On self-commutators of Toeplitz operators with rational symbols

by

SHERWIN KOUCHEKIAN (Mobile, AL) and JAMES E. THOMSON (Blacksburg, VA)

Abstract. We prove that the self-commutator of a Toeplitz operator with unbounded analytic rational symbol has a dense domain in both the Bergman space and the Hardy space of the unit disc. This is a basic step towards establishing whether the self-commutator has a compact or trace-class extension.

1. Introduction. Let \mathcal{H} be a complex, separable Hilbert space. For a linear operator $T:\mathcal{H}\to\mathcal{H},\ \mathcal{D}(T)$ and $\ker T$ denote the domain and kernel of T, respectively; that is, $\mathcal{D}(T)=\{h\in\mathcal{H}:\underline{Th}\in\mathcal{H}\}$ and $\ker T=\{h\in\mathcal{D}(T):Th=0\}$. T is called densely defined if $\overline{\mathcal{D}(T)}=\mathcal{H}$, where the closure is taken with respect to the norm in \mathcal{H} . In fact, T has a unique adjoint T^* if and only if T is densely defined (see [1] for more details). For a densely defined operator T, the self-commutator of T is defined by $[T^*,T]=T^*T-TT^*$. Throughout this paper \mathcal{H} stands for either the Bergman space L^2_a or the Hardy space H^2 of the open unit disc \mathbb{D} . Specifically, L^2_a is the space of all analytic functions on \mathbb{D} for which

$$||f||_{L^2_a} := \left(\int_{\mathbb{D}} |f(z)|^2 dA(z)\right)^{1/2} < \infty,$$

where dA denotes the normalized Lebesgue area measure restricted to \mathbb{D} ; and H^2 is the space of all analytic functions on \mathbb{D} such that

$$||f||_{H^2} := \sup_{0 < r < 1} \left(\int_{\mathbb{T}} |f(r\zeta)|^2 dm(\zeta) \right)^{1/2} < \infty,$$

where dm denotes the normalized Lebesgue arc length measure restricted to

²⁰⁰⁰ Mathematics Subject Classification: Primary 32A36; Secondary 47B35, 47B38. Key words and phrases: unbounded Bergman operators, density problem, self-commutator.

The research of the first author was partially supported by the National Science Foundation grant DMS-0500916.

the unit circle \mathbb{T} . The algebra of bounded analytic functions on \mathbb{D} is denoted by H^{∞} .

Using the almost everywhere existence of the non-tangential limit of each function in H^2 , one can identify H^2 as a closed subspace of $L^2(\mathbb{T})$ consisting of functions (or equivalence classes of functions) with vanishing negative Fourier coefficients. In this connection, the norm of H^2 can be alternatively defined as

$$\|f\|_{H^2}:=\left(\int\limits_{\mathbb{T}}|f(\zeta)|^2\,dm(\zeta)\right)^{1/2}<\infty,$$

where f denotes the boundary function. We will use this property of the Hardy space H^2 throughout without further references. We also assume some basics from the theory of Hardy and Bergman spaces (see [4] and [5] for more details).

We will consider the (unbounded) Toeplitz operator T_{φ} with symbol φ on \mathcal{H} ; that is, if φ is a measurable function on \mathbb{D} and $\mathcal{D}(T_{\varphi}) = \{f \in L_a^2 : \varphi \in \mathcal{L}_a^2 : \varphi$ $\varphi f \in L^2(\mathbb{D})$, then $T_{\varphi} : \mathcal{D}(T_{\varphi}) \to \mathcal{H}$ is defined by $T_{\varphi} f = P \varphi f$, where (if $\mathcal{H}=L_{\rm a}^2$) $P=P_{\rm B}$ is the Bergman orthogonal projection of $L^2(\mathbb{D})$ onto L_a^2 and (if $\mathcal{H}=H^2$) $P=P_{\mathrm{H}}$ is the Hardy orthogonal projection of $L^2(\mathbb{T})$ onto H^2 . Observing that T_{φ} belongs to the larger class of unbounded subnormal operators, one can easily prove the next lemma (see [2] for details and a proof).

LEMMA 1. If T_{φ} is a Toeplitz operator with symbol φ on \mathcal{H} , then

- (a) $\mathcal{D}(T_{\varphi}) \subseteq \mathcal{D}(T_{\varphi}^*)$. (b) $T_{\varphi}^* f = T_{\overline{\varphi}} f$ for all f in $\mathcal{D}(T_{\varphi})$.

In [7], the authors prove that the self-commutator of the Bergman-Toeplitz operator T_{φ} , where the symbol φ is a conformal mapping of the unit disc onto a region of bounded area, has a trace class extension to L_a^2 . In view of the generalization of the Berger-Shaw theorem obtained in [2], the proof given in [7] is based on the fact that $\mathcal{D}([T_{\varphi}^*, T_{\varphi}])$ is a dense subset of L_a^2 . Furthermore, using a rather technical argument, the authors were also able to establish the density of $\mathcal{D}([T_{\varphi}^*, T_{\varphi}])$ in L_{a}^2 under the assumption that φ is a rational symbol of the form $\varphi(z) = (1-z)^{-1}$ or $\varphi(z) = (1-z)^{-2}$ (see [7]). In this paper, we prove the general case: if φ is an analytic rational symbol with poles on the unit circle, then the self-commutator of the Toeplitz operator T_{φ} on \mathcal{H} is densely defined. As a result, this paper provides the first necessary step in investigating the open problem of whether $[T_{\omega}^*, T_{\varphi}]$ has a compact (or trace-class) extension to \mathcal{H} .

2. Density Theorem. The main result of this paper is the following Density Theorem.

THEOREM A. If φ is an analytic rational symbol in \mathbb{D} with poles on the unit circle \mathbb{T} , then the self-commutator of the Toeplitz operator T_{φ} is densely defined with respect to both the Bergman space L^2_a and Hardy space H^2 .

Before giving the proof of Theorem A, we need the following important property of the adjoint operator T_{φ}^* . Note also that \mathcal{P} denotes the linear space of analytic polynomials in variable z.

LEMMA 2. If $\varphi = f/g$ where $f, g \in H^{\infty}$ and g is an outer function, then T_{φ}^* leaves the space of analytic polynomials invariant; that is, $T_{\varphi}^* \mathcal{P} \subseteq \mathcal{P}$.

Proof. The condition "g is an outer function" guarantees the density of $\mathcal{D}(T_{\varphi})$ in \mathcal{H} so that T_{φ}^* is well defined. To give a proof, we note that $g[\mathcal{H}] = \{gh : h \in \mathcal{H}\}$ is clearly contained in $\mathcal{D}(T_{\varphi})$. Now, in view of Beurling's theorem (see [4]), $g[H^2]$ is dense in H^2 . The proof of the Bergman space case follows from the fact that H^2 is a dense subset of L_a^2 .

To prove the claim, we first assume that $\varphi \in H^{\infty}$ where φ 's Taylor expansion is given by $\varphi(z) = \sum_{n=0}^{\infty} a_n z^n$. Fix $n \geq 0$. The linearity of the projection operator P and Lemma 1(b) imply

$$T_{\varphi}^* z^n = P\Big[\Big(\sum_k \overline{a}_k \overline{z}^k\Big) z^n\Big] = \sum_k \overline{a}_k P(\overline{z}^k z^n).$$

A straightforward calculation (see [7] for details) shows that $P(\overline{z}^k z^n)$ vanishes for all k > n and $P(\overline{z}^k z^n) = C_{kn} z^{n-k}$ for $k \leq n$, where C_{kn} are constants depending only on k and n. This proves the bounded case.

Next assume that $1/\varphi$ is bounded. One can easily verify that $T_{\varphi}^*T_{1/\varphi}^*=I$, where I denotes the identity operator on \mathcal{H} . Thus we are done since $T_{1/\varphi}^*\mathcal{P}\subseteq\mathcal{P}$ by the bounded case. Finally, the general case $(\varphi=f/g)$ follows from the above special cases together with the observation that $T_{1/q}^*T_f^*\subseteq T_{\varphi}^*$.

Proof of Theorem A. Suppose $\varphi = h/r$ where $h, r \in \mathcal{P}$. Let $\xi_1, \ldots, \xi_n \in \mathbb{T}$ denote r's distinct zeros of orders $\alpha_1, \ldots, \alpha_n$, respectively. Throughout the rest of the proof, $n \geq 1$ is fixed. Define

$$Q = r[P] = \{rp : p \in P\}$$
 where $r(z) = \prod_{i=1}^{n} (z - \xi_i)^{\alpha_i}$.

First, we prove that \mathcal{Q} is dense in \mathcal{H} . For $\xi \in \mathbb{T}$, the fact that $\overline{\xi}(\xi - z)$ has a positive real part on \mathbb{D} implies that $F(z) = \xi - z$ is an outer function in H^2 (see [4]). Since the product of outer functions is again an outer function, the above fact implies that r is an outer function in H^2 . Now a similar argument to the one given in the proof of Lemma 2 proves the density of \mathcal{Q} in \mathcal{H} .

From the definition of \mathcal{Q} and φ , it follows that $\mathcal{Q} \subseteq \mathcal{D}(T_{\varphi})$ and $T_{\varphi}\mathcal{Q} \subseteq \mathcal{P}$. Consequently, in view of Lemma 2, $T_{\varphi}\mathcal{Q} \subseteq \mathcal{D}(T_{\varphi}^*)$; that is, $\mathcal{Q} \subseteq \mathcal{D}(T_{\varphi}^*T_{\varphi})$. The proof is then complete if one can show that \mathcal{Q} is also contained in $\mathcal{D}(T_{\varphi}T_{\varphi}^*)$. It turns out, however, that \mathcal{Q} is too large for our purposes. In fact, we will show the existence of a dense subset of \mathcal{Q} which is contained in $\mathcal{D}(T_{\varphi}T_{\varphi}^*)$.

For fixed $1 \leq k \leq n$ and $0 \leq l \leq \alpha_k - 1$, define the linear functional $L_{kl}: \mathcal{Q} \to \mathbb{C}$ by

$$L_{kl}: q \mapsto (T_{\varphi}^*q)^{(l)}(\xi_k) \quad \text{ for } q \in \mathcal{Q}.$$

In the above definition, and the rest of the proof, $(\cdot)^{(i)}$ denotes $\frac{d^i}{dz^i}(\cdot)$. Next, we put $\mathcal{L} = \bigcap_{k,l} \ker L_{kl}$. Since $\mathcal{L} \subseteq \mathcal{Q}$, we have $\mathcal{L} \subseteq \mathcal{D}(T_{\varphi}^*)$. Moreover, the definition of L_{kl} directly implies that $T_{\varphi}^* \mathcal{L} \subseteq \mathcal{D}(T_{\varphi})$. Thus $\mathcal{L} \subseteq \mathcal{D}(T_{\varphi}T_{\varphi}^*)$ and we are done if it can be shown that \mathcal{L} is a dense subset of \mathcal{Q} .

Let $s(z) = \prod_{i=1}^{n} (z - \xi_i)$ and put $R(z) = r(z) \cdot s(z)$. For $p \in \mathcal{P}$, define

(2.1)
$$q(z) = (T_R^* p)(z) - \sum_{i=1}^n \sum_{j=0}^{\alpha_i - 1} (T_R^* p)^{(j)}(\xi_i) t_{ij}(z),$$

where t_{ij} are polynomials satisfying $t_{ij}^{(l)}(\xi_k) = \delta_{ik}\delta_{jl}$ for $1 \leq i \leq n$, $0 \leq j \leq \alpha_i - 1$, $1 \leq k \leq n$, $0 \leq l \leq \alpha_k - 1$, and δ_{ij} stands for Kronecker's delta (see for example [3] for details). It follows easily that $q \in \mathcal{Q}$. Now, in view of the definition for L_{kl} and (2.1), we get

(2.2)
$$L_{kl}(q) = (T_S^* p)^{(l)}(\xi_k) - \sum_{i=1}^n \sum_{j=0}^{\alpha_i - 1} (T_R^* p)^{(j)}(\xi_i) (T_{\varphi}^* t_{ij})^{(l)}(\xi_k),$$

where $p \in \mathcal{P}$ and S = sh. To proceed further, we need two auxiliary results which are stated in Claims 1 and 2.

CLAIM 1. Fix $1 \le i \le n$ and $0 \le j \le \alpha_i - 1$. If $p \in \mathcal{P}$, then there is a constant $C_{ij} > 0$ (independent of p) such that $|(T_R^*p)^{(j)}(\xi_i)| \le C_{ij} ||p||_{\mathcal{H}}$.

Proof. We only prove the Bergman case when $\mathcal{H}=L_{\rm a}^2$ and omit the similar proof of the Hardy case. Since $R\in H^\infty$, Lemma 2 implies $T_R^*\mathcal{P}\subseteq\mathcal{P}$. Thus

$$(2.3) (T_R^*p)^{(j)}(\xi_i) = \lim_{r \to 1^-} (T_R^*p)^{(j)}(r\xi_i).$$

Recall that the Bergman kernel $k(z,w) = \overline{k_z(w)} = (1 - \overline{w}z)^{-2}$ has the reproducing property $f(z) = \langle f, k_z \rangle = \int_{\mathbb{D}} f(w) k_z(w) \, d\mathcal{A}(w)$ for all $f \in L^2_{\rm a}$ and $z \in \mathbb{D}$ (see [5] for more details). In particular, for $z = r\xi_i \in \mathbb{D}$ (0 < r < 1) we have

$$(2.4) (T_R^*p)^{(j)}(r\xi_i) = \overline{\xi}_i^j \frac{d^j}{dr^j} \langle T_R^*p, k_{r\xi_i} \rangle = \overline{\xi}_i^j \frac{d^j}{dr^j} \langle p, T_R k_{r\xi_i} \rangle$$

$$= \overline{\xi}_i^j \frac{d^j}{dr^j} \int_{\mathbb{D}} p(w) \overline{r_{\xi_i}(w)} \overline{(w - \xi_i)}^{\alpha_i + 1} \frac{1}{(1 - \overline{w}r\xi_i)^2} d\mathcal{A}(w)$$

$$= (j+1)! \overline{\xi}_i^{2(j+1)} \int_{\mathbb{D}} p(w) \overline{r_{\xi_i}(w)} \overline{w}^j \overline{\left(\frac{w - \xi_i}{rw - \xi_i}\right)}^{j+2} \overline{(w - \xi_i)}^{\alpha_i - j - 1} d\mathcal{A}(w),$$

where $r_{\xi_i}(z) = R(z)/(z - \xi_i)^{\alpha_i + 1}$. By hypothesis, $\alpha_i - j - 1 \ge 0$; hence, in view of (2.3) and (2.4), the result follows from the dominated convergence theorem together with an application of Hölder's inequality.

CLAIM 2. Fix $1 \le k \le n$, $0 \le l \le \alpha_k - 1$ and let $N = n + \deg h$. If p is a polynomial of the form $p(z) = a_N z^N + \cdots + a_{N+M} z^{N+M}$ $(M \ge 0)$, then there are constants C_{ikl} (independent of p) such that

$$(T_S^* p)^{(l)}(\xi_k) = \begin{cases} \sum_{i=0}^l C_{ikl} \, p^{(i)}(\xi_k) & \text{if } \mathcal{H} = H^2, \\ \sum_{i=0}^{l+1} C_{ikl} \, P^{(i)}(\xi_k) & \text{if } \mathcal{H} = L_a^2, \end{cases}$$

where $P(z) = \int_0^z p(w) dw$.

Proof. We will again only consider the Bergman case $\mathcal{H} = L_a^2$ and omit the similar proof of the Hardy case. Recall that $S(z) = h(z) \cdot \prod_{i=1}^n (z - \xi_i) := \sum_{i=0}^N s_i z^i$. Moreover, as already noticed in the proof of Lemma 2,

$$P_{\mathrm{B}}(z^{i}\,\overline{z}^{j}) = \begin{cases} 0 & \text{for } j > i, \\ \frac{i+1-j}{i+1}\,z^{i-j} & \text{for } j \leq i. \end{cases}$$

Now for fixed $z \in \mathbb{D}$, in light of Lemma 1(b), one obtains

$$(T_S^*p)(z) = P_{\mathcal{B}}\left(\sum_{i=N}^{N+M} a_i \sum_{j=0}^{N} \overline{s}_j z^i \overline{z}^j\right) = \sum_{i=N}^{N+M} a_i \sum_{j=0}^{N} \overline{s}_j \frac{i+1-j}{i+1} z^{i-j}$$

$$= \frac{d}{dz} \sum_{i=N}^{N+M} a_i \frac{1}{i+1} z^{i+1} \sum_{j=0}^{N} \overline{s}_j z^{-j}$$

$$= \frac{d}{dz} \left[\sum_{i=N}^{N+M} a_i \int_{0}^{z} w^i dw \cdot \overline{S(1/\overline{z})}\right]$$

$$= \frac{d}{dz} \left[\int_{0}^{z} p(w) dw \cdot \overline{S(1/\overline{z})}\right].$$

Differentiation of the above equality l times with respect to z yields

$$(2.5) (T_S^*p)^{(l)}(z) = \frac{d^{l+1}}{dz^{l+1}} [P(z) \cdot \overline{S(1/\overline{z})}] = \sum_{i=0}^{l+1} {l+1 \choose i} P^{(i)}(z) \, \overline{S(1/\overline{z})}^{(l+1-i)}.$$

Thus the claim follows from the evaluation of (2.5) at $z = \xi_k$.

Now suppose that \mathcal{L} is not dense in \mathcal{Q} . Then, by the Hahn–Banach theorem, there is a non-zero bounded linear functional L on \mathcal{H} such that $\mathcal{L} \subseteq \ker L$. Hence there are constants $\lambda_{kl} \in \mathbb{C}$ $(1 \le k \le n \text{ and } 0 \le l \le \alpha_k - 1)$ such that $L(q) = \sum_{k,l} \lambda_{kl} L_{kl}(q)$ for all $q \in \mathcal{Q}$ (see for example [1]). For $p \in \mathcal{P}$, let q be defined as in (2.1). It follows from (2.2) that

$$L(q) = \sum_{k,l} \lambda_{kl} (T_S^* p)^{(l)}(\xi_k) - \sum_{i,j,k,l} \lambda_{kl} (T_R^* p)^{(j)}(\xi_i) (T_\varphi^* t_{ij})^{(l)}(\xi_k),$$

where $1 \le i \le n$, $0 \le j \le \alpha_i - 1$, $1 \le k \le n$, and $0 \le l \le \alpha_k - 1$.

Using the result of Claim 1 and the fact that $|(T_{\varphi}^*t_{ij})^{(l)}(\xi_k)|$ are independent of p, we get

$$(2.6) |L(q)| \ge \left| \sum_{k,l} \lambda_{kl} (T_s^* p)^{(l)}(\xi_k) \right| - \sum_{i,j,k,l} C_{ijkl} ||p||_{\mathcal{H}},$$

where C_{ijkl} denote non-negative constants which do not depend on p.

Since $L \neq 0$, there is at least a pair of integers $1 \leq s \leq n$ and $0 \leq t \leq \alpha_s - 1$ for which $\lambda_{st} \neq 0$. Fix $m \geq 1$ and suppose there exists a polynomial p_m which satisfies the following conditions:

- (a₁) p_m is of the form $p_m(z) = a_N z^N + \cdots + a_{N+M} z^{N+M}$ where $N = n + \deg h$;
- (a₂) $p_m^{(t)}(\xi_s) = m;$
- (a₃) $p_m^{(l)}(\xi_k) = 0$ for $1 \le k \ne s \le n$ and $0 \le l \le \alpha_k 1$; if $\mathcal{H} = L_{\mathbf{a}}^2$, then p must satisfy the additional conditions $\int_0^{\xi_k} p(w) dw = 0$ for $1 \le k \le n$;
- $(a_4) \|p_m\|_{\mathcal{H}} \leq 1.$

Let q_m denote the corresponding polynomial for p_m in accordance with (2.1). Use Claim 2 together with the properties (a_1) – (a_4) to deduce from (2.6) that

$$|L(q_m)| \ge m \cdot |C_{st}| - C$$

where C_{st} is a constant independent of m and $C = \sum_{ijkl} C_{ijkl}$. But then $|L(q_m)|$ can be made arbitrarily large, as $m \to \infty$, which contradicts the boundedness of L. Thus \mathcal{L} must be dense in \mathcal{Q} (see [1]) and the proof of the theorem is complete if the existence of such a polynomial p_m can be proved.

We only give a proof of the more involved case of the Bergman space $\mathcal{H}=L_{\rm a}^2$. (The proof of the Hardy space case $\mathcal{H}=H^2$ is similar and easier.)

Let H_m denote the Hermite interpolating polynomial (see for example [8]) which satisfies the conditions:

- (b₁) H_m is of the form $H_m(z) = a_N z^N + \cdots + a_{N+M} z^{N+M}$ where $N = n + \deg h$;
- (b₂) $H_m^{(t)}(\xi_s) = m;$
- (b₃) $H_m^{(l)}(\xi_k) = 0$ for $1 \le k \ne s \le n$ and $0 \le l \le \alpha_k$.

Put $\beta = \frac{1}{2} \min\{\|H_m\|_{\infty}^{-1}, \|H_m'\|_{\infty}^{-1}\}$. It is not hard to see that one can choose a polynomial K_m such that

$$(c_1)$$
 $K_m(\xi_s) = 1, K'_m(\xi_s) = 0, \dots, K_m^{(\alpha_s - t)}(\xi_s) = 0,$

 $(c_2) \|K_m\|_{L^2_a} \le \|K'_m\|_{L^2_a} \le \beta.$

Indeed, let $K_m(z) = 1 - C^{-1}(z - \xi_s)^M$, where $M \ge \alpha_s - t$ and the constant C is chosen appropriately to satisfy (c_2) . Now, if we let $P_m = H_m K_m$ and set $p_m(z) = P'_m(z)$, then (b_1) – (b_3) and (c_1) imply that p satisfies (a_1) – (a_3) . Moreover, it follows from (c_2) that

$$||p_m||_{L_a^2} = ||P_m'||_{L_a^2} \le ||H_m'||_{\infty} ||K_m||_{L_a^2} + ||H_m||_{\infty} ||K_m'||_{L_a^2} \le 1.$$

Thus p_m also satisfies (a_4) , as was required.

References

- [1] J. B. Conway, A Course in Functional Analysis, Springer, New York, 1990.
- J. B. Conway, K. H. Jin, and S. Kouchekian, On unbounded Bergman operators,
 J. Math. Anal. Appl. 279 (2003), 418–429.
- [3] P. J. Davis, Interpolation and Approximation, Dover, New York, 1963.
- [4] P. Duren, Theory of H^p Spaces, Academic Press, New York, 1970.
- [5] H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman Spaces, Springer, New York, 2000.
- [6] S. Kouchekian, The density problem for unbounded Bergman operators, Integral Equations Operator Theory 45 (2003), 319–342.
- [7] S. Kouchekian and J. E. Thomson, The density problem for self-commutators of unbounded Bergman operators, ibid. 52 (2005), 135–147.
- [8] V. V. Prasolov, *Polynomials*, Springer, Berlin, 2004.

Department of Mathematics & Statistics University of South Alabama Mobile, AL 36668, U.S.A. E-mail: sherwin@jaguar1.usouthal.edu Department of Mathematics Virginia Tech Blacksburg, VA 24061, U.S.A. E-mail: thomson@math.vt.edu

Received January 9, 2006 Revised version November 1, 2006 (5839)