leq c \int_{0}^{s} r^{n} d \mu
$$

Then, for any $f(z)=\sum_{m \leq k \leq n, k \in \mathbb{Z}} \alpha_{k} z^{k}$, we have

$$
\|f\|_{\mu} \leq\left(\int_{0}^{s}\left(\frac{r}{s}\right)^{m} d \mu+\int_{s}^{R}\left(\frac{r}{s}\right)^{n} d \mu\right) M_{1}(f, s) \leq c\|f\|_{\mu}
$$

Proof. Using Lemma 3.1 we get

$$
\begin{aligned}
\int_{0}^{R} M_{1}(f, r) d \mu & \leq M_{1}(f, s)\left(\int_{0}^{s}\left(\frac{r}{s}\right)^{m} d \mu+\int_{s}^{R}\left(\frac{r}{s}\right)^{n} d \mu\right) \\
& \leq c M_{1}(f, s)\left(\int_{s}^{R}\left(\frac{r}{s}\right)^{m} d \mu+\int_{0}^{s}\left(\frac{r}{s}\right)^{n} d \mu\right) \\
& \leq c \int_{s}^{R} M_{1}(f, r)\left(\frac{s}{r}\right)^{m}\left(\frac{r}{s}\right)^{m} d \mu+c \int_{0}^{s} M_{1}(f, r)\left(\frac{s}{r}\right)^{n}\left(\frac{r}{s}\right)^{n} d \mu \\
& =c \int_{0}^{R} M_{1}(f, r) d \mu .
\end{aligned}
$$

5.2. Lemma. Fix $b>1$ and $0<c<b$. Let $0 \leq m<n$ and $0 \leq s<t<R$ be such that

$$
\int_{0}^{s} r^{m} d \mu \leq c \int_{s}^{R} r^{m} d \mu \quad \text { and } \quad \int_{0}^{t} r^{n} d \mu \geq b \int_{t}^{R} r^{n} d \mu
$$

Then, for any $f(z)=\sum_{m \leq k \leq n, k \in \mathbb{Z}} \alpha_{k} z^{k}$, we have

$$
\|f\|_{\mu} \leq(1+c)\left(\frac{b+1+c}{b-c}\right) \int_{s}^{t} M_{1}(f, r) d \mu
$$

Proof. First we obtain

$$
\begin{aligned}
\|f\|_{\mu} & \leq M_{1}(f, s) \int_{0}^{s}\left(\frac{r}{s}\right)^{m} d \mu+\int_{s}^{R} M_{1}(f, r) d \mu \\
& \leq c M_{1}(f, s) \int_{s}^{R}\left(\frac{r}{s}\right)^{m} d \mu+\int_{s}^{R} M_{1}(f, r) d \mu \\
& \leq c \int_{s}^{R} M_{1}(f, r)\left(\frac{s}{r}\right)^{m}\left(\frac{r}{s}\right)^{m} d \mu+\int_{s}^{R} M_{1}(f, r) d \mu \\
& =(1+c) \int_{s}^{R} M_{1}(f, r) d \mu .
\end{aligned}
$$

Moreover

$$
\begin{aligned}
\int_{s}^{R} M_{1}(f, r) d \mu \leq & \int_{s}^{t} M_{1}(f, r) d \mu+M_{1}(f, t) \int_{t}^{R}\left(\frac{r}{t}\right)^{n} d \mu \\
\leq & \int_{s}^{t} M_{1}(f, r) d \mu+\frac{M_{1}(f, t)}{b} \int_{0}^{t}\left(\frac{r}{t}\right)^{n} d \mu \\
\leq & \left(1+\frac{1}{b}\right) \int_{s}^{t} M_{1}(f, r) d \mu+\frac{M_{1}(f, t)}{b} \int_{0}^{s}\left(\frac{r}{t}\right)^{n} d \mu \\
\leq & \left(1+\frac{1}{b}\right) \int_{s}^{t} M_{1}(f, r) d \mu+\frac{M_{1}(f, s)}{b}\left(\frac{t}{s}\right)^{n} \int_{0}^{n}\left(\frac{r}{t}\right)^{n} d \mu \\
\leq & \left(1+\frac{1}{b}\right) \int_{s}^{t} M_{1}(f, r) d \mu+\frac{M_{1}(f, s)}{b} \int_{0}^{s}\left(\frac{r}{s}\right)^{m} d \mu \\
\leq & \left(1+\frac{1}{b}\right) \int_{s}^{t} M_{1}(f, r) d \mu+c \frac{M_{1}(f, s)}{b} \int_{s}^{t}\left(\frac{r}{s}\right)^{m} d \mu \\
& +c \frac{M_{1}(f, s)}{b} \int_{t}^{R}\left(\frac{r}{s}\right)^{m} d \mu \\
\leq & \left(1+\frac{1+c}{b}\right)^{t} \int_{s}^{t} M_{1}(f, r) d \mu+\frac{c}{b} \int_{t}^{R} M_{1}(f, r) d \mu \\
\leq & \frac{b+c+1}{b} \int_{s}^{t} M_{1}(f, r) d \mu+\frac{c}{b} \int_{s}^{R} M_{1}(f, r) d \mu .
\end{aligned}
$$

This implies

$$
\int_{s}^{R} M_{1}(f, r) d \mu \leq \frac{b+c+1}{b-c} \int_{s}^{t} M_{1}(f, r) d \mu
$$

and hence

$$
\|f\|_{\mu} \leq(1+c)\left(\frac{b+c+1}{b-c}\right) \int_{s}^{t} M_{1}(f, r) d \mu
$$

5.3. Lemma. Let $b>1,0<m<n, 0<s<t<R$ and assume that

$$
\int_{0}^{s} r^{m} d \mu \leq b \int_{s}^{R} r^{m} d \mu, \quad \int_{0}^{s} r^{n} d \mu=\int_{s}^{R} r^{n} d \mu, \quad \int_{0}^{t} r^{n} d \mu=b \int_{t}^{R} r^{n} d \mu .
$$

Then there is $N=N(b)$ with $\int_{0}^{t} r^{m} d \mu \leq 3^{N} b \int_{t}^{R} r^{m} d \mu ; N$ does not depend on m, n, s, t.

Proof. For $j=0,1, \ldots$, put $b_{j}=3^{j} b, c_{j}=\left(2 b_{j}\right)^{-1}$. Moreover put $t_{0}=s$. Find $t_{0}<t_{1}<t_{2}<\cdots$ with

$$
\begin{equation*}
\int_{t_{j-1}}^{t_{j}} r^{n} d \mu=c_{j-1} \int_{0}^{t_{j-1}} r^{n} d \mu \tag{5.1}
\end{equation*}
$$

We actually take

$$
t_{j}=\sup \left\{u>t_{j-1}: \int_{t_{j-1}}^{u} r^{n} d \mu=c_{j-1} \int_{0}^{t_{j-1}} r^{n} d \mu\right\}
$$

Then we claim

$$
\begin{equation*}
\int_{0}^{t_{j}} r^{m} d \mu \leq 3^{j} b \int_{t_{j}}^{R} r^{m} d \mu \tag{5.2}
\end{equation*}
$$

We prove (5.2) by induction. (5.2) is clear if $j=0$. Assume it holds for some j. Then we obtain

$$
\begin{aligned}
\int_{t_{j}}^{t_{j+1}}\left(\frac{r}{t_{j}}\right)^{m} d \mu & \leq \int_{t_{j}}^{t_{j+1}}\left(\frac{r}{t_{j}}\right)^{n} d \mu=c_{j} \int_{0}^{t_{j}}\left(\frac{r}{t_{j}}\right)^{n} d \mu \\
& \leq c_{j} \int_{0}^{t_{j}}\left(\frac{r}{t_{j}}\right)^{m} d \mu
\end{aligned}
$$

Hence

$$
\begin{aligned}
\int_{t_{j}}^{t_{j+1}} r^{m} d \mu & \leq c_{j} \int_{0}^{t_{j}} r^{m} d \mu \leq b_{j} c_{j} \int_{t_{j}}^{R} r^{m} d \mu \\
& =\frac{1}{2} \int_{t_{j+1}}^{R} r^{m} d \mu+\frac{1}{2} \int_{t_{j}}^{t_{j+1}} r^{m} d \mu
\end{aligned}
$$

This implies $\int_{t_{j}}^{t_{j+1}} r^{m} d \mu \leq \int_{t_{j+1}}^{R} r^{m} d \mu$ and

$$
\begin{aligned}
\int_{0}^{t_{j+1}} r^{m} d \mu & \leq \int_{0}^{t_{j}} r^{m} d \mu+\int_{t_{j}}^{t_{j+1}} r^{m} d \mu \\
& \leq 3^{j} b \int_{t_{j}}^{R} r^{m} d \mu+\int_{t_{j}}^{t_{j+1}} r^{m} d \mu \\
& =3^{j} b \int_{t_{j+1}}^{R} r^{m} d \mu+\left(3^{j} b+1\right) \int_{t_{j}}^{t_{j+1}} r^{m} d \mu \\
& \leq\left(2 \cdot 3^{j} b+1\right) \int_{t_{j+1}}^{R} r^{m} d \mu \leq 3^{j+1} b \int_{t_{j+1}}^{R} r^{m} d \mu
\end{aligned}
$$

We claim that there is N, depending only on b, such that $t_{N} \geq t$, which proves the lemma in view of (5.2). Indeed, (5.1) implies

$$
\begin{aligned}
\int_{0}^{t_{j+1}} r^{n} d \mu & =\int_{0}^{t_{j}} r^{n} d \mu+\int_{t_{j}}^{t_{j+1}} r^{n} d \mu=\left(c_{j}+1\right) \int_{0}^{t_{j}} r^{n} d \mu \\
& =\left(c_{j}+1\right)\left(c_{j-1}+1\right) \int_{0}^{t_{j-1}} r^{n} d \mu=\cdots=\prod_{j=0}^{j}\left(c_{j}+1\right) \int_{0}^{s} r^{n} d \mu
\end{aligned}
$$

On the other hand we have

$$
\int_{0}^{t} r^{n} d \mu=\frac{b}{b+1} \int_{0}^{R} r^{n} d \mu=\frac{2 b}{b+1} \int_{0}^{s} r^{n} d \mu
$$

To prove the claim we need to show $\prod_{j=0}^{\infty}\left(c_{j}+1\right)>2 b(b+1)^{-1}$ since $f(u)=$ $\left(\int_{0}^{u} r^{n} d \mu\right)\left(\int_{0}^{s} r^{n} d \mu\right)^{-1}$ is increasing. Indeed,

$$
\prod_{j=0}^{\infty}\left(c_{j}+1\right)=\left(\frac{2 b+1}{2 b}\right)\left(\frac{2 \cdot 3 b+1}{2 \cdot 3 b}\right)\left(\frac{2 \cdot 3^{2} b+1}{2 \cdot 3^{2} b}\right) \cdots \geq 2 b+1>\frac{2 b}{b+1}
$$

Conclusion of the proof of Theorem 1.3. Consider m, n, s_{n} with (1.3) and (1.4) for $b \geq 5$. Take a polynomial $f \in H_{\mu}$ and put

$$
\begin{equation*}
T_{n} f=\left(V_{m_{n+1}, m_{n}}-V_{m_{n}, m_{n-1}}\right) f \tag{5.3}
\end{equation*}
$$

Here take $V_{m_{1}, m_{-1}}=0$, i.e. $T_{1}=V_{m_{2}, m_{1}} f$. (Recall that only finitely many summands are different from zero since f is a polynomial.)

Then we have $f=\sum_{n} T_{n} f$. An application of Lemma 5.2 with $s=s_{n-2}$ and $t=s_{n+1}$ yields $\left\|T_{n} f\right\|_{\mu} \leq d_{1} \int_{s_{n-2}}^{s_{n+1}} M_{1}\left(T_{n} f, r\right) d \mu$ for a universal constant d_{1} (independent of f and n). We claim that there is another universal constant d_{2} with

$$
\begin{equation*}
\int_{s_{n-2}}^{s_{n+1}} M_{1}\left(T_{n} f, r\right) d \mu \leq d_{2} \int_{s_{n-2}}^{s_{n+1}} M_{1}(f, r) d \mu \tag{5.4}
\end{equation*}
$$

Then we conclude

$$
\begin{align*}
\|f\|_{\mu} & \leq \sum_{n}\left\|T_{n} f\right\|_{\mu} \leq d_{1} \sum_{n} \int_{s_{n-2}}^{s_{n+1}} M_{1}\left(T_{n} f, r\right) d \mu \tag{5.5}\\
& \leq d_{1} d_{2} \sum_{n} \int_{s_{n-2}}^{s_{n+1}} M_{1}(f, r) d \mu \leq 3 d_{1} d_{2} \int_{0}^{R} M_{1}(f, r) d \mu
\end{align*}
$$

Now we apply Lemma 5.3 with $s=s_{n-1}$ and $t=s_{n}$ to obtain $\int_{0}^{s_{n}} r^{m_{n-1}} d \mu \leq$ $3^{N} b \int_{s_{n}}^{R} r^{m_{n-1}} d \mu$. Since we also have $\int_{s_{n}}^{R} r^{m_{n+1}} d \mu=\int_{0}^{s_{n}} r^{m_{n+1}} d \mu$ Lemma 5.1 implies

$$
\left\|T_{n} f\right\|_{\mu} \leq\left(\int_{0}^{s_{n}}\left(\frac{r}{s_{n}}\right)^{m_{n-1}} d \mu+\int_{s_{n}}^{R}\left(\frac{r}{s_{n}}\right)^{m_{n+1}} d \mu\right) M_{1}\left(T_{n} f, s_{n}\right) \leq d_{3}\left\|T_{n} f\right\|_{\mu}
$$

for some universal constant d_{3}. Since the polynomials are dense in H_{μ} this together with (5.5) proves Theorem 1.3.

It remains to show (5.4). To this end we apply Lemma 4.2 for the measure $d \nu=1_{\left[s_{n-2}, s_{n+1}\right]} d \mu$. We prove

$$
\begin{align*}
\int_{s_{n}}^{s_{n+1}} r^{m_{n+1}} d \mu & \geq \frac{b-1}{b+1} \int_{s_{n-2}}^{s_{n}} r^{m_{n+1}} d \mu \tag{5.6}\\
\frac{b-1}{2} \int_{s_{n}}^{s_{n+1}} r^{m_{n}} d \mu & \leq \int_{s_{n-2}}^{s_{n}} r^{m_{n}} d \mu
\end{align*}
$$

Then $V_{m_{n+1}, m_{n}}$ is uniformly bounded on H_{ν} since $(b-1)^{2}(2 b+2)^{-1}>1$ if $b \geq 5$.

Moreover we show

$$
\begin{align*}
\frac{b-1}{b+1} \int_{s_{n-2}}^{s_{n-1}} r^{m_{n}} d \mu & \leq \int_{s_{n-1}}^{s_{n+1}} r^{m_{n}} d \mu \\
\frac{b-1}{2} \int_{s_{n-1}}^{s_{n+1}} r^{m_{n-1}} d \mu & \leq \int_{s_{n-2}}^{s_{n-1}} r^{m_{n-1}} d \mu \tag{5.7}
\end{align*}
$$

By Lemma 4.2, $V_{m_{n}, m_{n-1}}$ is uniformly bounded on H_{ν} since we have $(b-1)^{2}(2 b+2)^{-1}>1$ if $b \geq 5$. Hence T_{n} is uniformly bounded on H_{ν}, which proves (5.4).

To show (5.6) we note that, by (1.4), $\int_{0}^{s_{n}} r^{m_{n+1}} d \mu=2^{-1} \int_{0}^{R} r^{m_{n+1}} d \mu$, and by (1.3), $\int_{0}^{s_{n+1}} r^{m_{n+1}} d \mu=b(b+1)^{-1} \int_{0}^{R} r^{m_{n+1}} d \mu$. Hence

$$
\begin{aligned}
\int_{s_{n}}^{s_{n+1}} r^{m_{n+1}} d \mu & =\frac{b-1}{2 b+2} \int_{0}^{R} r^{m_{n+1}} d \mu=\frac{b-1}{b+1} \int_{0}^{s_{n}} r^{m_{n+1}} d \mu \\
& \geq \frac{b-1}{b+1} \int_{s_{n-2}}^{s_{n}} r^{m_{n+1}} d \mu
\end{aligned}
$$

Similarly we have $\int_{s_{n-1}}^{s_{n}} r^{m_{n}} d \mu=(b-1)(2 b+2)^{-1} \int_{0}^{R} r^{m_{n}} d \mu$ and therefore

$$
\begin{aligned}
\int_{s_{n}}^{s_{n+1}} r^{m_{n}} d \mu & \leq \int_{s_{n}}^{R} r^{m_{n}} d \mu=\frac{1}{b} \int_{0}^{s_{n}} r^{m_{n}} d \mu \\
& =\frac{1}{b} \int_{0}^{s_{n-1}} r^{m_{n}} d \mu+\frac{1}{b} \int_{s_{n-1}}^{s_{n}} r^{m_{n}} d \mu \\
& =\frac{1}{2 b} \int_{0}^{R} r^{m_{n}} d \mu+\frac{1}{b} \int_{s_{n-1}}^{s_{n}} r^{m_{n}} d \mu \\
& =\left(\frac{2(b+1)}{2 b(b-1)}+\frac{1}{b}\right) \int_{s_{n-1}}^{s_{n}} r^{m_{n}} d \mu \leq \frac{2}{b-1} \int_{s_{n-2}}^{s_{n}} r^{m_{n}} d \mu
\end{aligned}
$$

which shows (5.6).
To prove (5.7) we start with

$$
\begin{aligned}
\int_{s_{n-2}}^{s_{n-1}} r^{m_{n}} d \mu & \leq \int_{0}^{s_{n-1}} r^{m_{n}} d \mu=\frac{1}{2} \int_{0}^{R} r^{m_{n}} d \mu \\
& =\frac{1}{2} \cdot \frac{2 b+2}{b-1} \int_{s_{n-1}}^{s_{n}} r^{m_{n}} d \mu \leq \frac{b+1}{b-1} \int_{s_{n-1}}^{s_{n+1}} r^{m_{n}} d \mu
\end{aligned}
$$

Furthermore

$$
\begin{aligned}
\int_{s_{n-2}}^{s_{n-1}} r^{m_{n-1}} d \mu & =\frac{b-1}{2 b+2} \int_{0}^{R} r^{m_{n-1}} d \mu \\
& =\frac{b-1}{2} \int_{s_{n-1}}^{R} r^{m_{n-1}} d \mu \geq \frac{b-1}{2} \int_{s_{n-1}}^{s_{n+1}} r^{m_{n-1}} d \mu
\end{aligned}
$$

which completes the proof of (5.7).
6. Final proofs. Now we consider sequences $\left(m_{n}\right)$ and $\left(s_{n}\right)$ satisfying (1.3) and (1.4) for some $b \geq 5$. Let T_{n} be as in Theorem 1.3 (see (5.3)). Using (4.2) we see that

$$
T_{n} f=0 \quad \text { if } f \in \operatorname{span}\left\{z^{k}:|k| \leq m_{n-1} \text { or }|k| \geq m_{n+1}\right\}
$$

In particular
(6.1) $\quad T_{n} T_{n^{\prime}}=0$ if $\left|n-n^{\prime}\right| \geq 2, \quad T_{n}\left(T_{n-1}+T_{n}+T_{n+1}\right)=T_{n}$ for all n.

Put $X=\left(\sum_{n} \oplus A_{n}\right)_{(1)}$. In [8] it was shown that

$$
\begin{equation*}
X \sim(X \oplus X \oplus \ldots)_{(1)} \sim\left(\sum_{k} \oplus A_{n_{k}}\right)_{(1)} \quad \text { if } \sup _{k} n_{k}=\infty \tag{6.2}
\end{equation*}
$$

Moreover put

$$
\begin{equation*}
a_{n}=\int_{0}^{s_{n}}\left(\frac{r}{s_{n}}\right)^{m_{n-1}} d \mu+\int_{s_{n}}^{R}\left(\frac{r}{s_{n}}\right)^{m_{n+1}} d \mu \tag{6.3}
\end{equation*}
$$

Let $B_{n}=\operatorname{span}\left\{z^{k}: m_{n-1} \leq k \leq m_{n+1}\right\}$ be endowed with the norm $M_{1}\left(\cdot, s_{n}\right) a_{n}$.

For any function h and $s>0$ put $h_{s}(z)=h(s z)$. If $0 \leq m<n$, $f(z)=\sum_{0 \leq k \leq n-[m]} \alpha_{k} z^{k}$ and $g(z)=z^{[m]} f(z)$ then we have $s^{[m]} M_{1}\left(f_{s}, 1\right)=$ $M_{1}(g, s)$. This implies that $A_{\left[m_{n+1}\right]-\left[m_{n-1}\right]}$ and B_{n} are isometrically isomorphic.
6.1. Proposition.
(a) H_{μ} is isomorphic to a complemented subspace of $\left(\sum_{n} \oplus A_{n}\right)_{(1)}$.
(b) If $\left(m_{n}\right)$ satisfies (1.5) then H_{μ} is isomorphic to a complemented subspace of l_{1}.
Proof. (a) It suffices to show that H_{μ} is isomorphic to a complemented subspace of $\left(\sum_{n} \oplus B_{n}\right)_{(1)}$.

Define $S f=\left(T_{n} f\right), f \in H_{\mu}$. Then S is an isomorphism into $\left(\sum_{n} \oplus B_{n}\right)_{(1)}$ according to Theorem 1.3. For $\left(g_{n}\right) \in\left(\sum_{n} \oplus B_{n}\right)_{(1)}$ put

$$
P\left(g_{n}\right)=\left(T_{n}\left(\frac{a_{n-1}}{a_{n}} g_{n-1}+g_{n}+\frac{a_{n+1}}{a_{n}} g_{n+1}\right)\right)
$$

Then Lemma 4.3 tells us that P is well-defined and bounded. (Recall that $\left.V_{m_{n+1}, m_{n}}\right|_{B_{n-1}}=\operatorname{id}_{B_{n-1}}$ and $\left.V_{m_{n}, m_{n-1}}\right|_{B_{n+1}}=0$.) Using (6.1) we see that P is a projection onto $S H_{\mu}$.
(b) Let L_{n} be the completion of $\{f: f$ a trigonometric polynomial $\}$ with respect to $M_{1}\left(\cdot, s_{n}\right) a_{n}$. Then L_{n} is an L_{1}-space which contains B_{n}. All B_{n} are finite-dimensional. Hence we find finite-dimensional spaces $C_{n} \supset B_{n}$ consisting of trigonometric polynomials, where $C_{n} \subset L_{n}$, such that $\sup _{n} d\left(C_{n}, l_{1}^{\operatorname{dim} C_{n}}\right)$ $<\infty$. Here $d\left(X_{1}, X_{2}\right)=\inf \left\{\|T\| \cdot\left\|T^{-1}\right\|: T: X_{1} \rightarrow X_{2}\right.$ an onto-isomorphism $\}$ is the Banach-Mazur distance. Then clearly $\left(\sum_{n} \oplus C_{n}\right)_{(1)} \sim l_{1}$. By definition all $V_{n, m}$ are well-defined on the C_{k} (see (4.2)) and the norm estimates of Lemma 4.1 hold for $M_{1}\left(\cdot, s_{n}\right) a_{n}$ instead of $M_{1}(\cdot, r)$. So the operators T_{n} are well-defined on all C_{k}. Again (6.1) holds.

For $\left(h_{n}\right) \in\left(\sum_{n} \oplus C_{n}\right)_{(1)}$ put

$$
Q\left(h_{n}\right)=\left(R T_{n}\left(\frac{a_{n-1}}{a_{n}} h_{n-1}+h_{n}+\frac{a_{n+1}}{a_{n}} h_{n+1}\right)\right) .
$$

(Recall R is the Riesz projection.) By (1.5), according to Lemma 4.1, the operators $R T_{n}$ are uniformly bounded. Indeed, for any $r>0$ we have

$$
\begin{aligned}
M_{1}\left(R T_{n} h, r\right) & \leq\left(1+\frac{m_{n+1}-m_{n}+m_{n}-m_{n-1}}{m_{n-1}}\right) M_{1}\left(T_{n} h, r\right) \\
& \leq\left(1+\left(\beta^{2}+\beta\right) \frac{m_{n-1}-m_{n-2}}{m_{n-1}}\right) M_{1}\left(T_{n} h, r\right) \\
& \leq\left(1+\beta+\beta^{2}\right) M_{1}\left(T_{n} h, r\right)
\end{aligned}
$$

unless $m_{n+1}-m_{n-1} \leq \gamma$ or $m_{n}-m_{n-2} \leq \gamma$. In the latter cases we get similar estimates. In any case we obtain

$$
M_{1}\left(R T_{n} h, r\right) \leq \max \left(\left(1+\beta+\beta^{2}\right),(1+(\beta+1) \gamma)\right) M_{1}\left(T_{n} h, r\right) .
$$

Hence in view of (6.1), Q is a well-defined bounded projection onto $S H_{\mu}$.
We need another lemma.

6.2. Lemma.

(a) Fix $p, q \in \mathbb{Z}_{+}$and let $N=\{p+j q: j \in \mathbb{Z}\} \cap \mathbb{Z}_{+}$. For $f(z)=$ $\sum_{k=0}^{\infty} \alpha_{k} z^{k}$ put $\left(P_{N} f\right)(z)=\sum_{k \in N} \alpha_{k} z^{k}$. Then $M_{1}\left(P_{N} f, r\right) \leq M_{1}(f, r)$ for any $r>0$.
(b) Let $n_{1}, n_{2} \in \mathbb{Z}_{+}$and $m \leq \min \left(n_{1}, n_{2}\right)$. Then there is an isometry $i: A_{m} \rightarrow\left(A_{n_{1}} \oplus A_{n_{2}}\right)_{(1)}$ and a projection $Q:\left(A_{n_{1}} \oplus A_{n_{2}}\right)_{(1)} \rightarrow i\left(A_{m}\right)$ with $\|Q\| \leq 2$ and $Q\left(z^{j}, 0\right)=0=Q\left(0, z^{j}\right)$ for all $j \geq m$.
(c) Let $n_{1}, n_{2} \in \mathbb{Z}_{+}$and $m \leq \min \left(n_{1}, n_{2}\right)$. Then there is an isometry $j: A_{m} \rightarrow\left(A_{n_{1}} \oplus A_{n_{2}}\right)_{(1)}$ and a projection $P:\left(A_{n_{1}} \oplus A_{n_{2}}\right)_{(1)} \rightarrow j\left(A_{m}\right)$ with $\|P\| \leq 2$ and $P\left(z^{l}, 0\right)=0=P\left(0, z^{l}\right)$ for all $l \leq \min \left(n_{1}, n_{2}\right)-m$.
Proof. (a) The proof is the same as the proof of [9, Lemma 4.3].
(b) This is [8, Lemma 2.1].
(c) Let i and Q be as in (b). Let $S:\left(A_{n_{1}} \oplus A_{n_{2}}\right)_{(1)} \rightarrow\left(A_{n_{1}} \oplus A_{n_{2}}\right)_{(1)}$ be the isometry with $S\left(z^{l}, z^{k}\right)=\left(z^{n_{1}-l}, z^{n_{2}-k}\right)$. Then put $j=S \circ i$ and $P=S Q S^{-1}$.

Recall that if $\left|n_{1}-n_{2}\right| \geq 2$ then $\left(B_{n_{1}} \oplus B_{n_{2}}\right)_{(1)}$ is isomorphic to a subspace of H_{μ}. Indeed, take $f_{k} \in B_{n_{k}}, k=1,2$. Then, by Lemmas 5.1 and 5.3,

$$
\begin{equation*}
c_{1}\left\|f_{k}\right\|_{\mu} \leq M_{1}\left(f_{k}, s_{n_{k}}\right) a_{n_{k}} \leq c_{2}\left\|f_{k}\right\|_{\mu}, \quad k=1,2, \tag{6.4}
\end{equation*}
$$

for universal constants c_{1}, c_{2}. We have

$$
\sum_{n} T_{n}\left(f_{1}+f_{2}\right)=T_{n_{1}-1} f_{1}+T_{n_{1}} f_{1}+T_{n_{1}+1} f_{1}+T_{n_{2}-1} f_{2}+T_{n_{2}} f_{2}+T_{n_{2}+1} f_{2}
$$

in view of (6.1). Hence Theorem 1.3 implies

$$
\begin{equation*}
d_{1}\left\|f_{1}+f_{2}\right\|_{\mu} \leq\left\|f_{1}\right\|_{\mu}+\left\|f_{2}\right\|_{\mu} \leq d_{2}\left\|f_{1}+f_{2}\right\|_{\mu} \tag{6.5}
\end{equation*}
$$

for universal constants d_{1}, d_{2}.
6.3. Proposition. Assume that $\left(m_{n}\right)$ does not satisfy (1.5). Then H_{μ} contains a complemented subspace isomorphic to $\left(\sum_{n} \oplus A_{n}\right)_{(1)}$.

Proof. Case 1: There are $0<n_{1}<n_{2}<\cdots$ with

$$
\left(m_{n_{k}}-m_{n_{k}-1}\right) k \leq m_{n_{k}+1}-m_{n_{k}} \quad \text { and } \quad k \leq m_{n_{k}+1}-m_{n_{k}-1}
$$

for all k. Put $q_{k}=\left[m_{n_{k}}\right]-\left[m_{n_{k}-1}\right]$ and $N_{k}=\left\{\left[m_{n_{k}}\right]+j q_{k}: j \in \mathbb{Z}\right\} \cap \mathbb{Z}_{+}$. Recall that in view of (4.2) we have

$$
\begin{align*}
& P_{N_{k}}\left(T_{n_{k}}+T_{n_{k}+1}\right)\left(\sum_{k=0}^{\infty} \alpha_{k} z^{k}\right) \tag{6.6}\\
&=\sum_{\substack{\left[m_{n_{k}}\right] \leq j \leq\left[m_{n_{k}+1}\right] \\
j \in N_{k}}} \alpha_{j} z^{j}+\sum_{\substack{m_{n_{k}+1}<j<m_{n_{k}+2} \\
j \in N_{k}}} \alpha_{j} \gamma_{j} z^{j}
\end{align*}
$$

for some γ_{j}. Let $p_{k}=\max \left\{j \in N_{k}:\left[m_{n_{k}}\right]+j q_{k}<m_{n_{k}+2}\right\}$ and $p_{k}^{\prime}=$ $\max \left\{j \in N_{k}:\left[m_{n_{k}}\right]+j q_{k} \leq\left[m_{n_{k}+1}\right]\right\}$. Moreover let $S_{k}:\left(A_{p_{k}} \oplus A_{p_{k+1}}\right)_{(1)} \rightarrow$ $\left(B_{n_{k}} \oplus B_{n_{k+1}}\right)_{(1)}$ be defined by
$S_{k}(f, g)=\left(\left(\frac{z}{s_{n_{k}}}\right)^{\left[m_{n_{k}}\right]} f\left(\left(\frac{z}{s_{n_{k}}}\right)^{q_{k}}\right),\left(\frac{z}{s_{n_{k+1}}}\right)^{\left[m_{n_{k+1}}\right]} f\left(\left(\frac{z}{s_{n_{k+1}}}\right)^{q_{k+1}}\right)\right)$,
which is an isometry. Put $l_{k}=\min \left(p_{k}^{\prime}, p_{k+1}^{\prime}\right)$. Let $i: A_{l_{k}} \rightarrow\left(A_{p_{k}} \oplus A_{p_{k+1}}\right)_{(1)}$ be an isometry and $\tilde{Q}_{k}:\left(A_{p_{k}} \oplus A_{p_{k+1}}\right)_{(1)} \rightarrow i\left(A_{l_{k}}\right)$ a projection with $\left\|\tilde{Q}_{k}\right\|$ ≤ 2 and $\tilde{Q}_{k}\left(z^{j}, 0\right)=0=\tilde{Q}_{k}\left(0, z^{j}\right)$ if $j \leq l_{k}$ (Lemma 6.2(b)). Then put, for $f \in H_{\mu}$,

$$
Q_{k} f=S_{k} \tilde{Q}_{k} S_{k}^{-1}\left(T_{n_{k}} f, T_{n_{k+1}} f\right) \in\left(B_{n_{k}} \oplus B_{n_{k+1}}\right)_{(1)}
$$

The latter space can be identified with a subspace of H_{μ} (by (6.4) and (6.5)). Taking (6.6) into account we see that Q_{k} is a projection onto a space which is isomorphic to $A_{l_{k}}$. Then $Q f=\sum_{k} Q_{2 k} f$ is a bounded projection onto a subspace of H_{μ} which is isomorphic to $\left(\sum_{k} \oplus A_{l_{2 k}}\right)_{(1)}$. This proves the proposition in Case 1 (in view of (6.2)).

Case 2: There are $0<n_{1}<n_{2}<\cdots$ with

$$
\left(m_{n_{k}+1}-m_{n_{k}}\right) k \leq m_{n_{k}}-m_{n_{k}-1} \quad \text { and } \quad k \leq m_{n_{k}+1}-m_{n_{k}-1}
$$

Then proceed exactly as in Case 1 and use Lemma 6.2(c) instead of (b).
Concluding remarks. If (1.5) is satisfied then H_{μ} is complemented in l_{1}, hence isomorphic to $l_{1}([6])$. If (1.5) is not satisfied then, using Pełczyński's decomposition method, (6.2), Proposition 6.1(b) and Proposition 6.3
we see that $H_{\mu} \sim\left(\sum_{n} \oplus A_{n}\right)_{(1)}$. The spaces A_{n} are never uniformly complemented in l_{1}. Therefore $\left(\sum_{n} \oplus A_{n}\right)_{(1)}$ cannot be isomorphic to l_{1}. This finishes the proofs of Theorems 1.1 and 1.4.

For $H_{p, \mu}, 1<p<\infty$, we proceed exactly as before. Here we can replace $V_{n, m}$ by the Dirichlet projections $V_{m, m}$ and use that $\int_{0}^{2 \pi}\left|\left(V_{m, m} f\right)\left(r e^{i \varphi}\right)\right|^{p} d \varphi$ $\leq c \int_{0}^{2 \pi}\left|f\left(r e^{i \varphi}\right)\right|^{p} d \varphi$ where c is independent of r, m and f. Then we conclude that $H_{p, \mu}$ is always complemented in l_{p} and hence isomorphic to l_{p}.

Acknowledgments. Research of A. Harutyunyan was supported by Heinrich-Hertz Stiftung B 42 Nr. 19/06.

References

[1] M. Abramowitz and I. A. Stegun, Pocket Book of Mathematical Functions, Deutsch, Frankfurt/Main, 1984.
[2] M. M. Djrbashian, On canonical representation of functions meromorphic in the unit disc, Dokl. Akad. Nauk Armyan. SSR 3 (1945), no. 1, 3-9 (in Russian).
[3] -, On the representability problem of analytic functions, Soobshch. Inst. Mat. Mekh. Akad. Nauk Armyan. SSR 2 (1948), 3-40 (in Russian).
[4] D. J. H. Garling and P. Wojtaszczyk, Some Bargmann spaces of analytic functions, in: Function Spaces (Edwardsville, IL, 1994), Lecture Notes in Pure Appl. Math. 172, Dekker, 1995, 123-138.
[5] J. Lindenstrauss and A. Pełczyński, Contributions to the theory of classical Banach spaces, J. Funct. Anal. 8 (1971), 225-249.
[6] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, Berlin, 1986.
[7] W. Lusky, On generalized Bergman spaces, Studia Math. 119 (1996), 77-95.
[8] -, On the isomorphic classification of weighted spaces of holomorphic functions, Acta Univ. Carolin. Math. Phys. 41 (2000), no. 2, 51-60.
[9] -, On the isomorphism classes of weighted spaces of harmonic and holomorphic functions, Studia Math. 175 (2006), 19-45.
[10] A. L. Shields and D. L. Williams, Bounded projections, duality and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287-302.
[11] -, 一, Bounded projections, duality and multipliers in spaces of harmonic functions, J. Reine Angew. Math. 299/300 (1978), 256-279.

Anahit Harutyunyan
Faculty of Informatics and Applied Mathematics
University of Yerevan
Alek Manukian 1
Yerevan 25, Armenia
E-mail: anahit@ysu.am

Wolfgang Lusky
Institute of Mathematics
University of Paderborn
Warburger Str. 100
D-33098 Paderborn, Germany
E-mail: lusky@uni-paderborn.de

[^0]: 2010 Mathematics Subject Classification: Primary 46E15; Secondary 46B03.
 Key words and phrases: holomorphic functions, entire functions, weighted spaces, isomorphic classification.

