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On L1-subspaces of holomorphic functions

by

Anahit Harutyunyan (Yerevan) and Wolfgang Lusky (Paderborn)

Abstract. We study the spaces

Hµ(Ω) =
n
f : Ω → C holomorphic :

R�

0

2π�

0

|f(reiϕ)| dϕ dµ(r) <∞
o

where Ω is a disc with radius R and µ is a given probability measure on [0, R[. We show
that, depending on µ, Hµ(Ω) is either isomorphic to l1 or to (

P
⊕An)(1). Here An is the

space of all polynomials of degree ≤ n endowed with the L1-norm on the unit sphere.

1. Introduction. Let R > 0 and Ω = R ·D = {z ∈ C : |z| < R}, or Ω =
C and R = ∞. We want to study Banach spaces of holomorphic functions
endowed with a norm

	
Ω |f(z)| dν(z) where ν is a given bounded positive

measure on Ω. In the present note we consider the case dν(reiϕ) = dϕdµ(r)
where µ is a given bounded positive measure on [0, R[. We put

M1(f, r) =
1
2π

2π�

0

|f(reiϕ)| dϕ, ‖f‖µ =
R�

0

M1(f, r) dµ(r)

and
Hµ = Hµ(Ω) = {f : Ω → C holomorphic : ‖f‖µ <∞}.

Recall that M1(f, r) is increasing in r if f is holomorphic. It is easily seen
that Hµ is a Banach space. We can assume without loss of generality that

(1.1) µ([r,R[) > 0 for any r < R.

(Otherwise we restrict our functions to ρD where ρ = sup{τ : µ([r, τ [) > 0
for all r < τ} and put R = ρ.) Moreover we assume

(1.2)
R�

0

rn dµ(r) <∞ for any n ≥ 0.

2010 Mathematics Subject Classification: Primary 46E15; Secondary 46B03.
Key words and phrases: holomorphic functions, entire functions, weighted spaces, isomor-
phic classification.

DOI: 10.4064/sm198-2-4 [157] c© Instytut Matematyczny PAN, 2010



158 A. Harutyunyan and W. Lusky

Certainly (1.2) is automatically satisfied if R <∞. But in the case of entire
functions, without (1.2), Hµ might be finite-dimensional.

We easily see that the polynomials are dense in Hµ. Indeed, fix f ∈ Hµ.
Let σnf be the nth Cesàro mean of f (see Section 4 below for definition).
Then σnf → f pointwise as n → ∞, and M1(σnf, r) ≤ M1(f, r) for all n.
Moreover σnf is a polynomial. The dominated convergence theorem implies
limn→∞ ‖σnf − f‖µ = 0.

Examples. (i) Ω = D: dµ1 = rdr. Hµ1 is the classical Djrbashian or
Bergman space ([2, 3]). It is known to be isomorphic to l1 ([10, 5]). Even if
we consider dµ2 = (1− r)αrβdr for some α ≥ 0 and β ≥ 0 we have Hµ2 ∼ l1
(see e.g. [11]; “∼ ” means “is isomorphic to”). Furthermore consider

dµ3 =
dr

(1− r) logγ(e/(1− r))
for some γ>1, dµ4 =

∞∑
k=1

1
k(k + 1)

δ1−2−k

(δa is the Dirac measure at a). It was shown in [7] that in both cases Hµ is
not isomorphic to l1.

(ii) Ω = C: Consider dµ5 = e−rdr and dµ6 = e− log2 rdr. µ5 was investi-
gated e.g. in [4]. There it was shown that Hµ5 ∼ l1 (see Section 2).

We want to give a complete isomorphic classification of the Banach spaces
Hµ(Ω). To this end let An be the space of all polynomials of degree ≤ n
endowed with the norm M1(·, 1).

1.1. Theorem. Each Hµ is isomorphic to either l1 or (
∑∞

n=1⊕An)(1).

Theorem 1.1 is an extension of [8] where a similar result was shown only
for measures on [0, 1[ under additional rather restrictive assumptions on µ
excluding many examples. To decide to which isomorphism class a given
space Hµ belongs we focus on purely non-atomic measures µ. This is no
restriction since we have

1.2. Proposition. Let µ be any probability measure on [0, R[ and ε > 0.
Then there is a purely non-atomic bounded measure µ0 on [0, R[ such that
Hµ = Hµ0 and

(1− ε)‖f‖µ ≤ ‖f‖µ0 ≤ ‖f‖µ, f ∈ Hµ.

Let us assume now that µ is purely non-atomic. Fix b ≥ 5. Then we use
induction to define 0 ≤ m1 < m2 < · · · and 0 ≤ s1 < s1 < · · · < R as
follows. Put m1 = 0. If we already have mn, consider sn with

(1.3)
sn�

0

rmn dµ = b

R�

sn

rmn dµ.
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Then find mn+1 > mn with

(1.4)
sn�

0

rmn+1 dµ =
R�

sn

rmn+1 dµ.

It is easily seen that limn→∞ sn = R and limn→∞mn =∞. We have

1.3. Theorem. There are c1 > 0, c2 > 0 and tn,k ≥ 0 such that

c1‖f‖µ ≤
∞∑
n=1

M1(Tnf, sn)
( sn�

0

(
r

sn

)mn−1

dµ+
R�

sn

(
r

sn

)mn+1

dµ

)
≤ c2‖f‖µ

for all f ∈ Hµ where Tn(
∑∞

k=0 αkz
k) =

∑
mn−1≤k<mn+1

αktn,kz
k.

Moreover:

1.4. Theorem. Hµ ∼ l1 if and only if there are α, β, γ > 0 such that,
for each n,

(1.5) α ≤ mn+1 −mn

mn −mn−1
≤ β or mn+1 −mn−1 ≤ γ.

The paper is organized as follows. In Section 2 we discuss the two ex-
amples on C that we already mentioned, and compute explicitly the in-
dices mn. In Section 3 we prove Proposition 1.2 while in Section 4 we collect
a few technical lemmas. Then we prove Theorem 1.3 in Section 5. Section 6
is dedicated to the proofs of Theorems 1.1, 1.4 and 1.5 (below).

Our results have many similarities with the isomorphic classification of
weighted sup-norm spaces of holomorphic functions ([9]). However, they can-
not be inferred directly from those results via duality. This follows e.g. from
[11, Theorem 2] which states that, if Hµ with a “weighting” measure µ is the
dual of a weighted sup-norm space, then Hµ is complemented in an L1-space.

Finally, we note that the isomorphic classification for the spaces

Hp,µ =
{
f : Ω → C holomorphic :

R�

0

2π�

0

|f(reiϕ)|p dϕ dµ(r) <∞
}

is much easier if 1 < p <∞.

1.5. Theorem. If 1 < p <∞ then Hp,µ is always isomorphic to lp.

For the proof see end of Section 6.

2. Two examples. Here we construct explicitly the indices mn men-
tioned in Theorem 1.3 and 1.4 for two examples.

(a) Put dµ(r) = exp(− log2 r)dr. Then, using the substitution

r = exp(s/
√

2 + (m+ 1)/2),

for any x ≥ 0 and m ≥ 0 we obtain
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x�

0

rme− log2 rdr =
e(m+1)2/4

√
2

(log x−(m+1)/2)
√

2�

−∞
e−s

2/2 ds.

In particular,
	∞
0 rm exp(− log2 r) dr =

√
π exp((m+1)2/4). Using the tables

of the normal distribution ([1]) we get, for fixed mn and sn = exp(1.3/
√

2 +
(mn + 1)/2),

sn�

0

rmne− log2 r dr = c
√
π e(mn+1)2/4 where c ≥ 0.9.

Hence
sn�

0

rmne− log2 rdr = b

∞�

sn

rmne− log2 r dr where b =
c

1− c
, i.e. b ≥ 9.

Now if

(2.1) mn+1 = mn +
√

2 · 1.3

we have exp(1.3/
√

2 + (mn + 1)/2) = exp((mn+1 + 1)/2). Hence
sn�

0

rmn+1e− log2 r dr =
e(mn+1+1)2/4

√
2

0�

−∞
e−s

2/2 ds

=
√
π

2
e(mn+1+1)2/4 =

∞�

sn

rmn+1e− log2 r dr.

Now (2.1) tells us that the assumptions of Theorem 1.4 are satisfied. Hence
Hµ ∼ l1. Moreover, since supn(mn+1 − mn) < ∞ the “summands” in the
equivalent norm in Theorem 1.3 have uniformly bounded length. This cannot
happen for any measure on [0, R[ if R <∞ (see Proposition 2.1).

(b) We next consider the measure dµ(r) = exp(−r)dr on [0,∞[. Here
∞�

0

rm exp(−r) dr = Γ (m+ 1)

is the gamma function. Using the substitution t = 2r we obtain, for any
x > 0,

	x
0 r

m exp(−r) dr = 2−m−1
	2x
0 tm exp(−t/2) dt, which is the distribu-

tion function (up to the factor Γ (m+1)−1) of a χ2-distribution. A well-known
limit theorem ([1, 26.4.11]) tells us that

lim
m→∞

(
1

2m+1Γ (m+ 1)

2x�

0

tme−t/2 dt

)(
1√
2π

(x−m−1)/
√
m+1�

−∞
e−t

2/2 dt

)−1

= 1.

So, if sn = 1.3
√
mn + 1+mn+1 we have (sn−mn−1)/

√
mn + 1 = 1.3 and	sn

0 rmn exp(−r) dr ∼ cΓ (mn+1) where c ≥ 0.9. Hence
	sn
0 rmn exp(−r) dr ∼

b
	∞
sn
rmn exp(−r) dr where b ≥ 9 if n is large enough. If we put
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(2.2) mn+1 = mn + 1.3
√
mn + 1

then
sn�

0

rmn+1e−r dr ∼ Γ (mn+1 + 1)√
2π

0�

−∞
e−t

2/2 dt =
Γ (mn+1 + 1)

2
.

Thus
	sn
0 rmn+1 exp(−r) dr ∼

	∞
sn
rmn+1 exp(−r) dr. Using this and (2.2),

Theorem 1.4 again shows that Hµ ∼ l1.
Next we prove that for R <∞ the length of the summands in Theorem

1.3 necessarily tends to ∞.

2.1. Proposition. Let µ be a purely non-atomic probability measure
on [0, R[ where R < ∞. Fix b > 1 and, for any m > 0, pick tm with	tm
0 rm dµ = b

	R
tm
rm dµ.

(a) For any a with 0 < a < R we have

lim
m→∞

	tm
0 rm dµ	tm
a rm dµ

= 1.

(b) If n=n(m) is such that
	tm
0 rn dµ=

	R
tm
rn dµ then limm→∞(n(m)−m)

=∞.

Proof. (a) First we observe
	tm
0 rm dµ	tm
a rm dµ

=

	a
0(r/a)

m dµ+
	tm
a (r/a)m dµ	tm

a (r/a)m dµ
.

Clearly, limm→∞
	a
0(r/a)

m dµ = 0 and limm→∞
	tm
a (r/a)m dµ =∞ since

limm→∞ tm = R. This proves (a).

(b) Assume that there are a constant c > 0 and, for all k, numbersmk > k
with n(mk) −mk ≤ c. Fix a < R and ε > 0 such that (b − ε)(a/R)c > 1.
Let k be large enough and pick t = tmk , n = n(mk) such that

	t
a r

mk dµ ≥
(b − ε)

	R
t r

mk dµ and
	t
a r

n dµ 6= 0. This is possible in view of (a). Since
n > mk we obtain

t�

a

(
r

R

)n
dµ ≥

(
a

R

)c t�
a

(
r

R

)mk
dµ ≥

(
a

R

)c
(b− ε)

R�

t

(
r

R

)mk
dµ

≥
(
a

R

)c
(b− ε)

R�

t

(
r

R

)n
dµ

≥
(
a

R

)c
(b− ε)

t�

0

(
r

R

)n
dµ ≥

(
a

R

)c
(b− ε)

t�

a

(
r

R

)n
dµ.

This is a contradiction since (a/R)c(b− ε) > 1.
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3. Approximation by purely non-atomic measures. First we show

3.1. Lemma. Let 0 < r < s and 0 < m < n.

(a) If f(z) =
∑

m<k≤n,k∈Z αkz
k then M1(f, r) ≤ (r/s)mM1(f, s).

(b) If g(z) =
∑

0≤k≤n,k∈Z αkz
k then M1(g, s) ≤ (s/r)nM1(g, r).

Proof. (a) Put h(z) =
∑

0≤k≤n−[m]−1, k∈Z αk+[m]+1z
k where [m] is the

largest integer ≤ m. Then f(z) = z[m]+1h(z) and

M1(f, r) = r[m]+1M1(h, r) ≤ r[m]+1M1(h, s) = (r/s)[m]+1M1(f, s)
≤ (r/s)mM1(f, s).

(b) Put h1(z) = g(1/z) and h2(z) = z[n]g(1/z). Then

M1(g, s) = M1(h1, 1/s) = s[n]M1(h2, 1/s)

≤ s[n]M1(h2, 1/r) = (s/r)[n]M1(h1, 1/r)

= (s/r)[n]M1(g, r) ≤ (s/r)nM1(g, r).

3.2. Lemma. Let f(z) =
∑∞

k=0 αkz
k ∈ Hµ.

(a) |αk|skµ([s,R[) ≤ ‖f‖µ for any k and s ∈ [0, R[.
(b) For any r0 ∈ [0, R[, n0 > 0 and ε > 0 there is n ≥ n0 (independent

of f) such that M1(f − fn, r) ≤ ε‖f‖µ if r ≤ r0 where fn(z) =∑n
k=0 αkz

k.
(c) For any r0 ∈ ]0, R[ and any ε > 0 there is r1 < r0, independent of f ,

such that r0 − r1 < ε and

(1− ε)M1(f, r0)− ε‖f‖µ ≤
1

r0 − r1

r0�

r1

M1(f, r) dr ≤M1(f, r0).

Proof. (a) Clearly we have |αk|sk ≤M1(f, s). Hence

|αk|skµ([s,R[) ≤
R�

s

M1(f, r) dµ ≤ ‖f‖µ.

(b) Fix s with r0 < s < R. Let n > n0 be such that(
r0
s

)n+1 s

s− r0
≤ εµ([s,R[).

Then, for any r ≤ r0,

M1(f − fn, r) ≤M1(f − fn, r0) ≤
∞∑

k=n+1

|αk|sk
(
r0
s

)k
≤
(
r0
s

)n+1( s

s− r0

)
‖f‖µ

µ([s,R[)
≤ ε‖f‖µ.
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(c) The second inequality is trivial. To prove the first inequality we use
(b) to obtain, for any δ > 0, some n with

M1(fn, r)− δ‖f‖µ ≤M1(f, r) ≤M1(fn, r) + δ‖f‖µ if r ≤ r0.

Hence, if r1 < r0 then, by Lemma 3.1(b),

1
r0 − r1

r0�

r1

M1(f, r) dr ≥
1

r0 − r1

r0�

r1

M1(fn, r) dr − δ‖f‖µ

≥ M1(fn, r0)
r0 − r1

r0�

r1

(
r

r0

)n
dr − δ‖f‖µ

≥
(
r1
r0

)n
M1(fn, r0)− δ‖f‖µ

≥
(
r1
r0

)n
M1(f, r0)−

(
1 +

(
r1
r0

)n)
δ‖f‖µ.

Now put δ = ε/2 and take r1 so close to r0 that (r1/r0)n ≥ 1− ε.

3.3. Proof of Proposition 1.2. Split µ into µ = ν + µ1 where ν is purely
non-atomic and µ1 =

∑
k αkδsk for some positive αk with

∑
k αk ≤ 1 and

some sk with 0 ≤ sk < R. Fix ε > 0 and let 0 < ε′ < ε be such that
1− 2ε′ ≥ 1− ε. Find rk < sk with

(1− ε′)M1(f, sk)− ε′‖f‖µ ≤
1

sk − rk

sk�

rk

M1(f, r) dr ≤M1(f, sk),

which is possible according to Lemma 3.2. Put

dµ0 = dν +
∑
k

αk
sk − rk

1[rk,sk]dr.

Then we obtain (1− 2ε′)‖f‖µ ≤ ‖f‖µ0 ≤ ‖f‖µ for all f ∈ Hµ. This implies
Proposition 1.2.

4. Classical convolution operators. For a harmonic function f : Ω →
C with f(reiϕ) =

∑
k∈Z αkr

|k|eikϕ and n > m > 0 let

(4.1) (σnf)(reiϕ) =
∑

|k|<n,k∈Z

[n]− |k|
[n]

αkr
|k|eikϕ

and

Vn,mf =
[n]σnf − [m]σmf

[n]− [m]
if [m] < [n].
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Hence

(4.2) (Vn,mf)(reiϕ)

=
∑

|k|≤m, k∈Z

αkr
|k|eikϕ +

∑
m<|k|<n, k∈Z

[n]− |k|
[n]− [m]

αkr
|k|eikϕ.

(4.2) also makes sense if [m] = [n]. Then Vn,m is a Dirichlet projection.
Finally put (Rf)(z) =

∑
0≤k αkz

k.
In the following lemma fix r > 0 and let ‖T‖ be the norm of a bounded

operator on the space of all harmonic functions f with M1(f, r) < ∞ (en-
dowed with the norm M1(·, r)).

4.1. Lemma. We have

(a) ‖Vn,m‖ ≤
[n] + [m]
[n]− [m]

.

(b) M1(Rh, r) ≤
(

1 +
[n]− [m]

[m]

)
M1(h, r) for any r > 0 and h ∈

span{r|k| exp(ikϕ) : k ∈ Z, m < |k| ≤ n}.

(c) ‖Vn4,n3 − Vn2,n1‖ ≤ 4
(

[n4]− [n1]
[n2]− [n1]

)(
3 + 4

[n4]− [n1]
[n4]− [n3]

)
if 0 < n1 <

n2 < n3 < n4.
(d) ‖Vn4,n3−Vn2,n1‖ ≤ 2([n4]−[n1]) and ‖R(Vn4,n3−Vn2,n1)‖ ≤ [n4]−[n1].

for any nk, k = 1, . . . , 4, with 0 < n1 < n2 < n3 < n4.

The proof is literally the same as the proof of [9, 3.3. Lemma].
In the following lemma we restrict the preceding operators to holomorphic

functions.

4.2. Lemma. Fix b > 0, c > 1/b and 0 < m < n, 0 < s < R such that

(4.3)
s�

0

rm dµ ≥ b
R�

s

rm dµ and
R�

s

rn dµ ≥ c
s�

0

rn dµ

(a) Consider f(z) =
∑

0≤k≤m, k∈Z αkz
k and g(z) =

∑
k≥n, k∈Z αkz

k. Then

‖f‖µ ≤
b+ 1
bc1 − c2

‖f + g‖µ with c1 = min(c, 1), c2 = min(1/c, 1).

(b) We have

‖Vn,mh‖µ ≤
(

181
b+ 1
bc1 − c2

+ 88
)
‖h‖µ for all h ∈ Hµ.

Proof. (a) For s ≤ r we have M1(f, r) ≤ (r/s)mM1(f, s) according to
Lemma 3.1. Then (4.3) implies
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R�

s

M1(f, r) dµ ≤M1(f, s)
R�

s

(
r

s

)m
dµ ≤ 1

b
M1(f, s)

s�

0

(
r

s

)m
dµ

≤ 1
b

s�

0

M1(f, r)
(
s

r

)m(r
s

)m
dµ =

1
b

s�

0

M1(f, r) dµ.

Hence
	R
0 M1(f, r) dµ ≤ (1 + 1/b)

	s
0M1(f, r) dµ. Similarly we obtain

c

s�

0

M1(g, r) dµ ≤ cM1(g, s)
s�

0

(
r

s

)n
dµ ≤M1(g, s)

R�

s

(
r

s

)n
dµ

≤
R�

s

M1(g, r)
(
s

r

)n(r
s

)n
dµ =

R�

s

M1(g, r) dµ.

This implies
R�

0

M1(f + g, r) dµ ≥ c1
s�

0

M1(f + g, r) dµ+ c2

R�

s

M1(f + g, r) dµ

≥ c1
s�

0

M1(f, r) dµ− c1
s�

0

M1(g, r) dµ+ c2

R�

s

M1(g, r) dµ− c2
R�

s

M1(f, r) dµ

≥
(
c1 −

c2
b

) s�

0

M1(f, r) dµ ≥
bc1 − c2
b+ 1

R�

0

M1(f, r) dµ.

This proves (a).
(b) If [n] ≥ 2[m] then ‖Vn,m‖ ≤ ([n] + [m])([n] − [m])−1 ≤ 3 in view of

Lemma 4.1.
Now let [n] < 2[m], i.e. 2[m]− [n] > 0. Put

h(z) =
∞∑
k=0

αkz
k, f̃(z) =

∑
k≤m

αkz
k, g̃(z) =

∑
k≥n

αkz
k.

Moreover, let T = V2n−m,n − Vm,2m−n and S = Vn,mT . In view of (4.2) this
means S = Vn,m − Vm,2m−n. Lemma 4.1 implies ‖T‖ ≤ 180 and ‖S‖ ≤ 88.
Finally, put f = (id−T )f̃ and g = (id−T )g̃. Then we obtain h = f+g+Th,
Vn,mf = f and Vn,mg = 0. Now (a) yields

‖Vn,mh‖µ = ‖f + Sh‖µ ≤ ‖f‖µ + ‖Sh‖µ
≤ b+ 1
bc1 − c2

‖f + g‖µ + ‖Sh‖µ

≤ b+ 1
bc1 − c2

‖f + g + Th‖µ + ‖Sh‖µ +
b+ 1
bc1 − c2

‖Th‖µ

≤
(

181
b+ 1
bc1 − c2

+ 88
)
‖h‖µ.
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4.3. Lemma. Let 0 ≤ m < n < p and f(z) =
∑

m≤k≤p, k∈Z αkz
k. Then

M1(Vp,nf, r) ≤ 2M1(f, r) and M1(Vn,mf, r) ≤M1(f, r)

for any r > 0.

Proof. Let (Ujf)(reiϕ) = eijϕf(reiϕ). Then we have

Vn,mf = U[m]σ[n]−[m]U−[m]f and Vp,nf = U[p](id− σ[p]−[n])U−[p]f.

This implies Lemma 4.3 since the Cesàro means as well as the operators Uj
are all contractive.

5. Proof of Theorem 1.3. We need a few lemmas.

5.1. Lemma. Let 0 ≤ m ≤ n and s ∈ [0, R[. Assume there is c > 0 with
s�

0

rm dµ ≤ c
R�

s

rm dµ and
R�

s

rn dµ ≤ c
s�

0

rn dµ.

Then, for any f(z) =
∑

m≤k≤n,k∈Z αkz
k, we have

‖f‖µ ≤
( s�

0

(
r

s

)m
dµ+

R�

s

(
r

s

)n
dµ

)
M1(f, s) ≤ c‖f‖µ.

Proof. Using Lemma 3.1 we get
R�

0

M1(f, r) dµ ≤M1(f, s)
( s�

0

(
r

s

)m
dµ+

R�

s

(
r

s

)n
dµ

)

≤ cM1(f, s)
(R�

s

(
r

s

)m
dµ+

s�

0

(
r

s

)n
dµ

)

≤ c
R�

s

M1(f, r)
(
s

r

)m(r
s

)m
dµ+ c

s�

0

M1(f, r)
(
s

r

)n(r
s

)n
dµ

= c

R�

0

M1(f, r) dµ.

5.2. Lemma. Fix b > 1 and 0 < c < b. Let 0 ≤ m < n and 0 ≤ s < t < R
be such that

s�

0

rm dµ ≤ c
R�

s

rm dµ and
t�

0

rn dµ ≥ b
R�

t

rn dµ.

Then, for any f(z) =
∑

m≤k≤n, k∈Z αkz
k, we have

‖f‖µ ≤ (1 + c)
(
b+ 1 + c

b− c

) t�

s

M1(f, r) dµ.
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Proof. First we obtain

‖f‖µ ≤M1(f, s)
s�

0

(
r

s

)m
dµ+

R�

s

M1(f, r) dµ

≤ cM1(f, s)
R�

s

(
r

s

)m
dµ+

R�

s

M1(f, r) dµ

≤ c
R�

s

M1(f, r)
(
s

r

)m(r
s

)m
dµ+

R�

s

M1(f, r) dµ

= (1 + c)
R�

s

M1(f, r) dµ.

Moreover
R�

s

M1(f, r) dµ ≤
t�

s

M1(f, r) dµ+M1(f, t)
R�

t

(
r

t

)n
dµ

≤
t�

s

M1(f, r) dµ+
M1(f, t)

b

t�

0

(
r

t

)n
dµ

≤
(

1 +
1
b

) t�

s

M1(f, r) dµ+
M1(f, t)

b

s�

0

(
r

t

)n
dµ

≤
(

1 +
1
b

) t�

s

M1(f, r) dµ+
M1(f, s)

b

(
t

s

)n s�
0

(
r

t

)n
dµ

≤
(

1 +
1
b

) t�

s

M1(f, r) dµ+
M1(f, s)

b

s�

0

(
r

s

)m
dµ

≤
(

1 +
1
b

) t�

s

M1(f, r) dµ+ c
M1(f, s)

b

t�

s

(
r

s

)m
dµ

+ c
M1(f, s)

b

R�

t

(
r

s

)m
dµ

≤
(

1 +
1 + c

b

) t�

s

M1(f, r) dµ+
c

b

R�

t

M1(f, r) dµ

≤ b+ c+ 1
b

t�

s

M1(f, r) dµ+
c

b

R�

s

M1(f, r) dµ.

This implies
R�

s

M1(f, r) dµ ≤
b+ c+ 1
b− c

t�

s

M1(f, r) dµ
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and hence

‖f‖µ ≤ (1 + c)
(
b+ c+ 1
b− c

) t�

s

M1(f, r) dµ.

5.3. Lemma. Let b > 1, 0 < m < n, 0 < s < t < R and assume that
s�

0

rm dµ ≤ b
R�

s

rm dµ,

s�

0

rn dµ =
R�

s

rn dµ,

t�

0

rn dµ = b

R�

t

rn dµ.

Then there is N = N(b) with
	t
0 r

m dµ ≤ 3Nb
	R
t r

m dµ; N does not depend
on m, n, s, t.

Proof. For j = 0, 1, . . . , put bj = 3jb, cj = (2bj)−1. Moreover put t0 = s.
Find t0 < t1 < t2 < · · · with

(5.1)
tj�

tj−1

rn dµ = cj−1

tj−1�

0

rn dµ.

We actually take

tj = sup
{
u > tj−1 :

u�

tj−1

rn dµ = cj−1

tj−1�

0

rn dµ
}
.

Then we claim

(5.2)
tj�

0

rm dµ ≤ 3jb
R�

tj

rm dµ.

We prove (5.2) by induction. (5.2) is clear if j = 0. Assume it holds for
some j. Then we obtain

tj+1�

tj

(
r

tj

)m
dµ ≤

tj+1�

tj

(
r

tj

)n
dµ = cj

tj�

0

(
r

tj

)n
dµ

≤ cj
tj�

0

(
r

tj

)m
dµ.

Hence
tj+1�

tj

rm dµ ≤ cj
tj�

0

rm dµ ≤ bjcj
R�

tj

rm dµ

=
1
2

R�

tj+1

rm dµ+
1
2

tj+1�

tj

rm dµ.
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This implies
	tj+1

tj
rm dµ ≤

	R
tj+1

rm dµ and

tj+1�

0

rm dµ ≤
tj�

0

rm dµ+
tj+1�

tj

rm dµ

≤ 3jb
R�

tj

rm dµ+
tj+1�

tj

rm dµ

= 3jb
R�

tj+1

rm dµ+ (3jb+ 1)
tj+1�

tj

rm dµ

≤ (2 · 3jb+ 1)
R�

tj+1

rm dµ ≤ 3j+1b

R�

tj+1

rm dµ.

We claim that there is N , depending only on b, such that tN ≥ t, which
proves the lemma in view of (5.2). Indeed, (5.1) implies

tj+1�

0

rn dµ =
tj�

0

rn dµ+
tj+1�

tj

rn dµ = (cj + 1)
tj�

0

rn dµ

= (cj + 1)(cj−1 + 1)
tj−1�

0

rn dµ = · · · =
j∏
j=0

(cj + 1)
s�

0

rn dµ.

On the other hand we have
t�

0

rn dµ =
b

b+ 1

R�

0

rn dµ =
2b
b+ 1

s�

0

rn dµ.

To prove the claim we need to show
∏∞
j=0(cj +1) > 2b(b+1)−1 since f(u) =

(
	u
0 r

n dµ)(
	s
0 r

n dµ)−1 is increasing. Indeed,
∞∏
j=0

(cj + 1) =
(

2b+ 1
2b

)(
2 · 3b+ 1

2 · 3b

)(
2 · 32b+ 1

2 · 32b

)
· · · ≥ 2b+ 1 >

2b
b+ 1

.

Conclusion of the proof of Theorem 1.3. Consider m, n, sn with (1.3)
and (1.4) for b ≥ 5. Take a polynomial f ∈ Hµ and put

(5.3) Tnf = (Vmn+1,mn − Vmn,mn−1)f.

Here take Vm1,m−1 = 0, i.e. T1 = Vm2,m1f . (Recall that only finitely many
summands are different from zero since f is a polynomial.)

Then we have f =
∑

n Tnf . An application of Lemma 5.2 with s = sn−2

and t = sn+1 yields ‖Tnf‖µ ≤ d1

	sn+1

sn−2
M1(Tnf, r) dµ for a universal con-

stant d1 (independent of f and n). We claim that there is another universal
constant d2 with
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(5.4)
sn+1�

sn−2

M1(Tnf, r) dµ ≤ d2

sn+1�

sn−2

M1(f, r) dµ.

Then we conclude

‖f‖µ ≤
∑
n

‖Tnf‖µ ≤ d1

∑
n

sn+1�

sn−2

M1(Tnf, r) dµ(5.5)

≤ d1d2

∑
n

sn+1�

sn−2

M1(f, r) dµ ≤ 3d1d2

R�

0

M1(f, r) dµ.

Now we apply Lemma 5.3 with s = sn−1 and t = sn to obtain
	sn
0 rmn−1 dµ ≤

3Nb
	R
sn
rmn−1 dµ. Since we also have

	R
sn
rmn+1 dµ =

	sn
0 rmn+1 dµ Lemma 5.1

implies

‖Tnf‖µ ≤
( sn�

0

(
r

sn

)mn−1

dµ+
R�

sn

(
r

sn

)mn+1

dµ

)
M1(Tnf, sn) ≤ d3‖Tnf‖µ

for some universal constant d3. Since the polynomials are dense in Hµ this
together with (5.5) proves Theorem 1.3.

It remains to show (5.4). To this end we apply Lemma 4.2 for the measure
dν = 1[sn−2,sn+1] dµ. We prove

(5.6)

sn+1�

sn

rmn+1 dµ ≥ b− 1
b+ 1

sn�

sn−2

rmn+1 dµ,

b− 1
2

sn+1�

sn

rmn dµ ≤
sn�

sn−2

rmn dµ.

Then Vmn+1,mn is uniformly bounded on Hν since (b − 1)2(2b + 2)−1 > 1 if
b ≥ 5.

Moreover we show

(5.7)

b− 1
b+ 1

sn−1�

sn−2

rmn dµ ≤
sn+1�

sn−1

rmn dµ,

b− 1
2

sn+1�

sn−1

rmn−1 dµ ≤
sn−1�

sn−2

rmn−1 dµ.

By Lemma 4.2, Vmn,mn−1 is uniformly bounded on Hν since we have
(b − 1)2(2b + 2)−1 > 1 if b ≥ 5. Hence Tn is uniformly bounded on Hν ,
which proves (5.4).

To show (5.6) we note that, by (1.4),
	sn
0 rmn+1 dµ = 2−1

	R
0 r

mn+1 dµ, and
by (1.3),

	sn+1

0 rmn+1 dµ = b(b+ 1)−1
	R
0 r

mn+1 dµ. Hence
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sn+1�

sn

rmn+1 dµ =
b− 1
2b+ 2

R�

0

rmn+1 dµ =
b− 1
b+ 1

sn�

0

rmn+1 dµ

≥ b− 1
b+ 1

sn�

sn−2

rmn+1 dµ.

Similarly we have
	sn
sn−1

rmn dµ = (b− 1)(2b+ 2)−1
	R
0 r

mn dµ and therefore

sn+1�

sn

rmn dµ ≤
R�

sn

rmn dµ =
1
b

sn�

0

rmn dµ

=
1
b

sn−1�

0

rmn dµ+
1
b

sn�

sn−1

rmn dµ

=
1
2b

R�

0

rmn dµ+
1
b

sn�

sn−1

rmn dµ

=
(

2(b+ 1)
2b(b− 1)

+
1
b

) sn�

sn−1

rmn dµ ≤ 2
b− 1

sn�

sn−2

rmn dµ,

which shows (5.6).
To prove (5.7) we start with

sn−1�

sn−2

rmn dµ ≤
sn−1�

0

rmn dµ =
1
2

R�

0

rmn dµ

=
1
2
· 2b+ 2
b− 1

sn�

sn−1

rmn dµ ≤ b+ 1
b− 1

sn+1�

sn−1

rmn dµ.

Furthermore
sn−1�

sn−2

rmn−1 dµ =
b− 1
2b+ 2

R�

0

rmn−1 dµ

=
b− 1

2

R�

sn−1

rmn−1 dµ ≥ b− 1
2

sn+1�

sn−1

rmn−1 dµ,

which completes the proof of (5.7).

6. Final proofs. Now we consider sequences (mn) and (sn) satisfying
(1.3) and (1.4) for some b ≥ 5. Let Tn be as in Theorem 1.3 (see (5.3)). Using
(4.2) we see that

Tnf = 0 if f ∈ span{zk : |k| ≤ mn−1 or |k| ≥ mn+1}.
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In particular

(6.1) TnTn′ = 0 if |n− n′| ≥ 2, Tn(Tn−1 + Tn + Tn+1) = Tn for all n.

Put X = (
∑

n⊕An)(1). In [8] it was shown that

(6.2) X ∼ (X ⊕X ⊕ . . .)(1) ∼
(∑

k

⊕Ank
)

(1)
if supk nk =∞.

Moreover put

(6.3) an =
sn�

0

(
r

sn

)mn−1

dµ+
R�

sn

(
r

sn

)mn+1

dµ.

Let Bn = span{zk : mn−1 ≤ k ≤ mn+1} be endowed with the norm
M1(·, sn)an.

For any function h and s > 0 put hs(z) = h(sz). If 0 ≤ m < n,
f(z) =

∑
0≤k≤n−[m] αkz

k and g(z) = z[m]f(z) then we have s[m]M1(fs, 1) =
M1(g, s). This implies that A[mn+1]−[mn−1] and Bn are isometrically isomor-
phic.

6.1. Proposition.

(a) Hµ is isomorphic to a complemented subspace of (
∑

n⊕An)(1).
(b) If (mn) satisfies (1.5) then Hµ is isomorphic to a complemented sub-

space of l1.

Proof. (a) It suffices to show that Hµ is isomorphic to a complemented
subspace of (

∑
n⊕Bn)(1).

Define Sf = (Tnf), f ∈ Hµ. Then S is an isomorphism into (
∑

n⊕Bn)(1)

according to Theorem 1.3. For (gn) ∈ (
∑

n⊕Bn)(1) put

P (gn) =
(
Tn

(
an−1

an
gn−1 + gn +

an+1

an
gn+1

))
.

Then Lemma 4.3 tells us that P is well-defined and bounded. (Recall that
Vmn+1,mn |Bn−1 = idBn−1 and Vmn,mn−1 |Bn+1 = 0.) Using (6.1) we see that P
is a projection onto SHµ.

(b) Let Ln be the completion of {f : f a trigonometric polynomial} with
respect toM1(·, sn)an. Then Ln is an L1-space which contains Bn. All Bn are
finite-dimensional. Hence we find finite-dimensional spaces Cn ⊃ Bn consist-
ing of trigonometric polynomials, whereCn⊂Ln, such that supn d(Cn, l

dimCn
1 )

<∞. Here d(X1, X2)=inf{‖T‖ · ‖T−1‖ :T :X1 → X2 an onto-isomorphism}
is the Banach–Mazur distance. Then clearly (

∑
n⊕Cn)(1) ∼ l1. By defini-

tion all Vn,m are well-defined on the Ck (see (4.2)) and the norm estimates
of Lemma 4.1 hold for M1(·, sn)an instead of M1(·, r). So the operators Tn
are well-defined on all Ck. Again (6.1) holds.
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For (hn) ∈ (
∑

n⊕Cn)(1) put

Q(hn) =
(
RTn

(
an−1

an
hn−1 + hn +

an+1

an
hn+1

))
.

(Recall R is the Riesz projection.) By (1.5), according to Lemma 4.1, the
operators RTn are uniformly bounded. Indeed, for any r > 0 we have

M1(RTnh, r) ≤
(

1 +
mn+1 −mn +mn −mn−1

mn−1

)
M1(Tnh, r)

≤
(

1 + (β2 + β)
mn−1 −mn−2

mn−1

)
M1(Tnh, r)

≤ (1 + β + β2)M1(Tnh, r)

unlessmn+1−mn−1 ≤ γ ormn−mn−2 ≤ γ. In the latter cases we get similar
estimates. In any case we obtain

M1(RTnh, r) ≤ max((1 + β + β2), (1 + (β + 1)γ))M1(Tnh, r).

Hence in view of (6.1), Q is a well-defined bounded projection onto SHµ.

We need another lemma.

6.2. Lemma.

(a) Fix p, q ∈ Z+ and let N = {p + jq : j ∈ Z} ∩ Z+. For f(z) =∑∞
k=0 αkz

k put (PNf)(z)=
∑

k∈N αkz
k. Then M1(PNf, r)≤M1(f, r)

for any r > 0.
(b) Let n1, n2 ∈ Z+ and m ≤ min(n1, n2). Then there is an isometry

i : Am → (An1⊕An2)(1) and a projection Q : (An1⊕An2)(1) → i(Am)
with ‖Q‖ ≤ 2 and Q(zj , 0) = 0 = Q(0, zj) for all j ≥ m.

(c) Let n1, n2 ∈ Z+ and m ≤ min(n1, n2). Then there is an isometry
j : Am → (An1⊕An2)(1) and a projection P : (An1⊕An2)(1) → j(Am)
with ‖P‖ ≤ 2 and P (zl, 0) = 0 = P (0, zl) for all l ≤ min(n1, n2)−m.

Proof. (a) The proof is the same as the proof of [9, Lemma 4.3].
(b) This is [8, Lemma 2.1].
(c) Let i and Q be as in (b). Let S : (An1 ⊕ An2)(1) → (An1 ⊕ An2)(1)

be the isometry with S(zl, zk) = (zn1−l, zn2−k). Then put j = S ◦ i and
P = SQS−1.

Recall that if |n1−n2| ≥ 2 then (Bn1⊕Bn2)(1) is isomorphic to a subspace
of Hµ. Indeed, take fk ∈ Bnk , k = 1, 2. Then, by Lemmas 5.1 and 5.3,

(6.4) c1‖fk‖µ ≤M1(fk, snk)ank ≤ c2‖fk‖µ, k = 1, 2,

for universal constants c1, c2. We have∑
n

Tn(f1 + f2) = Tn1−1f1 + Tn1f1 + Tn1+1f1 + Tn2−1f2 + Tn2f2 + Tn2+1f2
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in view of (6.1). Hence Theorem 1.3 implies

(6.5) d1‖f1 + f2‖µ ≤ ‖f1‖µ + ‖f2‖µ ≤ d2‖f1 + f2‖µ
for universal constants d1, d2.

6.3. Proposition. Assume that (mn) does not satisfy (1.5). Then Hµ

contains a complemented subspace isomorphic to (
∑

n⊕An)(1).

Proof. Case 1: There are 0 < n1 < n2 < · · · with
(mnk −mnk−1)k ≤ mnk+1 −mnk and k ≤ mnk+1 −mnk−1

for all k. Put qk = [mnk ] − [mnk−1] and Nk = {[mnk ] + jqk : j ∈ Z} ∩ Z+.
Recall that in view of (4.2) we have

(6.6) PNk(Tnk + Tnk+1)
( ∞∑
k=0

αkz
k
)

=
∑

[mnk ]≤j≤[mnk+1]
j∈Nk

αjz
j +

∑
mnk+1<j<mnk+2

j∈Nk

αjγjz
j

for some γj . Let pk = max{j ∈ Nk : [mnk ] + jqk < mnk+2} and p′k =
max{j ∈ Nk : [mnk ] + jqk ≤ [mnk+1]}. Moreover let Sk : (Apk ⊕Apk+1

)(1) →
(Bnk ⊕Bnk+1

)(1) be defined by

Sk(f, g) =
((

z

snk

)[mnk ]

f

((
z

snk

)qk)
,

(
z

snk+1

)[mnk+1
]

f

((
z

snk+1

)qk+1
))

,

which is an isometry. Put lk = min(p′k, p
′
k+1). Let i : Alk → (Apk ⊕Apk+1

)(1)

be an isometry and Q̃k : (Apk ⊕ Apk+1
)(1) → i(Alk) a projection with ‖Q̃k‖

≤ 2 and Q̃k(zj , 0) = 0 = Q̃k(0, zj) if j ≤ lk (Lemma 6.2(b)). Then put, for
f ∈ Hµ,

Qkf = SkQ̃kS
−1
k (Tnkf, Tnk+1

f) ∈ (Bnk ⊕Bnk+1
)(1).

The latter space can be identified with a subspace of Hµ (by (6.4) and (6.5)).
Taking (6.6) into account we see that Qk is a projection onto a space which
is isomorphic to Alk . Then Qf =

∑
kQ2kf is a bounded projection onto

a subspace of Hµ which is isomorphic to (
∑

k⊕Al2k)(1). This proves the
proposition in Case 1 (in view of (6.2)).

Case 2: There are 0 < n1 < n2 < · · · with
(mnk+1 −mnk)k ≤ mnk −mnk−1 and k ≤ mnk+1 −mnk−1.

Then proceed exactly as in Case 1 and use Lemma 6.2(c) instead of (b).

Concluding remarks. If (1.5) is satisfied then Hµ is complemented
in l1, hence isomorphic to l1 ([6]). If (1.5) is not satisfied then, using Pełczyń-
ski’s decomposition method, (6.2), Proposition 6.1(b) and Proposition 6.3
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we see that Hµ ∼ (
∑

n⊕An)(1). The spaces An are never uniformly com-
plemented in l1. Therefore (

∑
n⊕An)(1) cannot be isomorphic to l1. This

finishes the proofs of Theorems 1.1 and 1.4.
For Hp,µ, 1 < p <∞, we proceed exactly as before. Here we can replace

Vn,m by the Dirichlet projections Vm,m and use that
	2π
0 |(Vm,mf)(reiϕ)|p dϕ

≤ c
	2π
0 |f(reiϕ)|p dϕ where c is independent of r, m and f . Then we conclude

that Hp,µ is always complemented in lp and hence isomorphic to lp.
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