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The density of states of a
local almost periodic operator in R”

by

ANDRZEJ KRUPA (Warszawa)

Abstract. We prove the existence of the density of states of a local, self-adjoint
operator determined by a coercive, almost periodic quadratic form on H™(RY). The
support of the density coincides with the spectrum of the operator in LQ(R” ).

Differential operators with almost periodic (briefly a.p.) coefficients ap-
pear in some fields of mathematical physics, such as quantum theories of
crystals or disordered systems. For example, the physical states of an elec-
tron moving in an array of ions can be described as the eigenfunctions of a
Schrédinger operator with an a.p. potential. The integrated density of states
for such a system is understood, roughly speaking, as the amount of states,
corresponding to energy levels not exceeding a given value A, per volume
unit. To give a rigorous mathematical definition of this notion we cannot
refer to the sole properties of a given a.p. operator in L?(R"), since its spec-
trum usually has no discrete component, and because the euclidean space
R¥ has infinite volume. The most common measure used to overcome these
difficulties is to approximate our operator by its restrictions to compact
subsets of R”.

Let £ = ) caD* be a uniformly elliptic, formally self-adjoint differ-
ential operator in R” with ¢, almost periodic, and denote by L the cor-
responding self-adjoint operator in L?(R"). Assuming that the coefficients
¢ are C*°, M. A. Shubin [6] proved the existence of the integrated den-
sity of states o(A, L), defined as the weak limit of the distribution functions
o(A, L) of the eigenfunctions of £ in domains Gy C R" (subject to some
boundary conditions), divided by the volume of Gy, as Gj “converge” to
RY in some sense. Moreover, Shubin proved that the support of the measure
do/d\ coincides with the spectrum o(L). In the present paper we show that
the regularity conditions on ¢, can be essentially weakened, at least for the
Dirichlet boundary conditions. We prove this result for £ determined by a
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local, almost periodic sesquilinear form [, coercive on H™(R") (which allows
L=3.5 DPc, sD® with ¢, 3 non-smooth for all , 3 and discontinuous
for lower order multiindices).

1. Preliminaries. Almost periodic functions, operators and
forms. We shall use the following notation. The symbol D denotes the v-
tuple of operators —i(0/0x1,...,0/0xz,) nR". If a € ZY, a = (a1, ..., a,),
then || = a1 + ...+ o, and D* = (—i)lelglel/oz 0 . 9xov I G C RY is
a domain, then || f||o denotes the L?-norm of a function f on G. For m € N
we write

11l = IF1I5+ D 1D FIIs

|la]=m

and H™(G) is the corresponding Sobolev space. Let Cg5,,,,(G) stand for the
space of all compactly supported, infinitely differentiable complex functions
on G. We denote by H{"(G) the closure of CZ5,,,(G) in H™(G) (for the
case G = R” we have HJ*(R¥) = H™(R")), and by H "™ its antidual. The
symbol (+,-) stands for the antiduality bracket between H ™ and H["; in
particular, if m = 0, it coincides with the scalar product in L2.

|G| denotes the Lebesgue volume of a domain G.

T¢ will denote translation by &: if I" is a commutative group and f is a
function on I" then (T¢f)(y) = f(v —&).

Let us now recall the notion of almost periodicity. Let X be a Banach
space and I’ a group of isometries of X onto itself. A vector x € X is
called almost periodic (a.p.) with respect to I" if the set {Uzx : U € I'} has
compact closure in X. The set of all almost periodic vectors is a closed linear
subspace of X . In this paper the notion of almost periodicity will be applied
to functions on R”, operators and sesquilinear forms.

Denote by C},(R") the space of bounded continuous complex functions
on R” with sup-norm. Elements of Cy, which are almost periodic with re-
spect to {T¢}ecrv are called uniformly a.p. functions and the space of all
such functions is denoted by CAP(R”). The space of trigonometric polyno-
mials is dense in CAP (Bochner’s theorem). The intersection of CAP(R")
with Cp°(R¥) (the space of functions which are infinitely differentiable and
bounded together with all derivatives) is denoted by CAP*°(R¥).

Given p > 1, put

01l = sup (] 17— dr) "

eR¥
¢ <1

If X = {f € LY (R") : ||fll, < oo} then vectors of X which are a.p.

loc
with respect to {T¢}ecrv are called Stepanov almost periodic functions. The

space of all such functions, denoted by SPAP(R"), contains CAP(R") as
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a dense subspace. There also exist unbounded and discontinuous Stepanov
a.p. functions, e.g. every periodic, locally LP function belongs to SPAP(R").

For m,k € Z denote by B(H™, H*) the space of bounded linear map-
pings from H™(RY) into H*(R"). For A € BAP(H™, H*) and ¢ € R” put
Te A = T AT ¢. Elements of B(H™, H¥) that are a.p. with respect to {Z¢}
will be called almost periodic operators; the space of all such operators will
be denoted by BAP(H™, H*) (or BAP(L?) for m = k = 0). Below we list
some simple properties of a.p. operators.

PROPOSITION 1.1. (a) If A € BAP(H™, H*) and B € BAP(H* H')
then BA € BAP(H™, H').

(b) If A € BAP(H™, H*) is bijective then A~' € BAP(H*, H™).

(c) BAP(L?) is a C*-algebra.

Evidently, all operators commuting with translation are a.p., in partic-
ular D € BAP(H™, H) if |a| < m — k. Here is another example.

ExXAMPLE 1.1. (a) Let w € CAP(R"). Then the multiplication operator
f — uf belongs to BAP(L?).

(b) Let k,l be nonnegative integers, k +1 > 1. Put d = min{k,v/2} +
min{l,v/2}. Let

if k,l>g or k=0,1>% or 1=0k>

o 14
p_ 2 27

(1.1)

D> in other cases,

ISHIANESHIAN

and suppose u € SPAP(RY). Then, by the inequality |lu||—; < const||ul|,|| f|lx
(cf. [7] or [4, Theorem XIII.96]), we have u € BAP(H*, H!).

Denote by QF(H™) the space of bounded sesquilinear forms on H™(R")
with norm ||s|| = sup{|s(f,h)| : [|fl|lm = [[h]lm = 1}. For s € QF(H™) and
€ € R” put (Z¢s)(f, h) = s(T—¢ f,T_¢h). The space of all forms that are a.p.
with respect to {7¢} will be denoted by QAP(R"). Consider the canonical
one-to-one correspondence k between QF(H™) and B(H™, H~ "), given by
the formula s(f, h) = (k(s)f, h). It is an isometry and satisfies T¢orx = Ko7
for € € R, so we have

(1.2) k(QAP(H™)) = BAP(H™, H~™).

This equality together with Proposition 1.1(a) and Example 1.1 enables us
to construct an example of an a.p. form:

EXAMPLE 1.2. Let m € Z4 and let «, 3 € Z*_ be such that |a/, [3] < m.
Let u € CAP(RY) if |o] = || = m and u € SPAP(R") otherwise, where
p satisfies (1.1) with & = m — |a| and I = m — |B]. Then the formula
s(f,h) = (uDf, DBh) defines an a.p. sesquilinear form on H™(R").
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2. The result. Before the formulation of our theorem we recall some
facts and notions concerning sesquilinear forms.

Let 2 C R” be a domain and m a positive integer. A sesquilinear form s
on H{'(£2) is called symmetric if s(f,h) = s(h, f) for all f, h, and coercive if
Res(f, f) > 7| flI2, — M| f||2 for some positive constants v, M independent
of f. An integral form

s(f.9)= Y (capD*f, D)

lee],| B8] <m

with coefficients ¢, g bounded and uniformly continuous on (2 is coercive iff
it is uniformly elliptic, i.e. iff

(21) Re D cap(@)e®e” > efg|™
|a],|Bl=m

for fixed e > 0 and all z € 2, £ € R”. (Sufficiency is guaranteed by Garding’s
inequality; for necessity see [8].) Any form s on H{"({2) can be treated as a
densely defined form on L2({2). If s is symmetric and coercive on H{* then
it is semi-bounded and closed as a form on L?. Thus s determines a unique
self-adjoint operator S in L?(£2) such that (Sf,g) = s(f,g) for f € D(9),
g € Hy"(12).

Now fix a symmetric, coercive form s on H™(R") and denote by S the
corresponding self-adjoint operator in L?(IR¥). Suppose that (2 is a bounded
domain in R”. Since H{*({2) is a subspace of H™(R"), we can define the
restriction s of s to HJ"(£2); the corresponding operator in L2(£2) will be
denoted by Sp. Let E(, be the spectral resolution of Sy,. We can define a
measure on R by

(22) ,u(A, SQ) = tr E_Q(A),

where A C R is a Borel set. By the Rellich-Kondrashov theorem ([1]) and
the inclusion D(Sy,) C H{"(2), the spectrum of Sy, is purely discrete. Thus
p(A; Sp) counts eigenvalues of Sy, in A (respecting multiplicities). Moreover
Sg is bounded from below, so u(-;Sp) has a finite distribution function

(2.3) 0(A;Se) = tr Eq((—o0, A)).

The quantity u(A;Sg)/|f2| measures the density of eigenstates of Sp,, i.e.
the number of eigenvalues in A per volume unit. If u(-; Se)/|f2| converges
weakly as {2 tends to R” (in some sense), then the limit measure u(-;.S) is
called the density of states of S, and the corresponding distribution function
o(+; S) the integrated density of states. Our aim is to establish the existence
of p(+;S) and to determine its support for some almost periodic forms s.

THEOREM 2.1. Let m > 0 be an integer and I a symmetric, coercive,
almost periodic sesquilinear form on H™(R"Y). Denote by L the self-adjoint
operator in L?(RY) determined by | and assume that L is local in the sense
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that I(f,g) = 0 for f,g € Co5yp with disjoint supports. Let G be a bounded
domain in RY such that |0G| = 0 and denote by rG the image of G under
the mapping x — rx, where r is a positive number. Define operators L,.qg in
L?(rG) and measures u(-; L) as above. Then

N(’;LTG)
2.4 PG L NS
(24) S S HD) as

weakly, where p(-; L) is a Borel measure on R with support o(L).

The locality of L is an important assumption in our theorem. It is known
that local operators are “close” to differential ones. For example, a continu-
ous local operator from Cgg, . into € coincides with a differential operator
on every fixed compact set (Peetre’s theorem). In our proof the locality of
L will allow us to approximate it by differential operators with smooth co-
efficients, for which the result is known. Namely, in [6] Shubin proved the
above theorem assuming additionally that
2.5) e L is a differential operator with CAP> coefficients,

2.5

e (7 has C*°-smooth boundary.
Under these assumptions, the domain of L,g coincides with HJ*(rG) N
H?™(rG) (Dirichlet boundary conditions (1)).

To complete this section we present an example of a form satisfying the
assumptions of our theorem.

ExAMPLE 2.1. Put

l(fag) = Z (CQ,ﬁDafaDﬁg)

lal,|B]<m

where the ¢, g are complex functions on R” such that c, 3 = €g,o. Suppose
that if |a| = | 8] = m then ¢, g belongs to CAP(R”) and satisfies the uniform
ellipticity condition (2.1). Suppose further that the lower order coefficients
(i.e. co,p With |a| +|B] < 2m) belong to SPAP(R”), where p is related to
a, 0 as in Example 1.2. Then [ is a local, symmetric, coercive and almost
periodic form on H™(R").

Indeed, locality and symmetry are obvious, and almost periodicity was
proved in Example 1.2. We now prove coercivity. Since the principal part
E|a‘7|ﬁ|:m (ca,pD%-, DP.) is coercive by Géarding’s inequality, it is enough to
show that for every € > 0 there exists M > 0 such that

S (casD£.DPP)| < elFIE, + M £
lal+]B]<2m

(1) Shubin’s result covers also other types of boundary conditions; moreover, the sense
of convergence 2 — R" is wider there. We shall not consider those cases.
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for all f € H™(R"). This can be done by approximating c,, g by trigono-
metric polynomials in SPAP(R¥) (hence in B(H™ lel, HIAI=™)  see Ex-
ample 1.2) and employing Ehrling’s inequality

[fllm—1 < 8l fllm + C ) o,
which holds for arbitrarily small § > 0.

3. Some auxiliary constructions. Denote by bR” the Bohr compact-
ification of R”, i.e. the dual group of RY;.. (R” endowed with discrete topol-
ogy). Identifying ¢ € R” with the function eg, eg(z) = €%, we see that
R¥ is densely embedded in bR”. Next, bR” is a maximal compactification
of R” in the sense that, given a compact group I', any continuous group
homomorphism from R” into I" can be extended by continuity to a homo-
morphism from bR into I'. In particular, if {Ug¢ }¢crv is a v-parameter group
of isometries in a Banach space X, such that £ — Uy is strongly continuous,
and if every x € X is almost periodic with respect to {Ug}, then £ — Ug
can be extended to a strongly continuous representation U, of bR” in X.
This property implies, in particular, that every f € CAP(R") admits a con-
tinuous extension on bR”, taking the form f(w) = (T-,f)(0), w € bR".
In what follows we shall also use the extensions 7, of representations 7¢ in
QAP(H™) and BAP(L?), defined in Section 1. (Notice that if s € QAP(H™)
then £ — 7¢s is norm-continuous, though this is not the case of an arbitrary
s € QF(H™); the same holds true for the operators.)

Put H™ = L?(bR") ® H™, where the Lebesgue space L?(bR") is based
on the normalized Haar measure dw on bR”. We can also represent H™
as L?(bR”; H™) or a direct integral of a constant field of Hilbert spaces
H, = H™ over bR”. For an a.p. sesquilinear form s on H™ we define a form
on H™ by

(0, 9) = | (Tos)(p(w), ¥ (w)) dw

bR¥

for p,1p € H™. If A € BAP(L?*(R")), we put analogously

3]
A* =" T, Adw.
bR¥
Suppose now that s is symmetric and coercive on H™(R") and let S be
the corresponding self-adjoint operator in L?(R¥). Then s#, considered as a

form in H°, is densely defined, closed and bounded below, so it determines
a self-adjoint operator in H°. We shall denote this operator by S#.

PROPOSITION 3.1. Let S be as above. Then o(S*) = o(8S).
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Proof. First assume that m = 0, i.e. S € B(L?). Then the conclusion
is obvious, since # is an isomorphism of the C*-algebra BAP(L?) onto its
image in B(H"). Now let S be arbitrary. With no loss of generality we can
assume that s(f, f) > ||f||2, for f € H™. Then r(s) (as defined in Section 1)
is an isomorphism of H™ onto H ™. Thus, by (1.2) and Proposition 1.1(b),
k(s)™1 € BAP(H~™, H™). Denote by I™,I,, the natural embeddings of
H™ into L? and of L? into H ™™, respectively. Then S~! = I"™k(s)"11,,, so
by Proposition 1.1(a), S~ € BAP(L?) and (S~!)# makes sense. We have
proven that o((S™1)#) = ¢(S~1), so noting that (S~1)# = (S#)~L, we have
o(S7)=0(S). m

The transformation # was first used in [2] to study a.p. pseudodifferential
operators in R”. Its usefulness stems from the fact that it maps isometrically
BAP(L?) into a von Neumann algebra 2 in B(H") with a normal, faithful
trace defined on the cone of positive operators of 2, which takes finite values
at sufficiently many arguments (for the theory of von Neumann algebras and
traces see e.g. [3]). This algebra is defined as the commutant of the family
{Te @ T_¢, ex ® 1 : §, X € R”} of operators, where ey is the multiplication
operator determined by the function z — €, extended to bR”. If A € A
then A takes the form S?RV A, dw for some weakly measurable, bounded
function bBR” 3> w — A, € B(L*(R¥)). The integral §,;, A, dw is then
a Fourier multiplier in L?(R¥), i.e. an operator of the form a(D), where
a € L*(RY). If A € 2, (the cone of positive operators in ), then a > 0
a.e. in R” and the formula
(3.1) Tr(A) = S a

RV
defines a normal, faithful trace Tr on 2, (see [2]).

Observe that the operators S# defined above are affiliated to 2, which
means that they commute with the T ® T_¢ and ey ® I. Thus their spectral
projections £(A) belong to A and Tr(€(A)) is well defined. We shall use this
property in the final section.

4. Proof of the theorem. Let [,L,r,G,... be as in the statement of

the theorem. The limit measure p will be defined by the formula

n(4; L) = Tr(E(A)),
where Tr is the trace defined in the previous section and £ is the spec-
tral resolution of L#. Observe that by the fidelity of the trace we have
supp u(-; L) = o(L#), which, in view of Proposition 3.1, implies that

supp u(+5 L) = o(L).
Thus it remains to show (2.4). First we prove that the distribution function
o(N; L) := p((—o0, AJ; L) is finite. We shall exploit the fact that if 7 C A is



234 A. Krupa

a two-sided ideal, then so is its “square root”, the set of all A € 2 such that
A*A € 3 (denoted by 3'/2, see [3]). Put £\ = E£((—o0,A]) and let A, be
the 2"th “root” of the ideal {4 € A : Tr|A| < oo}. It suffices to prove that
Ex € A, for some n € N. Put a(€) = (|¢|+1)71, £ € R”, and let a(D) be the
corresponding Fourier multiplier in L2(RY). By (3.1), a(D)# € 2,, for n >
log, v. The range of a(D)# coincides with H!, while Ran £, C D(L#) C H™.
Therefore, by the closed graph theorem, the operator B := (a(D)*)~1&) is
bounded; it is obvious that B € . Hence £, = a(D)# B belongs to 2, for
n > logy v.

Now it suffices to prove that o(\; L,q)/|rG| tends to o(\; L) for every A
which is a point of continuity of o(-; L). (Under the additional assumptions
(2.5) this was proved by Shubin in [6].) To make use of Shubin’s result we
need the following lemma:

LEMMA 4.1. There exists a sequence of differential operators L™ of order
< 2m, with coefficients in CAP>, such that the corresponding sesquilinear
forms I on H™(RY) (defined by I"(f,g) = (L"f,g)) are symmetric and
converge to | in the norm of QF(H™).

Proof. Fix n € N. The function bR 3 w — 7,1 € QAP(H™) is norm-
continuous. Let U be a neighbourhood of 0 in bR” such that |7, — 1| <
1/(2n) for w € U. Choose ¢ € C(bR") such that ¢ > 0, suppy C U and
{¢ = 1. Find a trigonometric polynomial ¢ on bR”, ¢ = Zj ajey;, such
that || — ¥]lec < 1/(2n||l||). We may assume that 1 is real. Define

"=\ YW Tlde.
bR¥
Then [" is symmetric and ||l — ["|| < 1/n. It remains to prove that the

corresponding operator L™ := k(™) is differential with CAP> coefficients.
Put

l;l(f’ h) = aj S €x; (w)(%l)(fa €X; h) dw
bR¥

for f,h € H™. Then 7¢l? =17, so k(I}) commutes with the T¢ (£ € R”).
Thus there exists a distribution u on R” such that x(I})f = u* f for all
f € C&mp(RY) (see [5]). The locality of L implies that x(I7) preserves
supports, whence suppu C {0}. Thus /i(l;b) is a differential operator with
constant coefficients (of order < 2m, as x(l}) € B(H™, H™™)). But L" =

>_jex;£(l7), which completes the proof. m

Observe that with no loss of generality we may assume that

(4.1) U(f, ) =N fIl

for some v > 0 and all f. Then for large n we have
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(4.2) ") = L1112,

whence L™ are precisely of order 2m and are uniformly elliptic for large n.
To prove our theorem we will also need the following version of the
min-max principle:

LEMMA 4.2. Let B be a von Neumann algebra in a Hilbert space H
with a normal, faithful trace Sp on B. Let s be a positive-definite, closed
sesquilinear form with domain Q(s) dense in H, such that the corresponding
self-adjoint operator S is affiliated to B. Denote by E the spectral resolution
of S and put Ey := E((—o0, A]). Then, given any x > 0, we have

(4.3)  Sp(Ex)>=x iff
VP :Sp(P) <z 3dheQ(s)NkerP: |h||=1, s(h,h) <A

where P runs over all orthogonal projections in *B.

Proof. The “if” part is rather obvious: if the right-hand side of (4.3)
holds true then Sp(E)) cannot be less than z, since the quadratic form
s(-,+) = A|| - ||? is strictly positive on ker Ey = Ran E((), o0]).

Let us prove the “only if” part. Suppose that Sp(Ey) > x and take an
orthogonal projection P € B such that Sp(P) < x. It is sufficient to show
that ker P N Ran E\ is non-null (observe that Ran F\ C Q(s), because s
is bounded from below). Suppose the opposite and consider the operator
R := PFE),. We then have ker R = ker F5; moreover Ran R C Ran P. Let
R = U|R| be the polar decomposition of R. Then U is a partial isometry
with Ran E as initial space and with range contained in Ran P. Therefore
U*U = E) and UU* < P. Taking into account that Sp(U*U) = Sp(UU*)
(see [3, Chapter 1]) we obtain

x < Sp(E\) =Sp(UU”) < Sp(P) < =,
which is a contradiction. m

Now we can prove our main result. Assume first that G has C* bound-
ary. Let A > 0 be a point of continuity of o(-;L). Fix x > 0 and suppose
that o(\; L) > x. Then there exist € € (0, A/2) and § > 0 such that

(4.4) o(A—2¢;L) >z + 26.

Let L™ and I"™ be as in Lemma 4.1. Taking estimate (4.1) into account we
find that

(I")* (0, 0) < (A =2e)(L+ 7" = 1))
for all ¢ € H™ such that I7(p, ¢) < A\ — 2. Thus, by (4.3),
(4.5) o(A—¢g L") >x+20
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for n sufficiently large. By letting € decrease if necessary, we may assume
that A —e is a point of continuity of o(-; L™) for all n. Hence, by the Shubin’s
result quoted above,

Q<A“€§LfG)

>
el >x+06

for » > r(n). Now fix n large and repeat the proof of the implication
(4.4)=(4.5), replacing L with L?, and L™ with L, (use estimate (4.2)
instead of (4.1)). We obtain

o(X; L)

> 1)
G S rTosT

for r > r(n). Analogously o(\; L) < y implies o(\; L.¢)/|rG| < y for large r,
which completes the proof in the case of regular G.

Now let G be an arbitrary (nonempty) bounded domain in R such that
|0G| = 0. For fixed ¢ > 1 choose domains G and G_ with C'* boundaries
such that G D G D G_ and |G4+|/|G—-| < ¢q. By the mini-max principle
(4.3) we have o(-; Lra,) > o(-; Lrg) > o(-; Lrg_). Thus, if A is a point of
continuity of o(-; L), we have

()\; L?”G)

A Ly _
liﬂsogp % < qo(A\;L) and lirrgggf e el >q o\ L).

Letting ¢ | 1 we obtain the conclusion. =
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