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The density of states of a
local almost periodic operator in Rν

by

Andrzej Krupa (Warszawa)

Abstract. We prove the existence of the density of states of a local, self-adjoint
operator determined by a coercive, almost periodic quadratic form on Hm(Rν). The
support of the density coincides with the spectrum of the operator in L2(Rν).

Differential operators with almost periodic (briefly a.p.) coefficients ap-
pear in some fields of mathematical physics, such as quantum theories of
crystals or disordered systems. For example, the physical states of an elec-
tron moving in an array of ions can be described as the eigenfunctions of a
Schrödinger operator with an a.p. potential. The integrated density of states
for such a system is understood, roughly speaking, as the amount of states,
corresponding to energy levels not exceeding a given value λ, per volume
unit. To give a rigorous mathematical definition of this notion we cannot
refer to the sole properties of a given a.p. operator in L2(Rν), since its spec-
trum usually has no discrete component, and because the euclidean space
Rν has infinite volume. The most common measure used to overcome these
difficulties is to approximate our operator by its restrictions to compact
subsets of Rν .

Let L =
∑
α cαD

α be a uniformly elliptic, formally self-adjoint differ-
ential operator in Rν with cα almost periodic, and denote by L the cor-
responding self-adjoint operator in L2(Rν). Assuming that the coefficients
cα are C∞, M. A. Shubin [6] proved the existence of the integrated den-
sity of states %(λ,L), defined as the weak limit of the distribution functions
%(λ,Lk) of the eigenfunctions of L in domains Gk ⊂ Rν (subject to some
boundary conditions), divided by the volume of Gk, as Gk “converge” to
Rν in some sense. Moreover, Shubin proved that the support of the measure
d%/dλ coincides with the spectrum σ(L). In the present paper we show that
the regularity conditions on cα can be essentially weakened, at least for the
Dirichlet boundary conditions. We prove this result for L determined by a
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local, almost periodic sesquilinear form l, coercive on Hm(Rν) (which allows
L =

∑
α,β D

βcα,βD
α with cα,β non-smooth for all α, β and discontinuous

for lower order multiindices).

1. Preliminaries. Almost periodic functions, operators and
forms. We shall use the following notation. The symbol D denotes the ν-
tuple of operators −i(∂/∂x1, . . . , ∂/∂xn) in Rν . If α ∈ Zν+, α = (α1, . . . , αν),
then |α| = α1 + . . .+ αn and Dα = (−i)|α|∂|α|/∂xα1

1 . . . ∂xανν . If G ⊂ Rν is
a domain, then ‖f‖0 denotes the L2-norm of a function f on G. For m ∈ N
we write

‖f‖2m = ‖f‖20 +
∑

|α|=m
‖Dαf‖20

and Hm(G) is the corresponding Sobolev space. Let C∞comp(G) stand for the
space of all compactly supported, infinitely differentiable complex functions
on G. We denote by Hm

0 (G) the closure of C∞comp(G) in Hm(G) (for the
case G = Rν we have Hm

0 (Rν) = Hm(Rν)), and by H−m its antidual. The
symbol (·, ·) stands for the antiduality bracket between H−m and Hm

0 ; in
particular, if m = 0, it coincides with the scalar product in L2.
|G| denotes the Lebesgue volume of a domain G.
Tξ will denote translation by ξ: if Γ is a commutative group and f is a

function on Γ then (Tξf)(γ) = f(γ − ξ).
Let us now recall the notion of almost periodicity. Let X be a Banach

space and Γ a group of isometries of X onto itself. A vector x ∈ X is
called almost periodic (a.p.) with respect to Γ if the set {Ux : U ∈ Γ} has
compact closure in X. The set of all almost periodic vectors is a closed linear
subspace of X. In this paper the notion of almost periodicity will be applied
to functions on Rν , operators and sesquilinear forms.

Denote by Cb(Rν) the space of bounded continuous complex functions
on Rν with sup-norm. Elements of Cb which are almost periodic with re-
spect to {Tξ}ξ∈Rν are called uniformly a.p. functions and the space of all
such functions is denoted by CAP(Rν). The space of trigonometric polyno-
mials is dense in CAP (Bochner’s theorem). The intersection of CAP(Rν)
with C∞b (Rν) (the space of functions which are infinitely differentiable and
bounded together with all derivatives) is denoted by CAP∞(Rν).

Given p ≥ 1, put

|||f |||p = sup
ξ∈Rν

( �
‖x‖≤1

|f(x− ξ)|p dx
)1/p

.

If X = {f ∈ Lploc(Rν) : |||f |||p < ∞} then vectors of X which are a.p.
with respect to {Tξ}ξ∈Rν are called Stepanov almost periodic functions. The
space of all such functions, denoted by SpAP(Rν), contains CAP(Rν) as



Density of states 229

a dense subspace. There also exist unbounded and discontinuous Stepanov
a.p. functions, e.g. every periodic, locally Lp function belongs to SpAP(Rν).

For m,k ∈ Z denote by B(Hm,Hk) the space of bounded linear map-
pings from Hm(Rν) into Hk(Rν). For A ∈ BAP(Hm,Hk) and ξ ∈ Rν put
TξA = TξAT−ξ. Elements of B(Hm,Hk) that are a.p. with respect to {Tξ}
will be called almost periodic operators; the space of all such operators will
be denoted by BAP(Hm,Hk) (or BAP(L2) for m = k = 0). Below we list
some simple properties of a.p. operators.

Proposition 1.1. (a) If A ∈ BAP(Hm,Hk) and B ∈ BAP(Hk,H l)
then BA ∈ BAP(Hm,H l).

(b) If A ∈ BAP(Hm,Hk) is bijective then A−1 ∈ BAP(Hk,Hm).
(c) BAP(L2) is a C∗-algebra.

Evidently, all operators commuting with translation are a.p., in partic-
ular Dα ∈ BAP(Hm,Hk) if |α| ≤ m− k. Here is another example.

Example 1.1. (a) Let u ∈ CAP(Rν). Then the multiplication operator
f 7→ uf belongs to BAP(L2).

(b) Let k, l be nonnegative integers, k + l ≥ 1. Put d = min{k, ν/2} +
min{l, ν/2}. Let

(1.1)
p =

ν

d
if k, l >

ν

2
or k = 0, l >

ν

2
or l = 0, k >

ν

2
,

p >
ν

d
in other cases,

and suppose u∈ SpAP(Rν). Then, by the inequality ‖u‖−l ≤ const|||u|||p‖f‖k
(cf. [7] or [4, Theorem XIII.96]), we have u ∈ BAP(Hk,H−l).

Denote by QF(Hm) the space of bounded sesquilinear forms on Hm(Rν)
with norm ‖s‖ = sup{|s(f, h)| : ‖f‖m = ‖h‖m = 1}. For s ∈ QF(Hm) and
ξ ∈ Rν put (Tξs)(f, h) = s(T−ξf, T−ξh). The space of all forms that are a.p.
with respect to {Tξ} will be denoted by QAP(Rν). Consider the canonical
one-to-one correspondence κ between QF(Hm) and B(Hm,H−m), given by
the formula s(f, h) = (κ(s)f, h). It is an isometry and satisfies Tξ ◦κ = κ◦Tξ
for ξ ∈ Rν , so we have

(1.2) κ(QAP(Hm)) = BAP(Hm,H−m).

This equality together with Proposition 1.1(a) and Example 1.1 enables us
to construct an example of an a.p. form:

Example 1.2. Let m ∈ Z+ and let α, β ∈ Zν+ be such that |α|, |β| ≤ m.
Let u ∈ CAP(Rν) if |α| = |β| = m and u ∈ SpAP(Rν) otherwise, where
p satisfies (1.1) with k = m − |α| and l = m − |β|. Then the formula
s(f, h) = (uDαf,Dβh) defines an a.p. sesquilinear form on Hm(Rν).
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2. The result. Before the formulation of our theorem we recall some
facts and notions concerning sesquilinear forms.

Let Ω ⊂ Rν be a domain and m a positive integer. A sesquilinear form s
on Hm

0 (Ω) is called symmetric if s(f, h) = s(h, f) for all f, h, and coercive if
Res(f, f) ≥ γ‖f‖2m −M‖f‖20 for some positive constants γ,M independent
of f . An integral form

s(f, g) =
∑

|α|,|β|≤m
(cα,βDαf,Dβg)

with coefficients cα,β bounded and uniformly continuous on Ω is coercive iff
it is uniformly elliptic, i.e. iff

(2.1) Re
∑

|α|,|β|=m
cα,β(x)ξαξβ ≥ ε‖ξ‖2m

for fixed ε > 0 and all x ∈ Ω, ξ ∈ Rν . (Sufficiency is guaranteed by G̊arding’s
inequality; for necessity see [8].) Any form s on Hm

0 (Ω) can be treated as a
densely defined form on L2(Ω). If s is symmetric and coercive on Hm

0 then
it is semi-bounded and closed as a form on L2. Thus s determines a unique
self-adjoint operator S in L2(Ω) such that (Sf, g) = s(f, g) for f ∈ D(S),
g ∈ Hm

0 (Ω).
Now fix a symmetric, coercive form s on Hm(Rν) and denote by S the

corresponding self-adjoint operator in L2(Rν). Suppose that Ω is a bounded
domain in Rν . Since Hm

0 (Ω) is a subspace of Hm(Rν), we can define the
restriction sΩ of s to Hm

0 (Ω); the corresponding operator in L2(Ω) will be
denoted by SΩ . Let EΩ be the spectral resolution of SΩ . We can define a
measure on R by

(2.2) µ(∆;SΩ) = trEΩ(∆),

where ∆ ⊂ R is a Borel set. By the Rellich–Kondrashov theorem ([1]) and
the inclusion D(SΩ) ⊂ Hm

0 (Ω), the spectrum of SΩ is purely discrete. Thus
µ(∆;SΩ) counts eigenvalues of SΩ in ∆ (respecting multiplicities). Moreover
SΩ is bounded from below, so µ(· ;SΩ) has a finite distribution function

(2.3) %(λ;SΩ) = trEΩ((−∞, λ]).

The quantity µ(∆;SΩ)/|Ω| measures the density of eigenstates of SΩ , i.e.
the number of eigenvalues in ∆ per volume unit. If µ(· ;SΩ)/|Ω| converges
weakly as Ω tends to Rν (in some sense), then the limit measure µ(· ;S) is
called the density of states of S, and the corresponding distribution function
%(· ;S) the integrated density of states. Our aim is to establish the existence
of µ(· ;S) and to determine its support for some almost periodic forms s.

Theorem 2.1. Let m > 0 be an integer and l a symmetric, coercive,
almost periodic sesquilinear form on Hm(Rν). Denote by L the self-adjoint
operator in L2(Rν) determined by l and assume that L is local in the sense
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that l(f, g) = 0 for f, g ∈ C∞comp with disjoint supports. Let G be a bounded
domain in Rν such that |∂G| = 0 and denote by rG the image of G under
the mapping x 7→ rx, where r is a positive number. Define operators LrG in
L2(rG) and measures µ(· ;LrG) as above. Then

(2.4)
µ(· ;LrG)
|rG| → µ(· ;L) as r →∞

weakly , where µ(· ;L) is a Borel measure on R with support σ(L).

The locality of L is an important assumption in our theorem. It is known
that local operators are “close” to differential ones. For example, a continu-
ous local operator from C∞comp into C∞ coincides with a differential operator
on every fixed compact set (Peetre’s theorem). In our proof the locality of
L will allow us to approximate it by differential operators with smooth co-
efficients, for which the result is known. Namely, in [6] Shubin proved the
above theorem assuming additionally that

(2.5)
• L is a differential operator with CAP∞ coefficients,

• G has C∞-smooth boundary.

Under these assumptions, the domain of LrG coincides with Hm
0 (rG) ∩

H2m(rG) (Dirichlet boundary conditions (1)).
To complete this section we present an example of a form satisfying the

assumptions of our theorem.

Example 2.1. Put

l(f, g) =
∑

|α|,|β|≤m
(cα,βDαf,Dβg)

where the cα,β are complex functions on Rν such that cα,β = cβ,α. Suppose
that if |α| = |β| = m then cα,β belongs to CAP(Rν) and satisfies the uniform
ellipticity condition (2.1). Suppose further that the lower order coefficients
(i.e. cα,β with |α| + |β| < 2m) belong to SpAP(Rν), where p is related to
α, β as in Example 1.2. Then l is a local, symmetric, coercive and almost
periodic form on Hm(Rν).

Indeed, locality and symmetry are obvious, and almost periodicity was
proved in Example 1.2. We now prove coercivity. Since the principal part∑
|α|,|β|=m(cα,βDα·,Dβ·) is coercive by G̊arding’s inequality, it is enough to

show that for every ε > 0 there exists M > 0 such that∣∣∣
∑

|α|+|β|<2m

(cα,βDαf,Dβf)
∣∣∣ ≤ ε‖f‖2m +M‖f‖20

(1) Shubin’s result covers also other types of boundary conditions; moreover, the sense
of convergence Ω → Rν is wider there. We shall not consider those cases.
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for all f ∈ Hm(Rν). This can be done by approximating cα,β by trigono-
metric polynomials in SpAP(Rν) (hence in B(Hm−|α|,H |β|−m), see Ex-
ample 1.2) and employing Ehrling’s inequality

‖f‖m−1 ≤ δ‖f‖m + C(δ)‖f‖0,

which holds for arbitrarily small δ > 0.

3. Some auxiliary constructions. Denote by bRν the Bohr compact-
ification of Rν , i.e. the dual group of Rνdisc (Rν endowed with discrete topol-
ogy). Identifying ξ ∈ Rν with the function eξ, eξ(x) = eixξ, we see that
Rν is densely embedded in bRν . Next, bRν is a maximal compactification
of Rν in the sense that, given a compact group Γ , any continuous group
homomorphism from Rν into Γ can be extended by continuity to a homo-
morphism from bRν into Γ . In particular, if {Uξ}ξ∈Rν is a ν-parameter group
of isometries in a Banach space X, such that ξ 7→ Uξ is strongly continuous,
and if every x ∈ X is almost periodic with respect to {Uξ}, then ξ 7→ Uξ
can be extended to a strongly continuous representation Uω of bRν in X.
This property implies, in particular, that every f ∈ CAP(Rν) admits a con-
tinuous extension on bRν , taking the form f(ω) = (T−ωf)(0), ω ∈ bRν .
In what follows we shall also use the extensions Tω of representations Tξ in
QAP(Hm) and BAP(L2), defined in Section 1. (Notice that if s ∈ QAP(Hm)
then ξ 7→ Tξs is norm-continuous, though this is not the case of an arbitrary
s ∈ QF(Hm); the same holds true for the operators.)

Put Hm = L2(bRν) ⊗Hm, where the Lebesgue space L2(bRν) is based
on the normalized Haar measure dω on bRν . We can also represent Hm
as L2(bRν ;Hm) or a direct integral of a constant field of Hilbert spaces
Hω ≡ Hm over bRν . For an a.p. sesquilinear form s on Hm we define a form
on Hm by

s#(ϕ,ψ) =
�
bRν

(Tωs)(ϕ(ω), ψ(ω)) dω

for ϕ,ψ ∈ Hm. If A ∈ BAP(L2(Rν)), we put analogously

A# =
� ⊕
bRν
TωAdω.

Suppose now that s is symmetric and coercive on Hm(Rν) and let S be
the corresponding self-adjoint operator in L2(Rν). Then s#, considered as a
form in H0, is densely defined, closed and bounded below, so it determines
a self-adjoint operator in H0. We shall denote this operator by S#.

Proposition 3.1. Let S be as above. Then σ(S#) = σ(S).
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Proof. First assume that m = 0, i.e. S ∈ B(L2). Then the conclusion
is obvious, since # is an isomorphism of the C∗-algebra BAP(L2) onto its
image in B(H0). Now let S be arbitrary. With no loss of generality we can
assume that s(f, f) ≥ ‖f‖2m for f ∈ Hm. Then κ(s) (as defined in Section 1)
is an isomorphism of Hm onto H−m. Thus, by (1.2) and Proposition 1.1(b),
κ(s)−1 ∈ BAP(H−m,Hm). Denote by Im, Im the natural embeddings of
Hm into L2 and of L2 into H−m, respectively. Then S−1 = Imκ(s)−1Im, so
by Proposition 1.1(a), S−1 ∈ BAP(L2) and (S−1)# makes sense. We have
proven that σ((S−1)#) = σ(S−1), so noting that (S−1)# = (S#)−1, we have
σ(S#) = σ(S).

The transformation # was first used in [2] to study a.p. pseudodifferential
operators in Rν . Its usefulness stems from the fact that it maps isometrically
BAP(L2) into a von Neumann algebra A in B(H0) with a normal, faithful
trace defined on the cone of positive operators of A, which takes finite values
at sufficiently many arguments (for the theory of von Neumann algebras and
traces see e.g. [3]). This algebra is defined as the commutant of the family
{Tξ ⊗ T−ξ, eλ ⊗ I : ξ, λ ∈ Rν} of operators, where eλ is the multiplication
operator determined by the function x 7→ eixλ, extended to bRν . If A ∈ A
then A takes the form � ⊕

bRν Aω dω for some weakly measurable, bounded
function bRν 3 ω 7→ Aω ∈ B(L2(Rν)). The integral �

bRν Aω dω is then
a Fourier multiplier in L2(Rν), i.e. an operator of the form a(D), where
a ∈ L∞(Rν). If A ∈ A+ (the cone of positive operators in A), then a ≥ 0
a.e. in Rν and the formula

(3.1) Tr(A) =
�
Rν
a

defines a normal, faithful trace Tr on A+ (see [2]).
Observe that the operators S# defined above are affiliated to A, which

means that they commute with the Tξ⊗T−ξ and eλ⊗ I. Thus their spectral
projections E(∆) belong to A and Tr(E(∆)) is well defined. We shall use this
property in the final section.

4. Proof of the theorem. Let l, L, r,G, . . . be as in the statement of
the theorem. The limit measure µ will be defined by the formula

µ(∆;L) = Tr(E(∆)),

where Tr is the trace defined in the previous section and E is the spec-
tral resolution of L#. Observe that by the fidelity of the trace we have
suppµ(· ;L) = σ(L#), which, in view of Proposition 3.1, implies that

suppµ(· ;L) = σ(L).

Thus it remains to show (2.4). First we prove that the distribution function
%(λ;L) := µ((−∞, λ];L) is finite. We shall exploit the fact that if I ⊂ A is
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a two-sided ideal, then so is its “square root”, the set of all A ∈ A such that
A∗A ∈ I (denoted by I1/2, see [3]). Put Eλ = E((−∞, λ]) and let An be
the 2nth “root” of the ideal {A ∈ A : Tr |A| <∞}. It suffices to prove that
Eλ ∈ An for some n ∈ N. Put a(ξ) = (|ξ|+1)−1, ξ ∈ Rν , and let a(D) be the
corresponding Fourier multiplier in L2(Rν). By (3.1), a(D)# ∈ An for n >
log2 ν. The range of a(D)# coincides withH1, while Ran Eλ ⊂ D(L#) ⊂ Hm.
Therefore, by the closed graph theorem, the operator B := (a(D)#)−1Eλ is
bounded; it is obvious that B ∈ A. Hence Eλ = a(D)#B belongs to An for
n > log2 ν.

Now it suffices to prove that %(λ;LrG)/|rG| tends to %(λ;L) for every λ
which is a point of continuity of %(· ;L). (Under the additional assumptions
(2.5) this was proved by Shubin in [6].) To make use of Shubin’s result we
need the following lemma:

Lemma 4.1. There exists a sequence of differential operators Ln of order
≤ 2m, with coefficients in CAP∞, such that the corresponding sesquilinear
forms ln on Hm(Rν) (defined by ln(f, g) = (Lnf, g)) are symmetric and
converge to l in the norm of QF(Hm).

Proof. Fix n ∈ N. The function bRν 3 ω 7→ Tωl ∈ QAP(Hm) is norm-
continuous. Let U be a neighbourhood of 0 in bRν such that ‖Tωl − l‖ <
1/(2n) for ω ∈ U . Choose ϕ ∈ C(bRν) such that ϕ ≥ 0, suppϕ ⊂ U and

� ϕ = 1. Find a trigonometric polynomial ψ on bRν , ψ =
∑
j ajeλj , such

that ‖ϕ− ψ‖∞ < 1/(2n‖l‖). We may assume that ψ is real. Define

ln =
�
bRν

ψ(ω)Tωl dω.

Then ln is symmetric and ‖l − ln‖ < 1/n. It remains to prove that the
corresponding operator Ln := κ(ln) is differential with CAP∞ coefficients.
Put

lnj (f, h) = aj
�
bRν

eλj (ω)(Tωl)(f, eλjh) dω

for f, h ∈ Hm. Then Tξlnj = lnj , so κ(lnj ) commutes with the Tξ (ξ ∈ Rν).
Thus there exists a distribution u on Rν such that κ(lnj )f = u ∗ f for all
f ∈ C∞comp(Rν) (see [5]). The locality of L implies that κ(lnj ) preserves
supports, whence suppu ⊂ {0}. Thus κ(lnj ) is a differential operator with
constant coefficients (of order ≤ 2m, as κ(lnj ) ∈ B(Hm,H−m)). But Ln =∑
j eλjκ(lnj ), which completes the proof.

Observe that with no loss of generality we may assume that

(4.1) l(f, f) ≥ γ‖f‖2m
for some γ > 0 and all f . Then for large n we have



Density of states 235

(4.2) ln(f, f) ≥ γ

2
‖f‖2m,

whence Ln are precisely of order 2m and are uniformly elliptic for large n.
To prove our theorem we will also need the following version of the

min-max principle:

Lemma 4.2. Let B be a von Neumann algebra in a Hilbert space H
with a normal , faithful trace Sp on B+. Let s be a positive-definite, closed
sesquilinear form with domain Q(s) dense in H, such that the corresponding
self-adjoint operator S is affiliated to B. Denote by E the spectral resolution
of S and put Eλ := E((−∞, λ]). Then, given any x ≥ 0, we have

(4.3) Sp(Eλ) ≥ x iff

∀P : Sp(P ) < x ∃h ∈ Q(s) ∩ kerP : ‖h‖ = 1, s(h, h) ≤ λ
where P runs over all orthogonal projections in B.

Proof. The “if” part is rather obvious: if the right-hand side of (4.3)
holds true then Sp(Eλ) cannot be less than x, since the quadratic form
s(·, ·)− λ‖ · ‖2 is strictly positive on kerEλ = RanE((λ,∞]).

Let us prove the “only if” part. Suppose that Sp(Eλ) ≥ x and take an
orthogonal projection P ∈ B such that Sp(P ) < x. It is sufficient to show
that kerP ∩ RanEλ is non-null (observe that RanEλ ⊂ Q(s), because s
is bounded from below). Suppose the opposite and consider the operator
R := PEλ. We then have kerR = kerEλ; moreover RanR ⊂ RanP . Let
R = U |R| be the polar decomposition of R. Then U is a partial isometry
with RanEλ as initial space and with range contained in RanP . Therefore
U∗U = Eλ and UU∗ ≤ P . Taking into account that Sp(U ∗U) = Sp(UU∗)
(see [3, Chapter 1]) we obtain

x ≤ Sp(Eλ) = Sp(UU∗) ≤ Sp(P ) < x,

which is a contradiction.

Now we can prove our main result. Assume first that G has C∞ bound-
ary. Let λ > 0 be a point of continuity of %(· ;L). Fix x ≥ 0 and suppose
that %(λ;L) > x. Then there exist ε ∈ (0, λ/2) and δ > 0 such that

(4.4) %(λ− 2ε;L) ≥ x+ 2δ.

Let Ln and ln be as in Lemma 4.1. Taking estimate (4.1) into account we
find that

(ln)#(ϕ,ϕ) ≤ (λ− 2ε)(1 + γ−1‖ln − l‖)
for all ϕ ∈ Hm such that l#(ϕ,ϕ) ≤ λ− 2ε. Thus, by (4.3),

(4.5) %(λ− ε;Ln) ≥ x+ 2δ
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for n sufficiently large. By letting ε decrease if necessary, we may assume
that λ−ε is a point of continuity of %(· ;Ln) for all n. Hence, by the Shubin’s
result quoted above,

%(λ− ε;LnrG)
|rG| ≥ x+ δ

for r > r(n). Now fix n large and repeat the proof of the implication
(4.4)⇒(4.5), replacing L with LnrG and Ln with LrG (use estimate (4.2)
instead of (4.1)). We obtain

%(λ;LrG)
|rG| ≥ x+ δ > x

for r > r(n). Analogously %(λ;L) < y implies %(λ;LrG)/|rG| < y for large r,
which completes the proof in the case of regular G.

Now let G be an arbitrary (nonempty) bounded domain in Rν such that
|∂G| = 0. For fixed q > 1 choose domains G+ and G− with C∞ boundaries
such that G+ ⊃ G ⊃ G− and |G+|/|G−| ≤ q. By the mini-max principle
(4.3) we have %(· ;LrG+) ≥ %(· ;LrG) ≥ %(· ;LrG−). Thus, if λ is a point of
continuity of %(· ;L), we have

lim sup
r→∞

%(λ;LrG)
|rG| ≤ q%(λ;L) and lim inf

r→∞
%(λ;LrG)
|rG| ≥ q−1%(λ;L).

Letting q ↓ 1 we obtain the conclusion.
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