Bounded evaluation operators from H^p into ℓ^q

by

MARTIN SMITH (York)

Abstract. Given $0 < p, q < \infty$ and any sequence $z = \{z_n\}$ in the unit disc \mathbb{D}, we define an operator from functions on \mathbb{D} to sequences by $T_{z,p}(f) = \{(1 - |z_n|^2)^{1/p} f(z_n)\}$. Necessary and sufficient conditions on $\{z_n\}$ are given such that $T_{z,p}$ maps the Hardy space H^p boundedly into the sequence space ℓ^q. A corresponding result for Bergman spaces is also stated.

1. Introduction. For $0 < p < \infty$ let ℓ^p denote the classical sequence space and H^p denote the classical Hardy space of the unit disc, \mathbb{D}. It is well known that, for all $f \in H^p$ and $z \in \mathbb{D}$,

\begin{equation}
|f(z)| \leq \|f\|_{H^p} (1 - |z|^2)^{-1/p}
\end{equation}

(see e.g. [4, p. 36]), and that this gives a sharp rate of growth for H^p functions. Given any sequence $z = \{z_n\}$ in \mathbb{D} we define the operator $T_{z,p}$ by

\begin{equation}
T_{z,p}(f) = \{(1 - |z_n|^2)^{1/p} f(z_n)\} \quad \text{for } f \text{ a function on } \mathbb{D}.
\end{equation}

The operator plays a key role in interpolation theory, indeed, z is said to be an interpolating sequence for H^p if $T_{z,p}$ maps H^p onto ℓ^p. Note that (1) trivially implies that $\|T_{z,p}(f)\|_{\ell^\infty} \leq \|f\|_{H^p}$ for all $f \in H^p$. It is also straightforward to show that for an infinite sequence z, $T_{z,p}$ maps H^p into c_0, the space of sequences which tend to zero, if and only if $|z_n| \to 1$ as $n \to \infty$.

The aim of this paper is as follows: given $0 < p, q < \infty$, describe all sequences z such that there exists a constant C such that

\begin{equation}
\|T_{z,p}(f)\|_{\ell^q} \leq C \|f\|_{H^p} \quad \text{for all } f \in H^p.
\end{equation}

Given $z, w \in \mathbb{D}$, let ϕ_w denote the corresponding Möbius transform and $d(z,w)$ the pseudohyperbolic distance, i.e.

\[\phi_w(z) = \frac{z - w}{1 - \overline{w}z} \quad \text{and} \quad d(z,w) = |\phi_w(z)|. \]

2000 Mathematics Subject Classification: Primary 30H05, 46E15.

Key words and phrases: Hardy space, uniformly discrete sequence, uniformly separated sequence, Bergman space.
A sequence of points \(\{z_n\} \) in \(\mathbb{D} \) is said to be \textit{uniformly discrete} if
\[
\inf_{n \neq m} d(z_n, z_m) > \delta > 0 \quad \text{for some} \ \delta,
\]
and \textit{uniformly separated} if
\[
\inf_n \prod_{m \neq n} d(z_n, z_m) > \delta > 0 \quad \text{for some} \ \delta.
\]

Perhaps surprisingly, the characterisation of sequences \(z \) such that (3) holds forms a trichotomy depending only upon whether \(p \) is less than, equal to or greater than \(q \):

\textbf{Theorem 1.} Given \(0 < p, q < \infty \) and a sequence \(\{z_n\} \) in \(\mathbb{D} \), the following are equivalent:

1. There exists a constant \(C \) such that
\[
\sum_n (1 - |z_n|^2)^{q/p} |f(z_n)|^q \leq C \|f\|_{H^p}^q \quad \text{for all} \ f \in H^p.
\]

2. (a) \(p < q \) and \(\{z_n\} \) is a finite union of uniformly discrete sequences;
 (b) \(p = q \) and \(\{z_n\} \) is a finite union of uniformly separated sequences;
 (c) \(p > q \) and \(\{z_n\} \) is a finite sequence.

The conclusion of Theorem 1 when \(p = q \) is well known; see [5], [8] and [9]. It is closely related to the fact that \(T_{z,p} \) maps \(H^p \) onto \(\ell^p \) if and only if the infinite sequence \(\{z_n\} \) is uniformly separated; this was proved by Carleson [2] when \(p = \infty \), Shapiro and Shields [12] when \(1 \leq p < \infty \) and Kabaľa [7] when \(0 < p < 1 \); see e.g. [4, Chapter 9].

We shall therefore concentrate on the cases when \(p \neq q \), where the characterisations given do not appear to be stated in the literature.

\textbf{2. The case} \(p < q \). Our main tool is the following generalisation of Carleson’s measure theorem due to Duren [3]. Given \(\theta_0 \in [0, 2\pi) \) and \(0 \leq \theta \leq \theta_0 + h \), let
\[
S(\theta_0, h) = \{re^{i\theta} : 1 - h \leq r < 1, \theta_0 \leq \theta \leq \theta_0 + h\}
\]
be the corresponding Carleson square.

\textbf{Theorem 2.} Given a finite positive Borel measure \(\mu \) on \(\mathbb{D} \) and \(0 < p \leq q < \infty \), there exists a constant \(C \) such that
\[
\int_{\mathbb{D}} |f(z)|^q d\mu(z) \leq C \|f\|_{H^p}^q \quad \text{for all} \ f \in H^p
\]
if and only if there exists a constant \(\tilde{C} \) such that \(\mu(S(\theta_0, h)) \leq \tilde{C}h^{q/p} \) for all Carleson squares \(S(\theta_0, h) \).

We can now prove Theorem 1 in the case that \(p < q \).
Theorem 3. Given a sequence \(\{z_n\} \) in \(\mathbb{D} \), the following are equivalent:

1. For all \(0 < p < q < \infty \), there exists a constant \(C \) such that
 \[
 \sum_n (1 - |z_n|^2)^{q/p} |f(z_n)|^q \leq C \|f\|_{H^p}^q
 \]
 for all \(f \in H^p \).

2. \(\{z_n\} \) is a finite union of uniformly discrete sequences.

3. For some \(r > 1 \),
 \[
 \sup_{z \in \mathbb{D}} \sum_n (1 - |\phi_{z_n}(z)|^2)^r < \infty.
 \]

4. For all \(r > 1 \),
 \[
 \sup_{z \in \mathbb{D}} \sum_n (1 - |\phi_{z_n}(z)|^2)^r < \infty.
 \]

Proof. (1) \(\Rightarrow \) (4). Given any \(0 < p < \infty \), let \(q = rp \). For all \(z \in \mathbb{D} \), let
 \[
 f_z(w) = \frac{(1 - |z|^2)^{1/p}}{(1 - \overline{z}w)^{2/p}},
 \]
so \(\|f_z\|_{H^p} \equiv 1 \). Consequently,
 \[
 \sup_{z \in \mathbb{D}} \sum_n \left(1 - |\phi_{z_n}(z)|^2\right)^r \leq C.
 \]
 The result now follows from the identity
 \[
 1 - |\phi_{z_n}(z)|^2 = \frac{(1 - |z|^2)(1 - |z_n|^2)}{|1 - \overline{z}z_n|^2}.
 \]

(4) \(\Rightarrow \) (3) is trivial so we show that (3) \(\Rightarrow \) (2), following a method from [5] and [9]. For any point \(z \in \mathbb{D} \), let \(N(z) \) denote the number of points of \(\{z_n\} \) contained in \(\Delta(z, 1/2) := \{w \in \mathbb{D} : d(w, z) < 1/2\} \). Then there exist \(K > 0 \) such that, for all \(z \in \mathbb{D} \),
 \[
 K \geq \sum_n (1 - |\phi_{z_n}(z)|^2)^r \geq \sum_{z_n \in \Delta(z, 1/2)} (1 - |\phi_{z_n}(z)|^2)^r \geq (3/4)^r N(z),
 \]
so \(N(z) \leq K(4/3)^r \). Since there exists an integer \(N \) such that \(N(z) \leq N \) for all \(z \in \mathbb{D} \), it follows that \(\{z_n\} \) can be split into the union of at most \(N \) uniformly discrete sequences (see e.g. [6, p. 69]).

(2) \(\Rightarrow \) (1). We may as well suppose that \(\{z_n\} \) is uniformly discrete. Then, letting
 \[
 Q(\theta_0, h) = \{re^{i\theta} : 1 - h \leq r < 1 - h/2, \theta_0 \leq \theta \leq \theta_0 + h\}
 \]
be the top half of the Carleson square \(S(\theta_0, h) \), it is easily shown that there exists an integer \(M \) such that every set \(Q(\theta_0, h) \) contains at most \(M \) points of the sequence \(\{z_n\} \). So, letting \(\mu \) be the discrete measure
 \[
 \mu = \sum_n (1 - |z_n|^2)^{q/p} \delta_{z_n},
 \]
we have for any $S(\theta_0, h)$,
\[
\mu(S(\theta_0, h)) = \sum_{k=0}^{\infty} \sum_{j=0}^{2^{k-1}} \mu(Q(\theta_0 + 2^{-k}j, 2^{-k}h))
\]
\[
\leq \sum_{k=0}^{\infty} \sum_{j=0}^{2^{k-1}} M(1 - (1 - 2^{-k-1}h)^2)^{q/p}
\]
\[
\leq M \sum_{k=0}^{\infty} 2^k(2^{-k}h)^{q/p} = M h^{q/p} \sum_{k=0}^{\infty} 2^{k(q-1)/p} = C h^{q/p},
\]
for some C as $q > p$. Now (1) follows from Theorem 2.

The surprising arithmetic fact that (3) implies (4) in Theorem 3 generalises [9, Theorem 4].

3. The case $p > q$. Using (1), it is easily shown that (3) holds when \{\{z_n\}\} is a finite sequence.

Proposition 4. Let $0 < q < p < \infty$ and \{\{z_n\}\} be a sequence in \mathbb{D}. Suppose that there exists a constant C such that
\[
\sum_n (1 - |z_n|^2)^{q/p}|f(z_n)|^q \leq C \|f\|_{H^p}^q \quad \text{for all } f \in H^p.
\]
Then \{\{z_n\}\} is a finite sequence.

Proof. Suppose that (4) holds for an infinite sequence \{\{z_n\}\}. Then, for all $f \in H^p$,
\[
\sum_n (1 - |z_n|^2)^{q/p}|f(z_n)|^q \leq \left(\sum_n (1 - |z_n|^2)^{q/p}|f(z_n)|^q \right)^{p/q} \leq C^{p/q} \|f\|_{H^p}^p.
\]
So, by Theorem 1, \{\{z_n\}\} is a finite union of uniformly separated sequences. By removing superfluous terms if necessary, we may suppose that \{\{z_n\}\} is an infinite uniformly separated sequence. Then the map $T_{z,p} : H^p \to \ell^p$ as defined in (2) is onto (see the comments after Theorem 1). By Banach's open mapping theorem there exists a constant N such that for all $\{\alpha_n\} \in \ell^p$, there exists $f \in H^p$ with $T_{z,p} f = \{\alpha_n\}$ and $\|f\|_{H^p} \leq N \|\{\alpha_n\}\|_{\ell^p}$ (see e.g. [4, p. 149]). So, in view of (4), $\|\{\alpha_n\}\|_{\ell^q} \leq C^{1/q} \|f\|_{H^p} \leq C^{1/q} N \|\{\alpha_n\}\|_{\ell^p}$ for all $\{\alpha_n\} \in \ell^p$, which gives a contradiction.

4. Remarks and acknowledgements. The inequality (3) has a dual formulation. For $1 < p, q < \infty$, let $p' = p/(p-1)$ and $q' = q/(q-1)$. Then we may identify the dual space of ℓ^q with $\ell^{q'}$ and the dual space of H^p with $H^{p'}$ (under the pairing induced by the inner product in H^2; see e.g. [4, p. 113]). Given $z \in \mathbb{D}$, let k_z denote the corresponding Cauchy kernel, so
\[k_z(w) = 1/(1 - z w). \] The following reproducing property holds: for \(f \in H^p \), \(f(z) = \langle f, k_z \rangle \). By considering the adjoint of \(T_{z,p} \), it is easily shown that for \(p, q \) as above, (3) holds if and only if there exists a constant \(\tilde{C} \) such that

\[
\left\| \sum_n \alpha_n (1 - |z_n|^2)^{1/p} k_{z_n} \right\|_{H^{p'}} \leq \tilde{C} \| \{ \alpha_n \} \|_{\ell^q'} \quad \text{for all } \{ \alpha_n \} \in \ell^q'.
\]

Using this equivalent formulation, an application for Theorem 1 in the classification of Schatten class Hankel operators has been found in [10].

We can also consider an analogous problem for Bergman spaces. For \(0 < p < \infty \) let \(A^p \) denote the classical Bergman space of the unit disc. It is well known that \(|f(z)| \leq \|f\|_{A^p} (1 - |z|^2)^{-2/p} \) for all \(f \in A^p \) and \(z \in \mathbb{D} \) (see e.g. [6, p. 36]. Given any sequence \(z = \{ z_n \} \) in \(\mathbb{D} \) we define the operator \(R_{z,p} \) by \(R_{z,p}(f) = \{(1 - |z_n|^2)^{2/p} f(z_n)\} \).

Theorem 5. Given \(0 < p, q < \infty \) and a sequence \(\{ z_n \} \) in \(\mathbb{D} \), the following are equivalent:

1. There exists a constant \(C \) such that
 \[
 \sum_n (1 - |z_n|^2)^{2n/p} |f(z_n)|^q \leq C \|f\|_{A^p}^q \quad \text{for all } f \in A^p.
 \]

2. (a) \(p \leq q \) and \(\{ z_n \} \) is a finite union of uniformly discrete sequences;
 (b) \(p > q \) and \(\{ z_n \} \) is a finite sequence.

The conclusion when \(p = q \) may be found in [13]; see also [6, p. 70]. It is closely related to Amar’s result that, if \(\{ z_n \} \) is uniformly discrete, then \(\{ z_n \} \) is the finite union of sequences \(\{ z_n^{(i)} \} \) such that each \(R_{z^{(i)},p} \) maps \(A^p \) onto \(\ell^p \) (see [1, Theorem 2.1.1], also [11]). The proofs when \(p \neq q \) are similar to the Hardy space cases but simpler, and so are omitted.

The author acknowledges financial support provided through EPSRC grant GR/R97610/01 and would like to thank Jonathan Partington and Sandra Pott for useful discussions.

References

Department of Mathematics
University of York
York Y010 5DD
United Kingdom
E-mail: mps@york.ac.uk

Current address:
Greenhead College
Greenhead Road
Huddersfield
West Yorkshire
HD1 4ES, United Kingdom
E-mail: drsmudge@hotmail.co.uk

Received January 18, 2005 (5568)