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Shilov boundary for holomorphic functions

on some classical Banach spaces

by

Maŕıa D. Acosta (Granada) and
Mary Lilian Lourenço (São Paulo)

Abstract. Let A∞(BX) be the Banach space of all bounded and continuous functions
on the closed unit ball BX of a complex Banach space X and holomorphic on the open
unit ball, with sup norm, and let Au(BX) be the subspace of A∞(BX) of those functions
which are uniformly continuous on BX . A subset B ⊂ BX is a boundary for A∞(BX)
if ‖f‖ = supx∈B |f(x)| for every f ∈ A∞(BX). We prove that for X = d(w, 1) (the
Lorentz sequence space) and X = C1(H), the trace class operators, there is a minimal
closed boundary for A∞(BX). On the other hand, for X = S, the Schreier space, and
X = K(ℓp, ℓq) (1 ≤ p ≤ q < ∞), there is no minimal closed boundary for the corresponding
spaces of holomorphic functions.

1. Introduction. A result of Shilov asserts that if A is a unital sep-
arating algebra of C(K) (K a compact Hausdorff topological space), then
there is a smallest closed subset S ⊂ K such that every function of A attains
its norm at some point of S [6, Theorem I.4.2]. Bishop [4] proved that if K
is metrizable, then, in fact, there is a minimal subset of K satisfying the
above condition for every separating algebra of C(K). That subset is the set
of peak points for A (see definition below).

Globevnik introduced the corresponding concepts for a subalgebra of
Cb(Ω), the space of bounded continuous functions on a topological space Ω
not necessarily compact [9]. In fact, he considered the case Ω = BX , where
X is a Banach space. If A is a subspace of Cb(Ω), we will say that a subset
B ⊂ Ω is a boundary for A if

‖f‖ = sup
b∈B

|f(b)|, ∀f ∈ A.
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If there is a closed boundary B that is contained in all closed boundaries
for A, we will say that B is the Shilov boundary of A.

If X is a complex Banach space, we will denote by Au(BX) the space
of uniformly continuous functions on the closed unit ball of X which are
holomorphic on the open unit ball. Globevnik [9] described the boundaries
of Au(Bc0). As a consequence of the description, he showed that this algebra
has no Shilov boundary. Aron, Choi, Lourenço and Paques [3] gave examples
of boundaries for Au(Bℓ∞) and proved that there is no Shilov boundary
for this algebra. They also showed that the unit sphere of ℓ1 is the Shilov
boundary for Au(Bℓ1).

Moraes and Romero [14] gave a characterization of the boundaries of
Au(Bd∗(w,1)), where d∗(w, 1) is the canonical predual of the Lorentz sequence
space d(w, 1) when w = (1/n). Later Acosta, Moraes and Romero [2] gener-
alized that characterization proving it for any space d∗(w, 1) and obtained
another one in terms of the strong peak sets of the unit ball. In this case,
there is no Shilov boundary. Choi, Garćıa, Kim and Maestre [5] proved that
there is no Shilov boundary for Au(BC(K)), when K is infinite and scattered.
Acosta showed the same result for every infinite K and also proved that for
this space the set of extreme points of the unit ball of C(K) is a boundary
for Au(BC(K)) (see [1]).

Before going on it is convenient to recall some definitions. Let A be a
function space on a metric space Ω. An element y ∈ Ω is called a peak point

for A if there is some f ∈ A such that f(y) = 1 and |f(x)| < 1 for all
x ∈ Ω \ {y}. In this case we say that f peaks at y. An element y ∈ Ω is
called a strong peak point for A if there is some f ∈ A satisfying f(y) = 1
and such that given any ε > 0 there is some δ > 0 such that dist(x, y) > ε
implies that |f(x)| < 1 − δ. It is clear that every closed boundary for A
contains all the strong peak points.

In this paper we prove that there is no Shilov boundary for Au(BX) when
X is the Schreier space or the space K(ℓp, ℓq) (1 ≤ p ≤ q < ∞). For the
spaces X = C1(H), the trace class operators on a complex Hilbert space H,
or X = d(w, 1), the Shilov boundary for Au(BX) exists. In fact, all the
points in the unit sphere of d(w, 1) are strong peak points for Au(Bd(w,1)),
and so in this case the Shilov boundary is the unit sphere. For ℓ1 the same
result holds. That fact was proved in [3] for the finitely supported sequences
in the unit sphere. If K is infinite, we also prove that there are no strong
peak points for Au(BC(K)). The set of peak points for Au(BC(K)) is the set
of extreme points of BC(K) if K is separable.

Throughout this paper, all the Banach spaces considered are complex.
For a Banach space X, BX and SX will be the closed unit ball and the unit
sphere of X, respectively. We will denote by A∞(BX) the Banach space of
all bounded and continuous functions on BX which are holomorphic on the
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open unit ball, and by Au(BX) the space of all functions in A∞(BX) which
are uniformly continuous.

2. Existence of the Shilov boundary on the Lorentz sequence

space. Given a decreasing sequence w of positive real numbers satisfying
w1 = 1 and w ∈ c0 \ ℓ1, the complex Lorentz sequence space d(w, 1) is
given by

d(w, 1) =
{
x : N → C : sup

{ ∞∑

n=1

|x(σ(n))|wn : σ : N → N injective
}

< ∞
}
.

The norm is given by

‖x‖ = sup
{ ∞∑

n=1

wn|x(σ(n))| : σ : N → N injective
}

(x ∈ d(w, 1)).

It is well known and easy to verify that the above supremum is attained for
the decreasing rearrangement of x. The usual vector basis (en) is a monotone
Schauder basis (see [12]).

A canonical predual d∗(w, 1) of d(w, 1) is given by

d∗(w, 1) =

{
x ∈ c0 : lim

n

∑n
k=1 x∗(k)

Wn

= 0

}

where Wn =
∑n

k=1 wk and x∗ is the decreasing rearrangement of x. This
space is a Banach space endowed with the norm

‖x‖ = sup
n

{∑n
k=1 x∗(k)

Wn

}

(see [16] and [7]). d∗(w, 1) has a Schauder basis whose sequence of biorthog-
onal functionals is, in fact, the canonical basis of d(w, 1).

We begin by presenting some useful lemmas.

Lemma 2.1. If (zn) is a bounded sequence of complex numbers such that

the sequence (1 + |zn| − |1 + zn|) converges to zero, then so does (|zn| − zn).

Proof. We consider the following identity for a complex number z:

(1 + |z| − |1 + z|)2 = 1 + |z|2 + 2|z| + |1 + z|2 − 2(1 + |z|) |1 + z|

= 2(Re z − |z|) + 2(1 + |z|)(1 + |z| − |1 + z|).

If we apply the above identity to the sequence (zn) and use the assumption,
we find that the sequence (|zn| − Re zn) converges to zero.

Now if we consider the expression

(|z| − Re z)2 = 2(Re z)2 + (Im z)2 − 2|z|Re z

= (Im z)2 + 2(Re z − |z|) Re z,
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and we apply the identity to the sequence (zn), we deduce that Im zn → 0.
Hence

|zn| − zn = |zn| − Re zn − i Im zn → 0.

Lemma 2.2 ([3, Lemma 9]). Let 0 < a < 1. The real-valued function

given by

ga(x) =

(
1 +

x

1 − a

)(
1 +

1 − x

a

)
(x ∈ R)

attains its maximum at x = a and

ga(x) < ga(a) =
1

a(1 − a)
, ∀x ∈ R \ {a}.

Lemma 2.3. The set of peak points in SX for A∞(BX) is invariant under

surjective linear isometries on X. The same holds for the set of strong peak

points in SX .

By the maximum modulus theorem, every peak point for a subspace of
A∞(BX) belongs to SX . As a consequence, so does every strong peak point.
The following result shows the converse for the subspace of all polynomials
on d(w, 1).

Theorem 2.4. The set of strong peak points for the space of polynomials

of degree less than or equal to 2 on d(w, 1) contains the unit sphere of d(w, 1).

Proof. Let y0 ∈ Sd(w,1). By Lemma 2.3 we can assume that supp y0 is an
interval of positive integers containing {1} and

(1) y0(j) ∈ R
+, ∀j ∈ supp y0, y0(n) ≥ y0(n + 1), ∀n ∈ N.

We will prove that y0 is a strong peak point for Au(d(w, 1)).

If the support of y0 contains just one element, then y0 = e1 and it is
sufficient to consider the first-degree polynomial given by

f(x) = 1 + x(1) (x ∈ d(w, 1)).

Clearly ‖f‖ = 2 = f(y0). By using the fact that in Sd(w,1) the weak and
σ(d(w, 1), d∗(w, 1)) convergences coincide ([16, Proposition 2.2] and [10,
Corollary III.2.15]) and that every point of the unit sphere is a point of
weak-norm continuity of the unit ball [13, Proposition 4], it is easily checked
that f strongly peaks in the unit ball at y0.

Now assume that J := supp y0 has at least two elements. Since ‖y0‖ = 1,
by (1), we know that

∑
i∈J wiy0(i) = 1 and so 0 < wiy0(i) < 1 for every

i ∈ J .

For every k ∈ J we define

fk(x) =
1

Mk

(
1+

wkx(k)

1 − wky0(k)

)(
1+

1

wky0(k)

∑

j∈J\{k}

wjx(j)

)
(x∈ d(w, 1)),
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where

Mk =
1

wky0(k)(1 − wky0(k))
.

Then fk is clearly a non-homogeneous polynomial on d(w, 1) of degree 2 and
fk(y0) = 1. We will check that ‖fk‖ = 1.

If x ∈ Bd(w,1), then

|fk(x)| =
1

Mk

∣∣∣∣1 +
wkx(k)

1 − wky0(k)

∣∣∣∣
∣∣∣∣1 +

1

wky0(k)

∑

j∈J\{k}

wjx(j)

∣∣∣∣(2)

≤
1

Mk

(
1+

wk|x(k)|

1 − wky0(k)

)(
1+

1

wky0(k)

∑

j∈J\{k}

|wjx(j)|

)

≤
1

Mk

(
1+

wk|x(k)|

1 − wky0(k)

)(
1+

1 − wk|x(k)|

wky0(k)

)
(since x∈BX)

≤
1

Mk

(
1+

wky0(k)

1−wky0(k)

)(
1+

1−wky0(k)

wky0(k)

)
(byLemma2.2)

= 1.

Hence ‖fk‖ = 1.

Our intention is to show that y0 is a strong peak point for the space of
second-degree polynomials. To this end, we will prove that

(3) xn ∈ Bd(w,1), ∀n, |fk(xn)| →
n

1 ⇒ xn(k) →
n

y0(k).

For every fixed k, we write

un =
wkxn(k)

1 − wky0(k)
, vn =

∑

j∈J
j 6=k

wjxn(j)

wky0(k)
.

We rewrite the inequality (2) in terms of the above sequences:

|fk(xn)| =
1

Mk

|1 + un| |1 + vn| ≤
1

Mk

(1 + |un|)(1 + |vn|) ≤ 1.

If we assume that |fk(xn)| → 1 as n → ∞, then the sequence (1+vn) has no
subsequence converging to zero. From the above inequality we deduce that

|1 + un| − 1 − |un| → 0.

Since k is fixed, Lemma 2.1 implies that (|un| − un) converges to zero, that
is, |xn(k)| − xn(k) → 0 as n → ∞. Also by Lemma 2.2, we know that

wk|xn(k)| → wky0(k) as n → ∞.

Hence we deduce that xn(k) → y0(k) as n → ∞.
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Now we choose a sequence (αn) in ℓ1 such that suppα = J , αn > 0 for
all n ∈ J and

∑
n∈J αn = 1. Define

f(x) =
∑

k∈J

αkfk(x) (x ∈ Bd(w,1)).

Then f is a polynomial of degree at most 2 in d(w, 1) and ‖f‖ ≤ 1 = f(y0).
We now prove that this function strongly peaks in the unit ball of d(w, 1)

at y0. So assume that |f(xn)| → 1 for some sequence (xn) in the unit ball.
Then clearly fk(xn) → 1 as n → ∞ for every k ∈ J .

Since y0 ∈ Sd(w,1), by condition (3), we know that (xn) converges point-
wise to y0. All the elements involved in the argument are in the unit ball
of d(w, 1) and so (xn) converges to y0 in the σ(d(w, 1), d∗(w, 1))-topology.
Since d∗(w, 1) is an M-ideal in its dual (see [16, Proposition 2.2] or [10, Ex-
amples III.1.4c]), in the unit ball of d(w, 1), the weak and weak∗ topologies
coincide on the unit sphere, in view of [10, Corollary III.2.15]. By applying
this to the element y0, which is the w∗-limit of (xn), we see that in fact (xn)
converges weakly to y0. Since all the points of the unit sphere of d(w, 1) are
points of weak-norm continuity [13, Proposition 4], we conclude that (xn)
converges in norm to y0 and y0 is a strong peak point, as we wanted to
show.

Corollary 2.5. The Shilov boundary for the space of second-degree

polynomials on d(w, 1) is Sd(w,1). Hence Sd(w,1) is also the Shilov boundary

for Au(Bd(w,1)) and A∞(Bd(w,1)).

It is known that all the finitely supported elements in Sℓ1 are strong
peak points for the space of second-degree polynomials on ℓ1 [3, Theorem
10]. We now extend that result.

Theorem 2.6. Sℓ1 is the set of strong peak points for the space of second-

degree polynomials on ℓ1.

Proof. If y0 ∈ Sℓ1 , then, by Lemma 2.3, we can assume that y0(n) ≥ 0
for every n. If |supp y0| = 1 and {n} = supp y0, the function x 7→ 1 + x(n)
strongly peaks in the unit ball of ℓ1 at y0. Otherwise, if J := supp y0 satisfies
|J | ≥ 2, then the second-degree polynomial given by

fk(x) :=
1

y0(k)(1 − y0(k))

(
1 +

x(k)

1 − y0(k)

)(
1 +

∑
i6=k x(i)

y0(k)

)
(x ∈ ℓ1)

satisfies fk(y0) = 1. In view of Lemma 2.2, also ‖fk‖ = 1 and now we can
follow the argument in the proof of Theorem 2.4.

3. Boundaries for the Schreier space and C(K). A subset E =
{n1 < · · · < nk} of the natural numbers N is said to be admissible if k ≤ n1.
The Schreier space S is the completion of the space c00 of all scalar sequences
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of finite support with respect to the norm ‖x‖ = sup
∑

j∈E |xj|, where the
supremum is taken over all admissible sets E of natural numbers.

The following theorem shows in particular that the intersection of all
boundaries for A∞(BS) is empty.

Theorem 3.1. Let S be the Schreier space and B be a boundary for

A∞(BS). If x0 ∈ B and 0 < r < 1, then B \ (x0 + rBS) is a boundary for

A∞(BS). As a consequence, there is no Shilov boundary for A∞(BS).

Proof. Assume that h ∈ A∞(BS). For every 0 < ε < (1 − r)/2, there is
y0 ∈ c00 such that ‖y0‖ < 1 and

|h(y0)| > ‖h‖ − ε.

We write k = max supp y0 and denote by (Pm) the sequence of canonical
projections associated to the usual basis of S. Choose a positive integer n
such that n > k/(1 − ‖y0‖) and ‖(I − Pn)(x0)‖ < ε. We will check that
y0 + λy ∈ BS for every λ ∈ C with |λ| = 1 and y =

∑2n
j=n+1(1/n)ej.

Let A = E ∪ F be an admissible set such that E ⊂ {1, . . . , k} and
minF > k. If E 6= ∅, then |E| + |F | ≤ k and

∑

i∈E∪F

|y0 + λy(i)| ≤
∑

i∈E

|y0(i)| +
∑

i∈F

|y(i)| ≤ ‖y0‖ +
k

n
≤ 1 .

If E = ∅, then
∑

i∈F |(y0 + λy)(i)| =
∑

i∈F |y(i)| ≤ 1. So ‖y0 + λy‖ ≤ 1.

By the maximum modulus theorem, there is λ0 ∈ C with |λ0| = 1 such
that

|h(y0 + λ0y)| ≥ |h(y0)| > ‖h‖ − ε.

Fix λ1 ∈ C satisfying |λ1| = 1 and

|h(y0 + λ0y) + λ1| = |h(y0 + λ0y)| + 1.

Since ‖y‖ = 1 and Pn(y) = 0, there is y∗ ∈ SS such that y∗(λ0y) = 1,
y∗(ej) = 0 for all j ≤ n and so y∗(y0) = 0. Now, we define a holomorphic
function g by

g(x) := h(x) + λ1y
∗(x) (x ∈ BS).

Clearly g ∈ A∞(BS) and

‖h‖ − ε + 1 < |h(y0)| + 1 ≤ |h(y0 + λ0y)| + y∗(λ0y)

= |g(y0 + λ0y)| ≤ ‖g‖ ≤ ‖h‖ + 1.

Since B is a boundary there is z0 ∈ B such that

|g(z0)| > ‖h‖ − ε + 1.

On the other hand,

|g(z0)| ≤ |h(z0)| + |y∗(z0)| ≤ ‖h‖ + |y∗(z0)| ≤ ‖h‖ + 1.
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This implies |y∗(z0)| > 1 − ε. Hence

‖(I − Pn)(z0)‖ ≥ |y∗(z0)| > 1 − ε.

Consequently,

‖z0 − x0‖ ≥ ‖(I − Pn)(z0 − x0)‖

≥ ‖(I − Pn)(z0)‖ − ‖(I − Pn)x0‖ ≥ 1 − 2ε > r.

Also |h(z0)| + 1 ≥ ‖h‖ + 1 − ε and hence |h(z0)| > ‖h‖ − ε. Therefore
z0 ∈ B\(x0+rBS) and this set is a boundary for A∞(BS). As a consequence,
the Shilov boundary of this space does not exist.

We recall that a point x ∈ BX is a C-extreme point of the unit ball if

(y ∈ X, ‖x + λy‖ ≤ 1, ∀λ ∈ C, |λ| = 1) ⇒ y = 0.

Theorem 3.2. If K is any infinite compact Hausdorff topological space,
then there are no strong peak points for A∞(BC(K)). If K is separable, then

all the extreme points in BC(K) are peak points for the space of first-degree

polynomials on C(K).

Proof. It is known that every peak point is a C-extreme point [8, Theo-
rem 4]. So we will prove that C-extreme points of BC(K) are not strong peak
points. Assume that x0 ∈ SC(K) is an extreme point of the unit ball. Since
K is infinite, there is a sequence (xn) ⊂ C(K) satisfying

0 ≤ xn ≤ 1, ‖xn‖ = 1, ∀n, suppxn ∩ suppxm = ∅, ∀n 6= m.

Assume that h ∈ BA∞(BC(K)) with h(x0) = 1. Since (xn) is equivalent to the

c0-basis, it converges weakly to zero. Then the sequence (x0(1−xn)) is in the
unit ball of C(K) and converges weakly to x0. Since C(K) has the Dunford–
Pettis property, it also has the polynomial Dunford–Pettis property [15],
and so the argument in the proof of [1, Proposition 4.1] shows that

h(x0(1 − xn)) → 1.

Since xn are non-negative elements in the unit sphere, for every n there is
tn ∈ K such that xn(tn) = 1 and so

‖x0(1 − xn) − x0‖ ≥ ‖x0xn‖ ≥ |x0(tn)xn(tn)| = 1.

Hence x0 is not a strong peak point for A∞(BC(K)).

If K is separable and {tn : n ∈ N} is a dense set in K, we will prove
that the function u such that u(K) = {1} is a peak point for the space
of first-degree polynomials. In view of Lemma 2.3, this proves the stated
assertion.

Define

f(x) :=

∞∑

n=1

αn(1 + x(tn)) (x ∈ C(K)),
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where (αn) ⊂ Sℓ1 with αn > 0 for every n. Then f is clearly a first-degree
polynomial on C(K) and f(u) = ‖f‖ = 2. If x ∈ BC(K) and |f(x)| = 2, then
|1 + x(tn)| = 2 for every n and so x(tn) = 1 for all n, that is, x = u.

Since ℓ∞ has a countable subset of functionals that separate points and
attain the norm at the same element of the unit ball, we can also obtain:

Corollary 3.3 ([3]). All the extreme points in Bℓ∞ are peak points for

the space of first-degree polynomials on ℓ∞.

4. Shilov boundary on the trace class operators. Let H be a
complex Hilbert space. An operator T : H → H is called a trace class

operator if there are orthonormal sequences (en) and (fn) in H such that
T (x) =

∑∞
n=1 λn〈x, en〉fn for every x ∈ H and the sequence (λn) is in ℓ1. In

that case, the norm of T is given by ‖T‖ =
∑∞

n=1 |λn|. We denote by C1(H)
the Banach space of all trace class operators on H.

Theorem 4.1. If H is a complex Hilbert space, then the Shilov bound-

aries for Au(C1(H)) and A∞(C1(H)) both exist and coincide.

Proof. Assume that {ei : i ∈ I} is an orthonormal basis of H and F ⊂ I
is any subset. Then the operator ΠF given by

ΠF (T ) := PF TPF (T ∈ C1(H)),

where PF (x) =
∑

i∈F x(i)ei (x ∈ H), is a norm one projection on C1(H).
Since Lin{ei ⊗ ej : i, j ∈ I} is dense in C1(H), for every h ∈ A∞(BC1(H))
we have

‖h‖ = sup
F⊂I

F finite

‖h ◦ ΠF ‖.

For every complex finite-dimensional space Y , the subset of peak points of
BY is a boundary for Au(BY ) [4, Theorem 1]. We will prove that for every
finite subset F ⊂ I, every peak point of the unit ball of ΠF (C1(H)) for the
space of bounded and continuous functions on the unit ball of ΠF (C1(H))
which are holomorphic on the open unit ball, is a strong peak point for
Au(BC1(H)).

Let T0 ∈ SC1(H)∩ΠF (C1(H)) be a peak point. Then there is a continuous
function g on the unit ball of ΠF (C1(H)), which is holomorphic on the open
unit ball and satisfies

g(T0) = ‖g‖ = 1 and |g(T )| < 1, ∀T ∈ (BC1(H) ∩ ΠF (C1(H))) \ {T0}.

Now we extend g to BC1(H) by

g̃(T ) = g(ΠF (T )) (T ∈ BC1(H)).

Clearly g̃ ∈ Au(BC1(H)), ‖g̃‖ ≤ ‖g‖ = 1 and g̃(T0) = 1. Assume that
(Tn) ⊂ BC1(H) with |g̃(Tn)| → 1, that is, |g(ΠF (Tn))| → 1. Since ΠF (C1(H))



36 M. D. Acosta and M. L. Lourenço

is a finite-dimensional space and T0 is a peak point, we have ΠF (Tn) → T0.
Since ‖T0‖ = 1, it follows that ‖ΠF (Tn)‖ → 1. By using [11, Proposition
2.2], we have

‖PF TnPF ‖
2 +‖PF Tn(I−PF )‖2 +‖(I−PF )TnPF ‖

2 +‖(I −PF )Tn(I−PF )‖2

≤ ‖Tn‖
2 ≤ 1,

and so ‖ΠF (Tn)−Tn‖ = ‖PF TnPF −Tn‖ → 0. Since we know that (ΠF (Tn))
converges to T0, so does (Tn), and T0 is a strong peak point, as we wanted
to show. Since the strong peak points are contained in any closed boundary
and in this case the set of strong peak points is a boundary for Au(BC1(H)),
the Shilov boundary for this space is the closure of the set of strong peak
points of Au(BC1(H)). The same argument works for A∞(BC1(H)).

5. Boundaries forK(ℓp, ℓq). We now study the properties of the bound-
aries for A∞(BX), where X is the space of all compact operators on ℓp for
1 ≤ p < ∞.

Theorem 5.1. If 1 ≤ p ≤ q < ∞, then there is no Shilov boundary for

A∞(BK(ℓp,ℓq)). In fact , if B is a boundary for A∞(BK(ℓp,ℓq)), 0 < r < 1 and

S0 ∈ B, then B\(S0+rBK(ℓp,ℓq)) is also a boundary for A∞(BK(ℓp,ℓq)). There

are closed boundaries A, B for A∞(BK(ℓp,ℓq)) such that dist(A, B) ≥ 1. The

same assertions hold for Au(BK(ℓp,ℓq)).

Proof. We denote by (Pn) and (Qn) the sequences of canonical projec-
tions associated to the usual bases of ℓp and ℓq, respectively.

Assume that B ⊂ BK(ℓp,ℓq) is a boundary for A∞(BK(ℓp,ℓq)), 0 < r < 1
and S0 ∈ B. If h ∈ A∞(BK(ℓp,ℓq)) and 0 < ε < (1 − r)/3, then there are
N ∈ N and F ∈ BK(ℓp,ℓq) which satisfy QNFPN = F and

|h(F )| > ‖h‖ − ε.

Since S0 is a compact operator, there exists n > N with

‖(I − Qn)S0(I − Pn)‖ < ε.

Choose R ∈ SK(ℓp,ℓq) such that

(I − Qn)R(I − Pn) = R,

and x0 ∈ Sℓp
satisfying Pnx0 = 0 and ‖R(x0)‖ = 1. Then there exists

y∗ ∈ Sℓ∗q
with Q∗

n(y∗) = 0 and y∗(R(x0)) = 1. Notice that ‖F + λR‖ ≤ 1 for
every complex number λ with |λ| = 1. By the maximum modulus theorem,
there is λ0 ∈ C such that |λ0| = 1 and

|h(F )| ≤ |h(F + λ0R)| ≤ sup
|λ|=1

|h(F + λR)|.

If λ1 ∈ C is a modulus one scalar satisfying

|h(F + λ0R) + λ1y
∗(λ0R(x0))| = |h(F + λ0R)| + 1,
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we define a holomorphic function g by

g(T ) := h(T ) + λ1y
∗(Tx0) (T ∈ BK(ℓp,ℓq)).

Clearly g ∈ A∞(BK(ℓp,ℓq)) and

‖g‖ ≥ |g(F + λ0R)| = |h(F + λ0R) + λ1y
∗(λ0Rx0)|

= |h(F + λ0R)| + 1 ≥ |h(F )| + |y∗(Rx0)| > ‖h‖ − ε + 1.

Since B is a boundary for A∞(BK(ℓp,ℓq)), there is S ∈ B such that |g(S)| >
‖g‖ − ε. Hence

(4) ‖h‖ − 2ε + 1 ≤ ‖g‖ − ε < |g(S)| ≤ |h(S)| + |y∗(Sx0)|,

and so

|y∗(Sx0)| ≥ 1 − 2ε.

By the choice of x0 and y∗,

‖(I − Qn)S(I − Pn)‖ ≥ |y∗(I − Qn)S(I − Pn)x0| = |y∗(Sx0)| ≥ 1 − 2ε.

Finally, we deduce that

‖S − S0‖ ≥ ‖(I − Qn)(S − S0)(I − Pn)‖

≥ ‖(I − Qn)S(I − Pn)‖ − ‖(I − Qn)S0(I − Pn)‖ ≥ 1 − 3ε > r.

From inequality (4), we also obtain

|h(S)| ≥ ‖h‖ − 2ε.

We have just proved that B\(S0+rBK(ℓp,ℓq)) is a boundary for A∞(BK(ℓp,ℓq)).
As a consequence, the Shilov boundary of this space does not exist.

Now we give a procedure to construct boundaries for A∞(BK(ℓp,ℓq
). Since

Lin{x ⊗ y : x ∈ (ℓp)
∗, y ∈ ℓq, suppx, supp y are finite} is dense in K(ℓp, ℓq),

for every h ∈ A∞(BK(ℓp,ℓq)) we have

‖h‖ = sup{‖hF ‖ : F ⊂ N finite},

where hF (T ) := h(QF TPF ) for T ∈ K(ℓp, ℓq) and PF , QF are the projections
given by

PF (x) =
∑

n∈F

x(n)en (x ∈ ℓp), QF (x) =
∑

n∈F

x(n)en (x ∈ ℓq).

Note also that ‖hF ‖ ≤ ‖hG‖ for F ⊂ G.
Assume that (Fn) is an increasing sequence of finite subsets of N such

that Gn := Fn+1 \Fn is non-empty and
⋃

n Fn = N. We consider the subsets
An whose elements are those operators T ∈ BK(ℓp,ℓq) that admit a decom-
position T = R + S satisfying

‖R‖ = ‖S‖ = 1, R = QFn
RPFn

, QFn
SPFn

= 0, QGn
SPGn

= S.

Note that An is closed for every n.
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We now check that B =
⋃

n An is a closed boundary for A∞(BK(ℓp,ℓq)).
Given h ∈ A∞(BK(ℓp,ℓq)) and ε > 0, there is some finite subset F ⊂ N such
that ‖hF‖ > ‖h‖− ε. If F ⊂ Fm, then also ‖hFm

‖ ≥ ‖h‖− ε. Hence there is
an operator R ∈ SK(ℓp,ℓq) such that QFm

RPFm
= R where hFm

attains its
norm and so

|h(R)| ≥ ‖h‖ − ε.

If S ∈ SK(ℓp,ℓq) satisfies QFm
SPFm

= 0 and QGm
SPGm

= S, then the
operator R + λS is in the unit ball of K(ℓp, ℓq), for every complex number
λ in the unit disk. The maximum modulus theorem applied to the function
λ 7→ h(R + λS) defined on the complex unit disk shows that there is a
complex number λ0 with |λ0| = 1 and such that

|h(R + λ0S)| ≥ |h(R)| ≥ ‖h‖ − ε.

Since R + λ0S ∈ Am, B is a boundary for A∞(BK(ℓp,ℓq)).
Note that for two positive integers n < m, if Tn ∈ An and Tm ∈ Am,

then

(5) ‖Tm − Tn‖ ≥ ‖QGm
(Tm − Tn)PGm

‖ = ‖QGm
TmPGm

‖ = 1.

Since every An is closed, the above inequality shows that B is also closed.
By the same argument,

⋃
n A2n and

⋃
n A2n−1 are also closed boundaries

for A∞(BK(ℓp,ℓq)). In view of (5), the distance between them is at least 1.
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