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Approximating real linear operators

by

Marko Huhtanen and Olavi Nevanlinna (Helsinki)

Abstract. A framework to extend the singular value decomposition of a matrix to
a real linear operator M : C

n
→ C

p is suggested. To this end real linear operators called
operets are introduced, to have an appropriate generalization of rank-one matrices. Then,
adopting the interpretation of the singular value decomposition of a matrix as providing
its nearest small rank approximations, M is approximated with a sum of operets.

1. Introduction. In real linear matrix analysis we are concerned with
operators M : C

n → C
p defined as

(1.1) z 7→ Mz = Mz + M#τz

for a pair of matrices M, M# ∈ C
p×n. Here τ is the conjugation operator

τz = z allowing us to use interchangeably the abbreviation M +M#τ for M.
If M# = 0, then we have the ordinary matrix-vector product (in which case
the operator is C-linear) while for M = 0 we are dealing with an antilinear
operator. We regard the set of real linear operators as a vector space over
C and denote it by Mp,n (the addition operation is obvious while the scalar
multiplication in this paper is defined from the left). By extending the stan-
dard C-linear matrix analysis, real linear matrix analysis yields new insights
into matrix theory. For computational purposes the interplay between R-
linearity and C-linearity provides novel approaches to solving linear algebra
problems. For the background, applications and motivation of this study, see
[2, 10, 8, 9] where basic decompositions and spectral theory were introduced.

In this paper we present a real linear framework extending the singu-
lar value decomposition. Interpreting the singular value decomposition of a
matrix M ∈ C

p×n as a tool to solve

(1.2) min
rank(Mj)≤j

‖M − Mj‖ for j = 1, . . . , min{p, n},
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for a unitarily invariant norm ‖ · ‖, which is arguably the most important
practical application of the SVD having its matrix analytic origins in [14, 1],
we consider analogous nearness problems in the real linear case. For this pur-
pose we introduce real linear operators called operets, to have an appropriate
generalization of rank-one matrices. By approximating M with sums of op-
erets we obtain a finite sequence of nearness problems conforming with the
classical formulation (1.2) in the sense that if M is C-linear, then the respec-
tive approximations coincide. Hence, we obtain an extension of the concept
of singular values. Unlike the matrix case, our approximations depend on
the unitarily invariant norm used. Here we concentrate on the operator and
Frobenius norms. Presently the most tractable one appears to be the Frobe-
nius norm for which we manage to solve the problem completely leading to
an SVD-like, in a certain sense optimal, expansion of the real linear oper-
ator M. The terms in this expansion can be computed in sequence. More
notably, because the standard complex inner product is employed, this rep-
resentation of M consumes less storage than what the real singular value de-
composition of the corresponding matrix representation of M in R

2p×2n re-
quires. By using this reasoning conversely, the proposed expansion has many
obvious uses for real problems. To mention immediate applications, starting
with a real-entry data matrix, the approach yields new criteria as well as
algorithms to optimally compress information. Also ill-conditioned problems
can be solved by using our representation of M. As a further illustration, a
Karhunen–Loève expansion is derived within the framework proposed.

The paper is organized as follows. In Section 2 we introduce operets
and consider representations of a given real linear operator M as a sum
of operets. In Section 3 we approximate M with sums of operets in the
operator and Frobenius norms. The corresponding approximation numbers
are defined. In the Frobenius norm the problem is solved completely.

2. Representing a real linear operator as a sum of operets.

The main use of the singular value decomposition in matrix computations,
and in infinite-dimensional operator theory in connection with compactness,
is to provide an expansion of, as well as low rank approximations to, a
linear operator; see, e.g., [6]. (For historical accounts from different points
of view, see also [15, 7, 11]. For many uses of the SVD, see [3].) Taking this
as our starting point, we consider expanding a given real linear operator
M = M + M#τ ∈ Mp,n as a sum of simpler ones.

As a first approach, one could readily employ the real form of M, by
which we mean its equivalent representation via the matrix

(2.1) A =

[
Re(M + M#) − Im(M − M#)

Im(M + M#) Re(M − M#)

]
∈ R

2p×2n,
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which, conversely, provides a means of rewriting a real-entry matrix in com-
plex form as a real linear operator M : C

n → C
p. For more details, see [2]. In

this manner, after rewriting the rank-one matrices appearing in the singular
value decomposition of A in their complex form, M can be represented as
a sum of 2min{p, n} real linear operators

(2.2) z 7→ 1

2
(uv∗z + uvT z) = uRe(v∗z) with u ∈ C

p, v ∈ C
n;

see [2, Section 2.3]. Operators of this form are also encountered in con-
nection with the real linear Householder transformations, employed, for
instance, in computing the QR-factorization of a real linear operator [2,
Section 2.2].

In spite of these uses, the complex forms of rank-one matrices from
R

2p×2n are not sufficiently versatile tools for real linear matrix computa-
tions. A reason for this is that in the real-entry formulation A of M, the
complex structure of the vector spaces C

n and C
p gets ignored when they

are regarded as vector spaces over C. Therefore, to give an example, if M is
C-linear, the prescribed representation consisting of the terms (2.2) does not
yield the standard complex singular value decomposition of the matrix M .
Nor does it provide very useful information on the spectral properties of M.
Recall that the SVD of a square matrix M ∈ C

n×n gives an upper bound,
typically sharp, on the number of distinct eigenvalues of M through the
number of its nonzero singular values.

Remark. Let p = n. Then the spectrum of a real linear operator M,
denoted by σ(M), is the collection of those λ ∈ C for which λI − M is
not invertible. Being the zero set of a bivariate polynomial p : R

2 → R of
degree 2n, the spectrum is an algebraic plane curve of degree at most 2n
[2, 10].

For more applicable tools, let us proceed by analogy by reviewing the
C-linear case. To this end, take a matrix M ∈ C

p×n and fix a unit vector
v ∈ C

n. Then a natural operator to approximate M is the rank-one matrix
uv∗ with u = Mv. Correspondingly, we introduce the following generaliza-
tion of rank-one matrices in the real linear case.

Definition 2.1. Let u, u# ∈ C
p and v ∈ C

n. A real linear operator of
the form

z 7→ uv∗z + u#vT z

is called an operet (1).

(1) Analogously to wavelets being thought of as “small” waves, we regard operets as
small operators.
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Equivalently, we denote an operet by O = (u + u#τ)v∗. (Here we use
τv∗ = vT τ .) In this manner we obtain a slightly more general structure
than (2.2) that remains manageable enough to resemble scalar real linear
operators in the following sense.

Proposition 2.2. Let p = n with n > 1. Then the spectrum of O =
(u+u#τ)v∗ is the union of the origin and the circle of radius |v∗u#| centered

at v∗u.

Proof. By taking z from the orthogonal complement of v, we can infer
that the origin is in the spectrum. For the circle, we can consider z 7→
vu∗z + vu#

T z which corresponds to the adjoint of this real linear operator
when Cn is regarded as a vector space over R. Now, take z = eiθv to have
eiθv 7→ eiθv(u∗v+e−2iθu#

T v). Hence, for this operator, eiθv is an eigenvector
corresponding to the eigenvalue u∗v + e−2iθu#

T v. As θ varies, we get the
circle claimed, after complex conjugating.

We denote by ‖z‖ the 2-norm of a vector z. The operator norm of a real
linear operator M is defined as ‖M‖2 = maxz 6=0 ‖Mz‖/‖z‖.

For an operet O = (u + u#τ)v∗ we have

max
‖z‖=1

‖uv∗z + u#vT z‖2 = max
θ∈[0,2π)

‖v‖2(‖u‖2 + 2Re (eiθu#
∗u) + ‖u#‖2)

so that

(2.3) ‖O‖2 = (‖u‖2 + 2|u#
∗u| + ‖u#‖2)1/2‖v‖.

By forming the sum of j operets we obtain an extension of the set of
matrices of rank at most j with

(2.4) z 7→ UV ∗z + U#V T z, where U, U# ∈ C
p×j and V ∈ C

n×j ,

for which we also use the abbreviation (U+U#τ)V ∗. Without loss of general-
ity, V can be assumed to have orthonormal columns after, for instance, QR-
factorizing the original matrix V . Even this guarantees no uniqueness since
(U + U#τ)V ∗ = (UW + U#Wτ)(V W )∗ for any unitary matrix W ∈ C

j×j .
Obviously, if U# = 0, then we have a matrix of rank at most j.

Remark. Assume again p = n. As an analogy of elementary matrices,
for U, U#, V ∈ C

n×j , consider the real linear operator M = I+(U +U#τ)V ∗.
Real linear analogues of Gauss transformations yield operators of this type,
with j = 1, in connection with the LU-factorization of a real linear operator
[2, Section 2.2]. Assuming the inverse of M exists, it has the same structure

I + (Û + Û#τ)V ∗ with Û , Û# ∈ C
n×j . Namely, write M−1 = N + N#τ and

consider the identity MM−1 = I. Then, with the help of the Sherman–
Morrison formula, we get

N = (I + ŨV ∗)−1 = I + ÛV ∗, where Ũ = U − U#V T M−1 U#.
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Hence
N# = −M−1M#N = −M−1U#(I + V T Û)V T ,

as claimed. In the case j = 1 this gives us the following formulae.

Example 1. If u, u#, v ∈ C
n, then

û =
vT u#u# − (1 + vT u)u

1 + v∗u + vT u + |v∗u|2 − |v∗u#|2 ,

û# =
v∗u#u − (1 + v∗u)u#

1 + v∗u + vT u + |v∗u|2 − |v∗u#|2 .

Definition 2.3. The adjoint M∗ of M = M + M#τ is M∗ + M#
T τ .

Obviously, if M : C
n → C

p, then M∗ : C
p → C

n. For M and N of
appropriate size, we have the familiar relationship (MN )∗ = N ∗M∗. In
case p = n, M∗ is invertible if and only if M is.

Denote by (z, w) = w∗z the standard inner product on C
n. Then a simple

computation gives

(2.5) (Mv, w) = (v,M∗w) − 2i Im (v, M#
T w).

(Hence, if (z, w)R = Rew∗z denotes the standard real inner product on C
n,

we have the familiar relationship (Mv, w)R = (v,M∗w)R.) We say that
M is self-adjoint if M∗ = M. This property has implications, to give an
example, on the location of the spectrum of M; see [10].

For a given real linear operator M = M + M#τ we are interested in
finding its representation as a sum of j operets with the smallest pos-
sible integer j. To this end, denote by R(M∗) the range of the adjoint
of M. It is an R-linear subspace of C

n such that the smallest subspace
containing R(M∗) is (R(M∗)⊥)⊥. (Recall that we regard C

n as a vec-
tor space over C with the standard complex inner product.) Obviously
(R(M∗)⊥)⊥ ⊂ R(M∗) + R(M#

T ), the sum of the ranges of the matrices
M and M#, so that its dimension is at most rank(M) + rank(M#).

Proposition 2.4.M can be represented as a sum of k=dim (R(M∗)⊥)⊥

operets. Moreover , k is the smallest such integer.

Proof. Let v1, . . . , vk be an orthonormal basis of (R(M∗)⊥)⊥ and let
uj = Mvj and u#j = M#vj be the columns of U and U#, both from C

p×k,

while V = [v1 · · · vk] ∈ C
n×k. Take v from the orthogonal complement

of (R(M∗)⊥)⊥, i.e., from R(M∗)⊥. We show that Mv = 0. Indeed, by
using (2.5) for a vector w ∈ C

p, we have (Mv, w) = −2i Im (v, M#
T w).

But (Mv, w) being pure imaginary for any w forces Mv = 0. Hence M =
(U + U#τ)V ∗.

We identify V ∈ C
n×(k−1) with the subspace of C

n its columns span.
Clearly, V cannot contain R(M∗). (Proof: Then V ∩ (R(M∗)⊥)⊥ would be
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of dimension at most k−1 containing R(M∗).) Take z ∈ V ⊥ not in R(M∗)⊥.
Then for some w ∈ C

p we have 0 6= e−iθ(M∗w, z) = (M∗w, eiθz) =
(w,Meiθz) − 2i Im (w, M#e−iθz) by (2.5) and for any θ ∈ [0, 2π). Choose θ
such that Im (w, M#e−iθz) = 0. Hence M(I − P )eiθz = Meiθz 6= 0.

Note that dim (R(M∗)⊥)⊥ need not equal dim (R(M)⊥)⊥. For a simple
illustration of this, consider a suitable operet.

Definition 2.5. dim (R(M∗)⊥)⊥ is the right-rank and dim (R(M)⊥)⊥

the left-rank of a real linear operator M.

To find the right-rank (resp. left-rank), compute the rank of the matrix[ M
M#

]
(resp.

[ M∗

M∗

#

]
); see Theorem 3.6 below.

We set µ(M) = (k̃, k) ∈ N
2 where k̃ is the left-rank and k the right-rank

of M. We clearly have |k̃ − k| ≤ min{k̃, k}. Obviously, if either M = 0 or

M# = 0, then k̃ = k. For an operet O we have, generically, µ(O) = (2, 1).
For a nongeneric case, if O is the complex form (2.2) of a rank-one matrix
from R

2p×2n, then µ(O) = (1, 1).

Example 2. Assume M = αM# with α ∈ C \ {0}. Then using the SVD

of M# gives min{k̃, k} ≤ rank(M#).

Proposition 2.6. Let N be a real linear operator and K a matrix of

appropriate size such that NMK is defined. Then

right-rank(NMK) ≤ right-rank(M).

Proof. For M = (U +U#τ)V ∗ : C
n → C

p and N = N +N#τ : C
p → C

m

we have

(2.6) NM = (NU + N#U# + (NU# + N#U)τ)V ∗.

For a product with a matrix K ∈ C
n×l from the right, the rank of V ∗K is

at most the rank of V ∗.

In case p = n, recall that the spectrum of M is an algebraic plane curve
of degree at most 2n. With µ(M) we can give a better estimate.

Theorem 2.7. Let p=n. The spectrum of M with µ(M)=(k̃, k) is anni-

hilated by a nonzero bivariate polynomial of degree at most 2(min{k̃, k}+1).

Proof. Assume k ≤ k̃, otherwise proceed with M∗ and use the fact that
σ(M) equals σ(M∗); see [2].

Since M is of the form (2.4) we have M∗ = V (U∗ + U#
T τ) and thus

the span of the columns of V is an invariant subspace of M∗. Moreover, a
nonzero λ ∈ C is an eigenvalue of M∗ if and only if λ is an eigenvalue of
M∗ restricted to the span of the columns of V . The characteristic bivariate
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polynomial [2] of this restriction is of degree at most 2k. To include the
origin we multiply this by the monomial xy to have the claim.

Corollary 2.8. Let q be a polynomial. Then the spectrum of q(M) is

annihilated by a nonzero bivariate polynomial of degree at most 2(k + 1).

Proof. If q(z) =
∑d

j=0 αjz
j , then take q̂(M) =

∑d
j=1 αjMj whose spec-

trum is σ(q(M)) translated by −α0. For q̂(M) use (2.6) inductively to obtain
the representation (2.4) with the same V as for M.

Remark. When dealing with an R-linear subspace VR of C
n, as above

in the case of R(M∗), it is of interest to measure its “distance” from being
a subspace of C

n. To this end, let a real linear operator P with P2 = P
and P∗ = P have range VR. Then P is unique and can be represented
as P(z) = QRe(Q∗z) for some Q ∈ C

n×j satisfying Re(Q∗Q) = I. The
norm, or the singular values of the antilinear part of P yield an appropriate
measure equaling zero if and only if VR is a subspace of Cn.

3. Approximating a real linear operator with a sum of operets.

In what follows we are interested in approximating a real linear operator M
with a sum of j operets for j ≤ right-rank(M). For this purpose we employ
norms on Mp,n that are unitarily invariant, i.e., satisfy ‖UMV ‖ = ‖M‖ for
any unitary matrices U ∈ C

p×p and V ∈ C
n×n. For instance, the operator

norm is unitarily invariant.
Denote by Pj the set of orthogonal projectors on C

n of rank at most j.
We look for an appropriate formulation of the nearness problems (1.2) in
the real linear case. To have a concept that extends to infinite dimensions,
for a given real linear operator M = M + M#τ ∈ Mp,n we consider the
approximation problem

(3.1) min
P∈Pj

‖M(I − P )‖2

where ‖·‖2 is the operator norm. It is immediate that if P = V V ∗ solves this,
with V having orthonormal columns, then MP = (MV + M#V τ)V ∗ yields
a best approximation to M + M#τ as a sum of j operets. In case M# = 0
we obtain a formulation equivalent to the classical nearness problem for the
matrix M leading to its singular value decomposition. Therefore it seems
natural to call the minimum value (3.1) the (j +1)th approximation number

of M with respect to the operator norm and denote it by σ2,j+1(M) for
j = 0, 1, 2, . . . , n − 1.

Example 3. Let p = n. For the conjugation operator we have τ∗ = τ
and σ2,j(τ) = 1 for j = 1, . . . , n.

By considering the real formulations, we can infer that ‖M‖2 = ‖M∗‖2.
Equivalently, σ2,1(M) = σ2,1(M∗). However, even for p = n the correspond-
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ing approximation problem (3.1) for the adjoint of M yields different results
in the sense that

(3.2) min
P∈Pj

‖M∗(I − P )‖2

need not equal σ2,j+1(M) for j ≥ 1. For example, consider a suitable operet.

The Frobenius norm, aside from the operator norm, is another classical
unitarily invariant norm employed in connection with the singular value
decomposition of a matrix. Let us show how to solve

(3.3) min
P∈Pj

‖M(I − P )‖F,

where the Frobenius norm of a real linear operator M = M + M#τ is
defined by ‖M‖F = (‖M‖2

F + ‖M#‖2
F)1/2. Clearly, this yields a unitarily

invariant norm on Mp,n. The corresponding inner product can be defined
as (M,N )F = trace(N∗M +N#

∗M#) for M = M +M#τ and N = N +N#τ
in Mp,n.

Since the Frobenius norm of a matrix is preserved under taking the
complex conjugate, for any orthogonal projector P = V V ∗ we obtain

(3.4) ‖M(I − P )‖2
F = ‖M − MV V ∗‖2

F + ‖M# − M#V V ∗‖2
F.

Hence, to find V ∈ C
n×j with orthonormal columns solving (3.3), we can

employ the SVD of the matrix
[ M

M#

]
∈ C

2p×n. This implies that the singular

values of
[ M

M#

]
are of interest for the corresponding real linear operator M.

In particular, since for M# = 0 (resp. M = 0) we obtain the singular value
decomposition of the matrix M (resp. M#), we make the following definition.

Definition 3.1. The approximation numbers of M + M#τ with respect

to the Frobenius norm are the singular values of the matrix
[ M

M#

]
.

Equivalently, the approximation numbers with respect to the Frobenius
norm equal the square roots of the eigenvalues of the C-linear part of M∗M.

Example 4. The C-linear part of M∗M is the matrix M∗M+M#
TM#.

For a curious special case, assume that M# = κI with κ ∈ C, i.e., M is
“conjugate-translated”. For such an M the behavior of the approximation
numbers with respect to the Frobenius norm when κ varies is well under-
stood.

Denote the approximation numbers of M with respect to the Frobenius
norm by σF,j(M), for j = 1, . . . , min{2p, n}. The number of nonzero ap-
proximation numbers equals the right-rank k of M. Hence we have k ≤
min{rank(M) + rank(M#), n}. Moreover, ‖M‖F = (

∑k
j=1 σF,j(M)2)1/2. If

p = n and M has a zero approximation number, then M is obviously not
invertible. The converse is not true; see Example 5 below.
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The approximation problem (3.3) gives a good reason for using a partic-

ular basis of C
n once we take the full SVD

[ M
M#

]
= UΣV ∗ of

[ M
M#

]
. Then,

by considering M = (MV + M#V τ)V ∗, we can represent M as the sum of
operets as

(3.5) M =
k∑

l=1

(ul + u#
l τ)v∗l ,

where V = [v1 · · · vn] so that [u1 · · · un] = MV = [Mv1 · · · Mvn] while
[u#

1 · · · u#
n ] = M#V = [M#v1 · · · M#vn]. (This should be compared

with (2.2).) From this representation we can recover the approximation num-
bers by noticing that

σF,j(M) = (‖uj‖2 + ‖u#
j ‖2)1/2.

It follows that these approximation numbers can be interpreted to yield a
refined average of the way M acts. More precisely, from (2.3) we obtain the
operator norm of an operet. Similarly, the minimum of z 7→ ‖uv∗z +u#vT z‖
for z of unit length restricted to the span of v over C equals (‖u‖2−2|u#

∗u|+
‖u#‖2)1/2‖v‖. Hence, squaring and taking the sum with (2.3) squared leads
to vanishing of the inner product term. We can thus conclude that, with re-
spect to this averaging, the representation (3.5) yields an optimally decreas-
ing expansion of M, analogously to the way the SVD of a matrix M ∈ C

p×n

can be interpreted to represent M as the sum of rank-one matrices decreas-
ing in norm in an optimal way. This optimality is actually realized in terms
of a norm; see (3.8) below.

Assume n ≤ p, otherwise consider M∗. To represent M through the sin-
gular value decomposition of its real formulation A, we need 2n vectors from
C

p and 2n vectors from C
n; see (2.2). In all, this means storing n(2p + 2n)

complex numbers. It would take the same number of vectors to approximate
the matrices M and M# separately through their respective singular value
decompositions (which could be used to give somewhat naive approxima-
tions to M). The representation (3.5) takes at most 2n vectors from C

p and
n vectors from C

n yielding thereby a more “compressed” optimal expan-
sion of a real linear operator, as we need to store only n(2p + n) complex
numbers. These savings in storage were a reason for our way of defining an
operet.

Just as for matrices, the full representation (3.5) of M may not be of
interest to us. Rather, let us truncate the expansion up to the jth approxi-
mation number with respect to the Frobenius norm to have

(3.6) Mj =

j∑

l=1

(ul + u#
l τ)v∗l = UjV

∗
j
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with j < n (or rather j ≪ n in applications), where Uj = Uj + U#
j τ with

Uj : C
j → C

p while the matrix Vj consists of the first j columns of V . In
practice one might be interested in the pseudo-inverse of Mj to solve an
overdetermined system Mjz = b, with b ∈ C

p, in the least squares sense. To
this end, compute the real linear QR-factorization Uj = QR of Uj ; see [2].
Then

(3.7) min
z∈Cn

‖QRV ∗
j z − b‖ = min

z∈Cn
‖RV ∗

j z −Q∗b‖

so that, assuming the kernel of Uj is zero, w 7→ VjR−1Q∗w from C
p to C

n

is the solution operator.
Another application of these ideas arises from data compression. If we

are given a real-entry data matrix A, then it can be compressed, as an
alternative to using the singular value decomposition of A, by employing
the approximation (3.6) after rewriting A in its complex form M. As a
criterion for choosing j, use the magnitude of σF,j+1(M).

The operator Q appearing in (3.7) is an isometry.

Definition 3.2. Let p=n. An invertible M is an isometry if M−1 =M∗.

For an isometry, Mz and M#z are orthogonal for any z ∈ C
n. In partic-

ular, we have u# ∗
j uj = 0 for j = 1, . . . , n in (3.5). Hence the approximation

numbers of an isometry with respect to the Frobenius norm are equal to 1.
The converse does not hold.

Example 5. Assume u, u#, v ∈ C
2 are such that u and u# are orthonor-

mal and v is of unit length and consider an operet O = (u + u#τ)v∗. Then
σF,1(O) =

√
2 and σF,2(O) = 0 while for its adjoint O∗ = vu∗ + vτu#

∗ we
have σF,1(O∗) = σF,2(O∗) = 1 so that µ(O) = (2, 1). Note that O∗ is not
invertible.

In spite of the fact that individual approximation numbers with respect
to the Frobenius norm are not preserved under taking the adjoint in general,
we have the following proposition.

Proposition 3.3. Let M ∈ Mp,n with µ(M) = (k̃, k). Then

k∑

j=1

σF,j(M)2 =
k̃∑

j=1

σF,j(M∗)2.

Proof. For the adjoint of M the approximation numbers with respect to
the Frobenius norm are determined by the matrix

[
M

M#

]
whose Frobenius

norm equals that of
[ M

M#

]
.

Being defined through the matrix
[ M

M#

]
, the approximation numbers

with respect to the Frobenius norm satisfy the corresponding maxmin and



Approximating real linear operators 17

minmax characterization (see, e.g., [5, Theorem 7.3.10]). For the sum of two
real linear operators M and N these approximation numbers behave in the
classical manner, i.e.,

(3.8) σF,i+j−1(M + N ) ≤ σF,i(M) + σF,j(N )

for 1 ≤ i, j ≤ min{2p, n} and i+j ≤ min{2p, n}+1. This follows immediately
from [6, Theorem 3.3.16(a)]. Therefore, let the Ky Fan j-norms (2) with
respect to the Frobenius norm on Mp,n be defined as

j∑

k=1

σF,k(M).

These are unitarily invariant norms but, unlike the case of the operator or
Frobenius norm, the norm of the adjoint of M need not equal the norm
of M. The Ky Fan 1-norm is the most interesting since it takes the maxi-
mum average length over the images of one-dimensional subspaces of Cn as
described in connection with the expansion (3.5).

Remark. Ky Fan j-norms are unitarily invariant but not isometrically
invariant norms on Mp,n. We say that a norm ‖ · ‖ is isometrically invariant

if ‖UMW‖ = ‖M‖ for any isometries U and V. The operator and Frobenius
norm are isometrically invariant.

In view of this, the approximation numbers are preserved under the
following operation.

Proposition 3.4. Let M ∈ Mp,n. If W is an isometry and W is a

unitary matrix , then

σ2,j(M) = σ2,j(W∗MW ) and σF,j(M) = σF,j(W∗MW )

for j = 1, . . . , k.

Proof. For the operator norm the claim follows from ‖W∗MW‖2

= ‖M‖2. Hence, if P solves (3.1) then P̂ = W ∗PW solves the problem
for W∗MW .

For the Frobenius norm, it is clear that the singular values of
[ MW

M#W

]

equal the singular values of
[ M

M#

]
so let us consider W∗M with W∗ =

U + U#τ . To this corresponds
[
UM + U#M#

UM# + U#M

]
=

[
N

N#

]
.

By using U∗U + U#
T U# = I and U∗U# + U#

T U = 0, we deduce that

v∗(N∗N + N#
T N#)v = v∗(M∗M + M#

T M#)v

(2) The Ky Fan j-norm of a matrix M is defined by
∑j

k=1
σ2,k(M).
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for any vector v ∈ C
n. Hence the norms of

[ M
M#

]
and

[ N
N#

]
are equal. Since

this is true for any M, it holds for M(I − P ), proving the claim.

As an important special case, recall that τ is an isometry.
In this manner in the real linear case the “two-sided rotations” allow

more freedom in multiplications from the left. (For two-sided rotations,
see [6, Example 7.4.13].) Note that when acted upon by an isometry from the
left, M can change drastically. As an extreme, consider the case of W∗M
becoming C-linear.

Proposition 3.5. Let N + N#τ = UM + V M#τ with unitary U, V ∈
C

p×p. Then σF,j(N ) = σF,j(M) for j = 1, . . . , k.

Proof. The approximation numbers of N with respect to the Frobenius

norm are obtained from the SVD of the matrix
[ UM

V M#

]
=

[
U 0
0 V

][ M
M#

]
. Since[

U 0
0 V

]
is unitary, we have the claim.

The approximations given by (3.1) differ from those provided by (3.3).
To see this with P ∈ P1 consider the following example.

Example 6. Take M = O∗ on C
2, where O = (

[
1
0

]
+

[
1
1

]
τ)

[
1
1

]∗
is an

operet. For the Frobenius norm we have a minimizing P = v1v
∗
1 ∈ P1 with

v1 = (1/
√

10 + 2
√

5)
[

1+
√

5
2

]
giving σF,2(M) =

√
3 −

√
5 ≈ 0.874. For the

operator norm we have a minimizing P = v̂1v̂
∗
1 ∈ P1 with v̂1 = (1/

√
2)

[
1
1

]

giving σ2,2(M) = 1. It is also of interest to note that even if ‖M‖2 =
‖Mv‖=

√
10 with v = (1/

√
5)

[
2
1

]
, we have σ2,2(M) < ‖M(I − vv∗)‖2 = 1.6.

(In fact, ‖M(I − v1v
∗
1)‖2 ≈ 1.20 so that even the Frobenius projector is

better in the operator norm.) Thus, the classical existence proof for the
SVD of a matrix (see, e.g., [6]) cannot be applied to find the approximation
numbers with respect to the operator norm. For the expansion (3.5), taking
V = [v1 v2] gives

M =

[
1

1

](
1 +

√
5

10 + 2
√

5
+

3 +
√

5

10 + 2
√

5
τ

)[
1 +

√
5

2

]∗

+

[
1

1

]( −2

10 + 2
√

5
+

√
5 − 1

10 + 2
√

5
τ

)[ −2

1 +
√

5

]∗
.

Regardless of this difference, we have the following bound for the ap-
proximation numbers in the operator and Frobenius norms.

Theorem 3.6. Let M ∈ Mp,n. Then

σF,j(M) ≤ σ2,j(M) ≤
√

2σF,j(M) for j = 1, . . . , k.

Proof. For the first inequality, choose an orthogonal projector P = V V ∗

of rank at most j realizing minP∈Pj
‖M(I−P )‖2. For this P , assume z ∈ C

n
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of unit length yields the norm of
[ M(I−V V ∗)

M#(I−V V ∗)

]
. We may assume that

(3.9) Re (M#(I − V V ∗)z, M(I − V V ∗)z) ≥ 0

after possibly multiplying z by eiθ with θ ∈ [0, 2π). Then

σF,j+1(M)2 ≤ ‖M(I − V V ∗)z‖2 + ‖M#(I − V V ∗)z‖2

≤ ‖M(I − V V ∗)z‖2 + 2Re (M#(I − V V ∗)z, M(I − V V ∗)z)

+ ‖M#(I − V V ∗)z‖2

= ‖M(I − V V ∗)z + M#(I − V V ∗)z‖2

≤ max
w∈Cn, ‖w‖=1

‖M(I − V V ∗)w + M#(I − V V ∗)w‖2 = σ2,j+1(M)2.

For the second inequality, for any orthogonal projector P = V V ∗ of
rank at most j, take a vector z ∈ C

n of unit length realizing the norm
‖M(I − P )‖2. Then ‖M(I − P )‖2 squared can be bounded from above as

‖M(I − V V ∗)z + M#(I − V V ∗)z‖2

≤ (‖M(I − V V ∗)z‖ + ‖M#(I − V V ∗)z‖)2

≤ 2(‖M(I − V V ∗)z‖2 + ‖M#(I − V V ∗)z‖2).

Choose P to be the orthogonal projector yielding the (j+1)th singular value

of the matrix
[ M

M#

]
. For this choice we obviously have

(3.10) min
P∈Pj

‖M(I − P )‖2 ≤ ‖M(I − P )‖2

and

‖M(I − V V ∗)z‖2 + ‖M#(I − V V ∗)z‖2

≤ max
w∈Cn, ‖w‖=1

(‖M(I − V V ∗)w‖2 + ‖M#(I − V V ∗)w‖2) = σF,j+1(M)2,

proving the claim.

Both of these bounds are sharp. For the upper bound, see Example 7.
Moreover, note that with (3.10) we obtain a tighter upper bound once we
compute ‖M(I − P )‖2 for P corresponding to the (j + 1)th singular value

of
[ M

M#

]
. Numerical experiments show that the improvement can be signif-

icant.

For the lower bound, it is the inner product term (3.9) that causes the
possible increase. When it disappears, the nearness problems (3.1) and (3.3)
are solved simultaneously.

Corollary 3.7. Assume M∗M# is skew-symmetric. Then

σF,j(M) = σ2,j(M) for j = 1, . . . , k.
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Proof. The assumption is necessary and sufficient for (Mv, M#v) = 0
to hold for any v ∈ C

n. Consequently, the operator norm and the Ky Fan
1-norm with respect to the Frobenius norm coincide.

See also Theorem 3.10 below.

For another bound on the operator norm, denote by S(M) = 1
2(M+MT )

the symmetric part of a square matrix M ∈ C
n×n. Recall that (x, Mz) =

(z, S(M)z) for any z ∈ C
n [10].

Theorem 3.8. Assume M ∈ Mp,n and let F =

[
M∗M

2 S(MT M#)

M#
T M#

]
. Then

σ2,j+1(M) ≤ 31/4σj+1(F )1/2.

Proof. Take any orthogonal projector P ∈ Pj and a unit vector z ∈ C
n.

Compute

‖M(I − P )z‖2 = (M(I − P )z,M(I − P )z) = (z, (I − P )M∗M(I − P )z)

+2Re(z, (I − P )S(M∗M#)(I − P )z) + (z, (I − P )M#
∗M#(I − P )z).

The three terms on the right hand side can be bounded as follows:

(z, (I − P )M∗M(I − P )z) ≤ ‖M∗M(I − P )z‖,
|(z, (I − P )S(M∗M#)(I − P )z)| ≤ ‖S(MT M#)(I − P )z‖

(z, (I − P )M#
∗M#(I − P )z) ≤ ‖M#

T M#(I − P )z‖.
Let then z be chosen such that ‖M(I − P )‖2 = ‖M(I − P )z‖. Choosing
P ∈ Pj so that

(3.11) ‖F (I − P )‖2 = σj+1(F )

we hence obtain

min
P̂∈Pj

‖M(I − P̂ )‖2
2 ≤ ‖M(I − P )‖2

2 = ‖M(I − P )z‖2

≤ ‖M∗M(I − P )z‖ + ‖2S(MT M#)(I − P )z‖ + ‖M#
T M#(I − P )z‖

≤
√

3 max
‖w‖2=1

(‖M∗M(I − P )w‖2 + ‖2S(MT M#)(I − P )w‖2

+ ‖M#
T M#(I − P )w‖2)1/2

which equals
√

3σj+1(F ). Taking the square root completes the proof.

Again this yields, with the projector P satisfying (3.11), a way to ap-
proximate M, since

‖M(I − P )‖2 ≤ 31/4σk+1(F )1/2.
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Clearly we have

σ2,j(M) = min
w1,...,wj−1∈Cn

max
z 6=0, z⊥w1,...,wj−1

‖Mz‖
‖z‖

for any M ∈ Mp,n. Intriguingly, those M = M + M#τ for which M∗M# is
skew-symmetric give rise to a family of real linear operators satisfying also
the classical maxmin characterization, i.e.,

max
w1,...,wn−j∈Cn

min
z 6=0, z⊥w1,...,wn−j

‖Mz‖
‖z‖ = σ2,j(M).

Since M∗M# is skew-symmetric if and only if M∗M is C-linear, we conclude
that such a skew-symmetry property is preserved in forming W∗MK, where
W is an isometry and K a matrix of appropriate size. In this connection,
the following characterization is of use.

Proposition 3.9. Let p = n. Then M∗M is C-linear if and only if

M = WDW ∗ for an isometry W , a diagonal matrix D and a unitary ma-

trix W .

Proof. Sufficiency is clear, so let us prove the necessity. If M∗M is C-
linear, then the SVD of M∗M = WΣW ∗ yields M̂ = MW so that M̂∗M̂
is a diagonal matrix with nonnegative entries. Considering the real forms, by
using Lemma 3.11 below, we infer that M̂ = WD for an isometry W and a
real linear diagonal operator D = D + D#τ . Since M∗M is C-linear, either
of the (j, j)-entries of D and D# is necessarily zero for each j. Therefore

D = UD̂ where D is a diagonal matrix and U = U + U#τ is an isometry
with diagonal U, U# ∈ C

n×n.

Assume p = n. The problem of diagonalizing a bilinear form under
orthogonal substitutions resulted in the earliest versions of the singular
value decomposition; see [5, Chapter 3]. For an analogy, it is natural to
look for a diagonal structure in the expansion (3.5). To this end, assume
W1, W2 ∈ C

n×n are unitary and suppose that

(3.12) M = W1(D + D#τ)W ∗
2

with diagonal matrices D = diag(d1, . . . , dn) and D# = diag(d#
1 , . . . , d#

n ).
Then the approximation numbers of M with respect to the Frobenius norm
are (|dj|2 + |d#

j |2)1/2, after arranging these numbers in nonincreasing order.
In this case solving the nearness problem (3.1) is also straightforward: to
find V , choose those columns of W2 that correspond to the k largest values
of |dj| + |d#

j |. For an illustration, consider the following case.

Example 7. In [12] there appear infinite-dimensional operators to which
correspond matrices M = I and M# with M#

T = M#. Clearly, the real
linear operator M = I + M#τ is unitarily diagonalizable, i.e., (3.12) holds
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with W1 = W2. We have σF,j(M) = (1+σj(M#)2)1/2, where the σj(M#) are
the singular values of the matrix M#. For the approximation numbers with
respect to the operator norm we get σ2,j(M) = 1+σj(M#). In particular, if
σj(M#) = 1 for j = 1, . . . , n, then we have a real linear operator illustrating
that the upper bound of Theorem 3.6 is sharp.

If M can be decomposed according to (3.12), then its approximation
numbers with respect to the operator and Frobenius norms coincide with
those of M∗.

To recognize this structure we can use the following conditions.

Theorem 3.10. Assume p = n. Then (3.12) holds for M = M + M#τ
if and only if MM#

T and M∗M# are symmetric.

Proof. Since necessity is clear, let us prove sufficiency. Indeed, if MM#
T

and M∗M# are symmetric, then so are NN#
T and N∗N# with N = UMV ∗

and N# = UM#V T for any unitary matrices U and V . If M = U(Σ1⊕0)V ∗

is the SVD of M , where Σ1 contains the nonzero singular values of M ,
consider N = U∗MV . Since NN#

T is symmetric we have N# =
[

B1 0
0 B2

]

where B2 ∈ C
k×k can be chosen freely corresponding to the k zero singular

values of M . By using the SVD B2 = U2Σ2V
∗
2 of the B2 block we obtain[

Σ 0
0 0

]
+

[
B1 0
0 Σ2

]
τ . Proceeding similarly with the B1 block to reduce the

problem further, we obtain two invertible blocks in the upper-left corners
of the transformed operator. Hence we may assume that M and M# are
invertible.

For M and M# invertible, let MM#
T = UD̂UT be the Tagaki decom-

position of MM#
T with D̂ having strictly positive diagonal entries. Let us

consider N = U∗MU instead of M. Since N is invertible, N# = D̂N−T .

As N∗N# is symmetric, we obtain D̂NNT = NN∗D̂ = NNT D̂. Since the

diagonal entries of D̂ are strictly positive, this forces NN∗ to be a real (ob-
viously Hermitian) block diagonal matrix, with blocks of size corresponding

to the equaling entries of D̂. Take a real block unitary matrix V that diag-
onalizes NN∗ and consider L = V ∗NV . Then LL∗ is diagonal and hence
by Lemma 3.11 below, L = DNW with a diagonal matrix DN and a uni-
tary matrix W . As D̂ and V commute, N# = D̂N−T gives L# = D̂D−T

N W .
Hence, L = DW .

Lemma 3.11. For L ∈ C
n×n assume LL∗ is diagonal. Then L = DW

with a diagonal matrix D with nonnegative entries and a unitary matrix W .

Proof. Denote LL∗ by D. Let UΣV ∗ be an SVD of L and apply, if
needed, a permutation P such that L = (UP ∗)D1/2(V P )∗. Then LL∗ =
UP ∗D(UP ∗)∗ = D. Hence UP ∗ commutes with D and therefore with D1/2

as well, and we have L = D1/2UP ∗(V P )∗.
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If M satisfies the assumptions of Theorem 3.10, then obviously so do M∗

and τM as well as M = M + M#τ . In view of this, consider the following
example.

Example 8. Assume p = n and let M = κI + M#τ with κ ∈ C. If
κ = 0, there are no restrictions on M# while for κ 6= 0 we must have a
symmetric M# for the assumptions of Theorem 3.10 to hold. (Note that the
skew-symmetric case is understood by Corollary 3.7.)

Theorem 3.10 extends the singular value decomposition of a matrix in
the sense that a real linear operator M with M# = 0 (resp. M) satisfies
the assumptions and the assertion simply refers to the SVD of the matrix
M (resp. M#). With circulant and Hankel matrices we can give interesting
examples. To this end, let P ∈ C

n×n denote the “backward identity” [6],
i.e., the permutation matrix with ones on the diagonal joining the left lower
corner with the right upper corner.

Definition 3.12. M ∈ C
n×n is a circulant-Hankel matrix if M = PC

for a circulant matrix C ∈ C
n×n.

A circulant-Hankel matrix has cyclically appearing antidiagonals.

Example 9. If M is a circulant and M# a circulant-Hankel matrix,
then M is unitarily diagonalizable with U = (1/

√
n)Fn, where Fn is the

Fourier matrix [10]. Conversely, let M be a circulant-Hankel and M# a
circulant matrix. Then the corresponding M is, generically, not unitarily
diagonalizable but does satisfy the assumptions of Theorem 3.10.

Example 10. If we have an isometry satisfying the assumptions of Theo-
rem 3.10, then the corresponding diagonal real linear operator D = D+D#τ

is an isometry. Hence, necessarily either |djj| = 1 and |d#
jj| = 0, or |djj| = 0

and |d#
jj| = 1 for the diagonal elements of D and D# with j = 1, . . . , n.

Observe though that for a case where the nearness problems (3.1) and
(3.3) can be solved simultaneosly, the structure (3.12) is not the most gen-
eral. According to Proposition 3.4, (3.1) and (3.3) can be solved if we manage
to obtain a diagonal real linear operator W∗

1MW2 with an isometry W1 and
a unitary matrix W2. (Recall that we can always have an upper triangular
form W∗

1M with an isometry W1; see [2, Section 2.2].) Clearly, M∗M is
then necessarily unitarily diagonalizable.

Let H = 1
2(M + M∗) and K = 1

2i(M − M∗) denote the Hermitian
and skew-Hermitian parts of M ∈ C

n×n. With this notation, we have the
following result.

Theorem 3.13. M = M + M#τ is unitarily diagonalizable if and only

if M is normal and M#, HM# and KM# are symmetric.
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Proof. Use [4, Corollary 5.3] together with the fact that due to normality
the matrices H and K commute to deduce that there exists a unitary matrix
U ∈ C

n×n such that U∗MU has diagonal linear and antilinear parts.

We conclude this section with two remarks. First, let us illustrate how
to form the proper orthogonal decomposition in our framework.

Example 11. The Karhunen–Loève expansion has a wide range of ap-
plications; see, e.g., [13] and the references therein. Assume that we have
functions (for instance, a collection of signals or trajectories) a1(t), a2(t), . . .
. . . , a2n(t) ∈ R

2p, for t ∈ [0, T ], forming a parameter dependent matrix
A(t) = [a1(t) · · · a2n(t)]. In digital image processing A(t) could represent a
continuous sequence of digitalized images. In control theory A(t) could be
the transfer function. We take its complex formulation M(t) for which we
want to find in a sense an optimal orthonormal set of C

n to approximately
represent M. To this end, we compute an orthogonal projector P ∈ Pj such
that

E(‖M(t)(I − P )‖2) =

T\
0

‖M(t)(I − P )‖2 dt

is minimal for a unitarily invariant norm ‖·‖. If we take the Frobenius norm,
then it is straightforward that the correlation matrix (which is obviously
Hermitian)

R =

T\
0

[M(t)∗ M#(t)T ]

[
M(t)

M#(t)

]
dt

yields the desired P via its SVD.

As a final remark, there are applications where it is of interest to preserve
a structure. For instance, for p = n, consider M + M#τ with M∗ = −M
and M#

T = M#. To preserve this, one option is to consider the modified
nearness problem

min
P∈Pj

‖M− PMP‖

for a unitarily invariant norm. Then, for P = V V ∗ solving this, the matrix

V (V ∗MV + V ∗M#V τ)V ∗

approximates M.
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