# Bounded evaluation operators from $H^{p}$ into $\ell^{q}$ 

by

Martin Smith (York)


#### Abstract

Given $0<p, q<\infty$ and any sequence $\mathbf{z}=\left\{z_{n}\right\}$ in the unit disc $\mathbb{D}$, we define an operator from functions on $\mathbb{D}$ to sequences by $T_{\mathbf{z}, p}(f)=\left\{\left(1-\left|z_{n}\right|^{2}\right)^{1 / p} f\left(z_{n}\right)\right\}$. Necessary and sufficient conditions on $\left\{z_{n}\right\}$ are given such that $T_{\mathbf{z}, p}$ maps the Hardy space $H^{p}$ boundedly into the sequence space $\ell^{q}$. A corresponding result for Bergman spaces is also stated.


1. Introduction. For $0<p<\infty$ let $\ell^{p}$ denote the classical sequence space and $H^{p}$ denote the classical Hardy space of the unit disc, $\mathbb{D}$. It is well known that, for all $f \in H^{p}$ and $z \in \mathbb{D}$,

$$
\begin{equation*}
|f(z)| \leq\|f\|_{H^{p}}\left(1-|z|^{2}\right)^{-1 / p} \tag{1}
\end{equation*}
$$

(see e.g. [4, p. 36]), and that this gives a sharp rate of growth for $H^{p}$ functions. Given any sequence $\mathbf{z}=\left\{z_{n}\right\}$ in $\mathbb{D}$ we define the operator $T_{\mathbf{z}, p}$ by

$$
\begin{equation*}
T_{\mathbf{z}, p}(f)=\left\{\left(1-\left|z_{n}\right|^{2}\right)^{1 / p} f\left(z_{n}\right)\right\} \quad \text { for } f \text { a function on } \mathbb{D} . \tag{2}
\end{equation*}
$$

The operator plays a key role in interpolation theory, indeed, $\mathbf{z}$ is said to be an interpolating sequence for $H^{p}$ if $T_{\mathbf{z}, p} \operatorname{maps} H^{p}$ onto $\ell^{p}$. Note that (1) trivially implies that $\left\|T_{\mathbf{z}, p}(f)\right\|_{\ell^{\infty}} \leq\|f\|_{H^{p}}$ for all $f \in H^{p}$. It is also straightforward to show that for an infinite sequence $\mathbf{z}, T_{\mathbf{z}, p}$ maps $H^{p}$ into $c_{0}$, the space of sequences which tend to zero, if and only if $\left|z_{n}\right| \rightarrow 1$ as $n \rightarrow \infty$.

The aim of this paper is as follows: given $0<p, q<\infty$, describe all sequences z such that there exists a constant $C$ such that

$$
\begin{equation*}
\left\|T_{\mathbf{z}, p}(f)\right\|_{\ell^{q}} \leq C\|f\|_{H^{p}} \quad \text { for all } f \in H^{p} \tag{3}
\end{equation*}
$$

Given $z, w \in \mathbb{D}$, let $\phi_{w}$ denote the corresponding Möbius transform and $\mathrm{d}(z, w)$ the pseudohyperbolic distance, i.e.

$$
\phi_{w}(z)=\frac{z-w}{1-\bar{w} z} \quad \text { and } \quad \mathrm{d}(z, w)=\left|\phi_{w}(z)\right|
$$

[^0]A sequence of points $\left\{z_{n}\right\}$ in $\mathbb{D}$ is said to be uniformly discrete if

$$
\inf _{n \neq m} \mathrm{~d}\left(z_{n}, z_{m}\right)>\delta>0 \quad \text { for some } \delta
$$

and uniformly separated if

$$
\inf _{n} \prod_{m \neq n} \mathrm{~d}\left(z_{n}, z_{m}\right)>\delta>0 \quad \text { for some } \delta
$$

Perhaps surprisingly, the characterisation of sequences $\mathbf{z}$ such that (3) holds forms a trichotomy depending only upon whether $p$ is less than, equal to or greater than $q$ :

Theorem 1. Given $0<p, q<\infty$ and a sequence $\left\{z_{n}\right\}$ in $\mathbb{D}$, the following are equivalent:
(1) There exists a constant $C$ such that

$$
\sum_{n}\left(1-\left|z_{n}\right|^{2}\right)^{q / p}\left|f\left(z_{n}\right)\right|^{q} \leq C\|f\|_{H^{p}}^{q} \quad \text { for all } f \in H^{p}
$$

(2) (a) $p<q$ and $\left\{z_{n}\right\}$ is a finite union of uniformly discrete sequences;
(b) $p=q$ and $\left\{z_{n}\right\}$ is a finite union of uniformly separated sequences;
(c) $p>q$ and $\left\{z_{n}\right\}$ is a finite sequence.

The conclusion of Theorem 1 when $p=q$ is well known; see [5], [8] and [9]. It is closely related to the fact that $T_{\mathbf{z}, p}$ maps $H^{p}$ onto $\ell^{p}$ if and only if the infinite sequence $\left\{z_{n}\right\}$ is uniformly separated; this was proved by Carleson [2] when $p=\infty$, Shapiro and Shields [12] when $1 \leq p<\infty$ and Kabaîla [7] when $0<p<1$; see e.g. [4, Chapter 9].

We shall therefore concentrate on the cases when $p \neq q$, where the characterisations given do not appear to be stated in the literature.
2. The case $p<q$. Our main tool is the following generalisation of Carleson's measure theorem due to Duren [3]. Given $\theta_{0} \in[0,2 \pi)$ and $0<$ $h<1$, let

$$
S\left(\theta_{0}, h\right)=\left\{r e^{i \theta}: 1-h \leq r<1, \theta_{0} \leq \theta \leq \theta_{0}+h\right\}
$$

be the corresponding Carleson square.
Theorem 2. Given a finite positive Borel measure $\mu$ on $\mathbb{D}$ and $0<p \leq q$ $<\infty$, there exists a constant $C$ such that

$$
\int_{\mathbb{D}}|f(z)|^{q} d \mu(z) \leq C\|f\|_{H^{p}}^{q} \quad \text { for all } f \in H^{p}
$$

if and only if there exists a constant $\widetilde{C}$ such that $\mu\left(S\left(\theta_{0}, h\right)\right) \leq \widetilde{C} h^{q / p}$ for all Carleson squares $S\left(\theta_{0}, h\right)$.

We can now prove Theorem 1 in the case that $p<q$.

Theorem 3. Given a sequence $\left\{z_{n}\right\}$ in $\mathbb{D}$, the following are equivalent:
(1) For all $0<p<q<\infty$, there exists a constant $C$ such that

$$
\sum_{n}\left(1-\left|z_{n}\right|^{2}\right)^{q / p}\left|f\left(z_{n}\right)\right|^{q} \leq C\|f\|_{H^{p}}^{q} \quad \text { for all } f \in H^{p} .
$$

(2) $\left\{z_{n}\right\}$ is a finite union of uniformly discrete sequences.
(3) For some $r>1$,

$$
\sup _{z \in \mathbb{D}} \sum_{n}\left(1-\left|\phi_{z_{n}}(z)\right|^{2}\right)^{r}<\infty .
$$

(4) For all $r>1$,

$$
\sup _{z \in \mathbb{D}} \sum_{n}\left(1-\left|\phi_{z_{n}}(z)\right|^{2}\right)^{r}<\infty .
$$

Proof. (1) $\Rightarrow$ (4). Given any $0<p<\infty$, let $q=r p$. For all $z \in \mathbb{D}$, let

$$
f_{z}(w)=\frac{\left(1-|z|^{2}\right)^{1 / p}}{(1-\bar{z} w)^{2 / p}},
$$

so $\left\|f_{z}\right\|_{H^{p}} \equiv 1$. Consequently,

$$
\sup _{z \in \mathbb{D}} \sum_{n}\left(\frac{\left(1-|z|^{2}\right)\left(1-\left|z_{n}\right|^{2}\right)}{\left|1-\bar{z} z_{n}\right|^{2}}\right)^{r} \leq C .
$$

The result now follows from the identity

$$
1-\left|\phi_{z_{n}}(z)\right|^{2}=\frac{\left(1-|z|^{2}\right)\left(1-\left|z_{n}\right|^{2}\right)}{\left|1-\bar{z} z_{n}\right|^{2}} .
$$

$(4) \Rightarrow(3)$ is trivial so we show that $(3) \Rightarrow(2)$, following a method from [5] and [9]. For any point $z \in \mathbb{D}$, let $N(z)$ denote the number of points of $\left\{z_{n}\right\}$ contained in $\Delta(z, 1 / 2):=\{w \in \mathbb{D}: \mathrm{d}(w, z)<1 / 2\}$. Then there exist $K>0$ such that, for all $z \in \mathbb{D}$,

$$
K \geq \sum_{n}\left(1-\left|\phi_{z_{n}}(z)\right|^{2}\right)^{r} \geq \sum_{z_{n} \in \Delta(z, 1 / 2)}\left(1-\left|\phi_{z_{n}}(z)\right|^{2}\right)^{r} \geq(3 / 4)^{r} N(z),
$$

so $N(z) \leq K(4 / 3)^{r}$. Since there exists an integer $N$ such that $N(z) \leq N$ for all $z \in \mathbb{D}$, it follows that $\left\{z_{n}\right\}$ can be split into the union of at most $N$ uniformly discrete sequences (see e.g. [6, p. 69]).
$(2) \Rightarrow(1)$. We may as well suppose that $\left\{z_{n}\right\}$ is uniformly discrete. Then, letting

$$
Q\left(\theta_{0}, h\right)=\left\{r e^{i \theta}: 1-h \leq r<1-h / 2, \theta_{0} \leq \theta \leq \theta_{0}+h\right\}
$$

be the top half of the Carleson square $S\left(\theta_{0}, h\right)$, it is easily shown that there exists an integer $M$ such that every set $Q\left(\theta_{0}, h\right)$ contains at most $M$ points of the sequence $\left\{z_{n}\right\}$. So, letting $\mu$ be the discrete measure

$$
\mu=\sum_{n}\left(1-\left|z_{n}\right|^{2}\right)^{q / p} \delta_{z_{n}},
$$

we have for any $S\left(\theta_{0}, h\right)$,

$$
\begin{aligned}
\mu\left(S\left(\theta_{0}, h\right)\right) & =\sum_{k=0}^{\infty} \sum_{j=0}^{2^{k}-1} \mu\left(Q\left(\theta_{0}+2^{-k} j h, 2^{-k} h\right)\right) \\
& \leq \sum_{k=0}^{\infty} \sum_{j=0}^{2^{k}-1} M\left(1-\left(1-2^{-k-1} h\right)^{2}\right)^{q / p} \\
& \leq M \sum_{k=0}^{\infty} 2^{k}\left(2^{-k} h\right)^{q / p}=M h^{q / p} \sum_{k=0}^{\infty} 2^{k(1-q / p)}=C h^{q / p}
\end{aligned}
$$

for some $C$ as $q>p$. Now (1) follows from Theorem 2.
The surprising arithmetic fact that (3) implies (4) in Theorem 3 generalises [9, Theorem 4].
3. The case $p>q$. Using (1), it is easily shown that (3) holds when $\left\{z_{n}\right\}$ is a finite sequence.

Proposition 4. Let $0<q<p<\infty$ and $\left\{z_{n}\right\}$ be a sequence in $\mathbb{D}$. Suppose that there exists a constant $C$ such that

$$
\begin{equation*}
\sum_{n}\left(1-\left|z_{n}\right|^{2}\right)^{q / p}\left|f\left(z_{n}\right)\right|^{q} \leq C\|f\|_{H^{p}}^{q} \quad \text { for all } f \in H^{p} \tag{4}
\end{equation*}
$$

Then $\left\{z_{n}\right\}$ is a finite sequence.
Proof. Suppose that (4) holds for an infinite sequence $\left\{z_{n}\right\}$. Then, for all $f \in H^{p}$,

$$
\sum_{n}\left(1-\left|z_{n}\right|^{2}\right)\left|f\left(z_{n}\right)\right|^{p} \leq\left(\sum_{n}\left(1-\left|z_{n}\right|^{2}\right)^{q / p}\left|f\left(z_{n}\right)\right|^{q}\right)^{p / q} \leq C^{p / q}\|f\|_{H^{p}}^{p}
$$

So, by Theorem $1,\left\{z_{n}\right\}$ is a finite union of uniformly separated sequences. By removing superfluous terms if necessary, we may suppose that $\left\{z_{n}\right\}$ is an infinite uniformly separated sequence. Then the map $T_{\mathbf{z}, p}: H^{p} \rightarrow \ell^{p}$ as defined in (2) is onto (see the comments after Theorem 1). By Banach's open mapping theorem there exists a constant $N$ such that for all $\left\{\alpha_{n}\right\} \in \ell^{p}$, there exists $f \in H^{p}$ with $T_{\mathbf{z}, p} f=\left\{\alpha_{n}\right\}$ and $\|f\|_{H^{p}} \leq N\left\|\left\{\alpha_{n}\right\}\right\|_{\ell^{p}}$ (see e.g. [4, p. 149]). So, in view of (4), $\left\|\left\{\alpha_{n}\right\}\right\|_{\ell^{q}} \leq C^{1 / q}\|f\|_{H^{p}} \leq C^{1 / q} N\left\|\left\{\alpha_{n}\right\}\right\|_{\ell^{p}}$ for all $\left\{\alpha_{n}\right\} \in \ell^{p}$, which gives a contradiction.
4. Remarks and acknowledgements. The inequality (3) has a dual formulation. For $1<p, q<\infty$, let $p^{\prime}=p /(p-1)$ and $q^{\prime}=q /(q-1)$. Then we may identify the dual space of $\ell^{q}$ with $\ell^{q^{\prime}}$ and the dual space of $H^{p}$ with $H^{p^{\prime}}$ (under the pairing induced by the inner product in $H^{2}$; see e.g. [4, p. 113]). Given $z \in \mathbb{D}$, let $k_{z}$ denote the corresponding Cauchy kernel, so
$k_{z}(w)=1 /(1-\bar{z} w)$. The following reproducing property holds: for $f \in H^{p}$, $f(z)=\left\langle f, k_{z}\right\rangle$. By considering the adjoint of $T_{\mathbf{z}, p}$, it is easily shown that for $p, q$ as above, (3) holds if and only if there exists a constant $\widetilde{C}$ such that

$$
\left\|\sum_{n} \alpha_{n}\left(1-\left|z_{n}\right|^{2}\right)^{1 / p} k_{z_{n}}\right\|_{H^{p^{\prime}}} \leq \widetilde{C}\left\|\left\{\alpha_{n}\right\}\right\|_{\ell^{q^{\prime}}} \quad \text { for all }\left\{\alpha_{n}\right\} \in \ell^{q^{\prime}} .
$$

Using this equivalent formulation, an application for Theorem 1 in the classification of Schatten class Hankel operators has been found in [10].

We can also consider an analogous problem for Bergman spaces. For $0<p<\infty$ let $A^{p}$ denote the classical Bergman space of the unit disc. It is well known that $|f(z)| \leq\|f\|_{A^{p}}\left(1-|z|^{2}\right)^{-2 / p}$ for all $f \in A^{p}$ and $z \in \mathbb{D}$ (see e.g. $\left[6\right.$, p. 36]. Given any sequence $\mathbf{z}=\left\{z_{n}\right\}$ in $\mathbb{D}$ we define the operator $R_{\mathbf{z}, p}$ by $R_{\mathbf{z}, p}(f)=\left\{\left(1-\left|z_{n}\right|^{2}\right)^{2 / p} f\left(z_{n}\right)\right\}$.

Theorem 5. Given $0<p, q<\infty$ and a sequence $\left\{z_{n}\right\}$ in $\mathbb{D}$, the following are equivalent:
(1) There exists a constant $C$ such that

$$
\sum_{n}\left(1-\left|z_{n}\right|^{2}\right)^{2 q / p}\left|f\left(z_{n}\right)\right|^{q} \leq C\|f\|_{A^{p}}^{q} \quad \text { for all } f \in A^{p}
$$

(2) (a) $p \leq q$ and $\left\{z_{n}\right\}$ is a finite union of uniformly discrete sequences;
(b) $p>q$ and $\left\{z_{n}\right\}$ is a finite sequence.

The conclusion when $p=q$ may be found in [13]; see also [6, p. 70]. It is closely related to Amar's result that, if $\left\{z_{n}\right\}$ is uniformly discrete, then $\left\{z_{n}\right\}$ is the finite union of sequences $\left\{z_{n}^{(i)}\right\}$ such that each $R_{\mathbf{z}^{(i)}, p}$ maps $A^{p}$ onto $\ell^{p}$ (see [1, Theorem 2.1.1], also [11]). The proofs when $p \neq q$ are similar to the Hardy space cases but simpler, and so are omitted.

The author acknowledges financial support provided through EPSRC grant GR/R97610/01 and would like to thank Jonathan Partington and Sandra Pott for useful discussions.

## References

[1] É. Amar, Suites d'interpolation pour les classes de Bergman de la boule et du polydisque de $\mathbb{C}^{n}$, Canad. J. Math. 30 (1978), 711-737.
[2] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921-930.
[3] P. L. Duren, Extension of a theorem of Carleson, Bull. Amer. Math. Soc. 75 (1969), 143-146.
[4] -, Theory of $H^{p}$ Spaces, Academic Press, New York, 1970.
[5] P. L. Duren and A. P. Schuster, Finite unions of interpolation sequences, Proc. Amer. Math. Soc. 130 (2002), 2609-2615.
[6] P. L. Duren and A. P. Schuster, Bergman Spaces, Math. Surveys Monogr. 100, Amer. Math. Soc., Providence, RI, 2004.
[7] V. Kabay̆la, Interpolation sequences for the $H_{p}$ classes in the case $p<1$, Litovsk. Mat. Sb. 3 (1963), 141-147 (in Russian).
[8] G. McDonald and C. Sundberg, Toeplitz operators on the disc, Indiana Univ. Math. J. 28 (1979), 595-611.
[9] P. J. McKenna, Discrete Carleson measures and some interpolation problems, Michigan Math. J. 24 (1977), 311-319.
[10] S. Pott, M. P. Smith and D. Walsh, Test function criteria for Hankel operators, preprint.
[11] R. Rochberg, Interpolation by functions in Bergman spaces, Michigan Math. J. 29 (1982), 229-236.
[12] H. S. Shapiro and A. L. Shields, On some interpolation problems for analytic functions, Amer. J. Math. 83 (1961), 513-532.
[13] K. Zhu, Evaluation operators on the Bergman space, Math. Proc. Cambridge Philos. Soc. 117 (1995), 513-523.

Department of Mathematics
University of York
York Y010 5DD
United Kingdom
E-mail: mps@york.ac.uk

Current address: Greenhead College

Greenhead Road
Huddersfield
West Yorkshire
HD1 4ES, United Kingdom
E-mail: drsmudge@hotmail.co.uk


[^0]:    2000 Mathematics Subject Classification: Primary 30H05, 46E15.
    Key words and phrases: Hardy space, uniformly discrete sequence, uniformly separated sequence, Bergman space.

