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Lipschitz sums of convex functions

by

Marianna Csörnyei (London) and Assaf Naor (Jerusalem)

Abstract. We give a geometric characterization of the convex subsets of a Banach
space with the property that for any two convex continuous functions on this set, if their
sum is Lipschitz, then the functions must be Lipschitz. We apply this result to the theory
of ∆-convex functions.

1. Introduction. This paper deals with the following problem: let K
be a convex subset of a Banach space X. Let h1, h2 : K → R be convex con-
tinuous functions such that h1 +h2 is Lipschitz. Does this necessarily imply
that h1 and h2 are themselves Lipschitz? More precisely, we are interested
in the geometric properties of K which imply such a statement. Under some
mild assumptions, we give here a necessary and sufficient condition for K
to have such a property.

Throughout this paper, all Banach spaces are real. If X is a Banach
space, x ∈ X and r > 0 we use the notation B(x, r) = {y ∈ X : ‖x−y‖ ≤ r}
and S(x, r) = {y ∈ X : ‖x − y‖ = r}. We also write BX = B(0, 1) and
SX = S(0, 1). X∗ denotes the dual space of X. For any two sets A,B we
denote by d(A,B) the distance between A and B.

The method of proof forces us to impose some assumptions on K. Apart
from the natural assumptions 0 ∈ K and span(K) = X, we essentially as-
sume that either K−K or its complement is nowhere dense. This will be for-
mulated more precisely later, but we prefer to begin by stating the theorem
in a simpler, somewhat less general form. We do not presently know if the re-
sult is true for a general convex set which is not contained in any hyperplane.

Theorem 1. Let X be a Banach space and suppose that K is a convex
subset of X for which
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• 0 ∈ K;
• span(K) = X;

and either

• K is locally weakly compact

or

• K has nonempty interior.

Then the following are equivalent :

(i) If h1, h2 : K → R are continuous convex functions such that h1 +h2
is Lipschitz , then both h1 and h2 must be Lipschitz.

(ii) There exists a constant 0 < c ≤ 2 such that for every x ∈ K, 0 <
r < diamK and y ∈ SX there are u, v ∈ K ∩B(x, r) such that u− v = cry.

(iii) There is a c > 0 such that for any x∗, y∗ ∈ SX∗ and any x, y ∈ K
with y∗(x) < y∗(y) there are u, v ∈ K such that y∗(x) ≤ y∗(u) ≤ y∗(v) ≤
y∗(y) and |x∗(u)− x∗(v)| > c(y∗(y)− y∗(x)).

Remark 2. We remark that the implication (ii)⇒(i) requires only the
assumptions 0 ∈ K and span(K) = X. Thus in our later applications, we
will be able to state results for arbitrary convex subsets of Banach spaces
satisfying these two assumptions.

If K is bounded and has nonempty interior, then (ii) must be satisfied.
Indeed, by convexity, if B(x0, r0) ⊂ K for some x0 and r0, then K ∩B(x, r)
contains a segment of length r0r/diamK in each direction. It is also easy to
see that every convex set K which contains an infinite open cone satisfies
condition (ii).

If dimX < ∞, then every convex set K with span(K) = X and 0∈K
has nonempty interior. It is also easy to see that if dimX <∞, and if a con-
vex set K ⊂ X has nonempty interior then conditions (i)–(iii) of Theorem 1
imply that K is either bounded or contains an infinite open cone:

Corollary 3. Conditions (i)–(iii) of Theorem 1 hold for any convex set
K with nonempty interior , which is either bounded or contains an infinite
open cone.

Suppose dimX < ∞ and K is a convex set for which 0 ∈ K and
span(K) = X. Then (i)–(iii) of Theorem 1 are satisfied by K if and only if
either K is bounded or K contains an infinite cone C for which aff(C) = X.

In contrast, in Remark 13 we give an example of an open unbounded con-
vex set K in an infinite-dimensional Banach space, which satisfies conditions
(i)–(iii) but does not contain a half-line. We also give an example of an open
convex set K which contains an infinite cone C such that span(C) = X, but
for which conditions (i)–(iii) fail.
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For any convex set K, x ∈ K and r > 0 set

Kx,r = K ∩B(x, r).

It is easy to see that if K has nonempty interior or if Kx,r is weakly compact
for every x ∈ K and r > 0, then Kx,r − Kx,r has nonempty interior or is
weakly compact, respectively. Every weakly compact set is either nowhere
dense or has nonempty interior.

In fact, our proof uses only the following fact:

(∗) For every x ∈ K, r > 0 and y 6∈ Kx,r−Kx,r there exists a z arbitrarily
close to y and there exists z∗ ∈ SX∗ which separates z and Kx,r−Kx,r.

By the Hahn–Banach theorem, (∗) is satisfied if and only if Kx,r − Kx,r

is either nowhere dense or has nonempty interior. We prove, in fact, the
following strengthening of Theorem 1:

Theorem 4. Let X be a Banach space and suppose that K is a convex
subset of X for which

• 0 ∈ K;
• span(K) = X;

and either

• Kx,r −Kx,r is nowhere dense for every x ∈ K and r > 0

or

• Kx,r −Kx,r has nonempty interior for every x ∈ K and r > 0.

Then the conditions (i)–(iii) of Theorem 1 are equivalent.

A rather unexpected consequence of our result is the following fact:

Corollary 5. Suppose that K is an unbounded open set which satisfies
the hypotheses of Theorem 4. If H ⊂ X is convex and K ⊂ H, then H
satisfies (i).

Proof. By Remark 2, all we have to do is to check that condition (ii) for
K implies condition (ii) for H. Fix some x ∈ H, r > 0, y ∈ SX and z ∈ K.

If r ≥ d(x, z) then, using (ii) for K, there are

u, v ∈ B(z, r) ∩K ⊂ B(x, 2r) ∩H
with u− v = cry. Then of course u′ = (u + x)/2 and v′ = (v + x)/2 are in
B(x, r) ∩H and u′ − v′ = (c/2)ry.

On the other hand, if r < d(x, z) then, using (ii) for K, there are

u, v ∈ B(z, d(x, z)) ∩K ⊂ B(x, 2d(x, z)) ∩H
such that u− v = cd(x, z)y. Now, the points

u′ = x+
r

2d(x, z)
(u− x) and v′ = x+

r

2d(x, z)
(v − x)
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are in B(x, r) ∩H and

u′ − v′ = crd(x, z)
2d(x, z)

y = (c/2)ry.

Therefore H satisfies (ii) for c/2.

Before passing to the proof of Theorem 4, we discuss an application of
this result to the theory of ∆-convex mappings.

Let X and Y be Banach spaces, and K ⊂ X a convex subset. A mapping
F : K → Y is called ∆-convex if there is a continuous convex function
f : K → R such that for every y∗ ∈ SY ∗ , y∗ ◦ F + f is continuous and
convex. Such an f is called a control function for F .

Such functions are known to have many interesting properties. For in-
stance, it is known that the ∆-convex mappings from Rn to R form an
algebra, and that the composition of two ∆-convex mappings is itself ∆-
convex. ∆-convex mappings have applications in optimization theory, ap-
proximation theory, and the theory of Gateaux differentiability of convex
functions. For more information we refer to the papers [VZ], [DVZ] and the
references therein. The geometric importance of ∆-convex mappings may be
appreciated from a result of M. Cepedello Boiso [C1, C2] (see also the book
[BL]), which states that a Banach space X is superreflexive if and only if
every real-valued Lipschitz function on X can be uniformly approximated
by ∆-convex functions.

The properties of a control function f for a ∆-convex function F impose
restrictions on the behavior of F . For instance, it is proved in [VZ] that F
is differentiable (Fréchet or Gateaux) at some point whenever f is. One can
ask: is F Lipschitz whenever f is? Theorem 1 and a simple Banach–Steinhaus
argument give the following improvement of Theorem 18 in [DVZ]:

Theorem 6. Let X and Y be Banach spaces and K ⊂ X a convex set
satisfying (ii). If F : K → Y is ∆-convex with Lipschitz control function f ,
then F is Lipschitz.

Proof. For each y∗ ∈ SY ∗ , the functions g1 = y∗ ◦ F + f and g2 =
−y∗ ◦ F + f are continuous and convex on K, and g1 + g2 is Lipschitz. By
Remark 2, K also satisfies (i), so that g1 and g2 are Lipschitz. Consequently,
y∗ ◦ F is Lipschitz for each y∗ ∈ Y ∗. The Banach–Steinhaus theorem now
implies that F is Lipschitz.

The example in Remark 13 shows that this is a strict improvement of
the result of [DVZ].

Acknowledgment. We would like to express our sincere gratitude to
Libor Veselý for suggesting the problem to us and pointing out that our
results imply Theorem 6.
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2. Proof of Theorem 4. Let K ⊂ X be a convex set which satisfies
the assumptions of Theorem 4. We break the proof of Theorem 4 down into
several lemmas. We prove the theorem by showing that (ii)⇒(i), (iii)⇒(ii)
and ¬(iii)⇒ ¬(i).

For every pair of vectors x, y ∈ X \ {0} define

α(0, x, y) = min(d(x/‖x‖,Ry), d(y/‖y‖,Rx)).

For any p ∈ X \{x, y} put α(p, x, y) = α(0, x−p, y−p). Similarly, if x, y ∈ X
and p ∈ X \ {x, y} then we define

β(p, x, y) =
‖x− y‖

max(‖p− x‖, ‖p− y‖) .

Obviously β(p, x, y) ≥ α(p, x, y).
We begin by showing that condition (ii) of Theorem 4 implies an appar-

ently stronger geometric condition.

Lemma 7. Assume that condition (ii) of Theorem 4 holds for some con-
stant 0 < c ≤ 2. Then for every x ∈ K, r < diamK and y ∈ SX there are
u, v ∈ K ∩B(x, r) such that :

(1) u− v = c2ry/(8 + c);
(2) d(x+ Ry, u+ Ry) ≥ cr/10;
(3) β(x, u, v) ≥ α(x, u, v) ≥ c3/120.

Proof. Define r′ = r/(1 + c/8). Note that there is some z ∈ K ∩B(x, r′)
such that d(z, x+ Ry) ≥ cr′/4. Indeed, if y∗ is a norm-one functional with
y∗(y) = 0 then for every w ∈ SX with y∗(w) > 1/2, by our assumption,
there are a, b ∈ K ∩B(x, r′) for which a− b = cr′w. Then

d(a, x+ Ry) + d(b, x+ Ry) ≥ |y∗(a− x)|+ |y∗(b− x)| ≥ y∗(cr′w) > cr′/2,

thus max{d(a, x+ Ry), d(b, x+ Ry)} ≥ cr′/4.
Fix any such z. Using the assumption again, there are

u, v ∈ K ∩B
(
z,
cr′

8

)
⊂ K ∩B(x, r)

for which

u− v = c
cr′

8
y =

c2r

8 + c
y.

Now

d(x+ Ry, u+ Ry) ≥ cr′

4
− cr′

8
=

cr

8 + c
≥ cr

10
.

For any q ∈ x+ R(u− x) write q = λu+ (1− λ)x and define

q′ = x+
v − q
1− λ = u+

v − u
1− λ.
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Clearly q′ is on the line u+ Ry, thus ‖q′ − x‖ ≥ cr/10. Therefore

‖v − q‖ = ‖q′ − x‖ |1− λ| = ‖q′ − x‖ · ‖u− q‖‖u− x‖ ≥
cr

10
· ‖u− v‖ − ‖v − q‖‖u− x‖ .

Hence

‖v − q‖ ≥ (cr/10) · ‖u− v‖
‖u− x‖+ cr/10

≥ (cr/10) · (c2r/10)
r + cr/10

≥ c3r

120
.

Finally,
‖v − q‖
‖v − x‖ ≥

c3

120
,

which easily implies that

d

(
v − x
‖v − x‖ ,R(u− x)

)
≥ c3

120
.

Then (3) follows by symmetry.

Lemma 8. Assume that f, g : K → R are such that h1 = g+ f and h2 =
g − f are continuous convex functions, and g is Lipschitz with constant L.
Then for every line ` which intersects K in at least two points and for every
x, y, z, w ∈ ` ∩K with x 6= y, z 6= w,

|f(x)− f(y)|
‖x− y‖ − |f(z)− f(w)|

‖z − w‖ ≤ 4L.

Proof. Without loss of generality we may assume that ` = R. Put u =
min(x, y, z, w) and v = max(x, y, z, w). Then for any a, b ∈ [u, v] with a 6= b
and i = 1, 2,

D+hi(u) ≤ hi(a)− hi(b)
a− b ≤ D−hi(v),

where D+ and D− denote the right and left derivatives, respectively. In
particular, 0 ≤ D−hi(v)−D+hi(u), and so

0 ≤ (D−h2(v)−D+h2(u)) + (D−h1(v)−D+h1(u))

= 2D−g(v)− 2D+g(u) ≤ 4L.

It follows that either 0 ≤ D−h1(v) − D+h1(u) ≤ 2L, or 0 ≤ D−h2(v) −
D+h2(u) ≤ 2L. If 0 ≤ D−h1(v)−D+h1(u) ≤ 2L, then

4L ≥ (D−h1(v) + L)− (D+h1(u)− L)

≥ (h1(x)− h1(y))− (g(x)− g(y))
x− y − (h1(z)− h1(w))− (g(z)− g(w))

z − w

=
f(x)− f(y)

x− y − f(z)− f(w)
z − w .

If 0 ≤ D−h2(v)−D+h2(u) ≤ 2L, then a similar calculation gives the same
bound.



Lipschitz sums of convex functions 275

Proof that (ii)⇒(i). Suppose that h1, h2 are continuous convex functions
on K for which h1 + h2 is Lipschitz. We write h1 = g + f and h2 = g − f .
Then g is Lipschitz with constant L, say. Our goal is to prove that f is also
Lipschitz.

Fix two points p1, p2 ∈ K and some ε > 0. Since f is continuous at p1

and p2, there is a 0 < δ ≤ ‖p1− p2‖/4 such that |f(p1)− f(q)| < ε for every
q ∈ B(p1, δ) and |f(p2) − f(q)| < ε for every q ∈ B(p2, δ). Let ` be a line
which intersects K in at least two points. Take any p which is in the relative
interior of the interval K ∩ `. Clearly max{‖p− p1‖, ‖p− p2‖} ≥ 2δ, so that
we may assume that ‖p− p1‖ = d ≥ 2δ.

Applying Lemma 7 for x = p, r = d − δ and y a unit vector in the
direction of `, we find u, v ∈ K ∩ B(p, d − δ) which satisfy conclusions
(1)–(3) of Lemma 7. For every a ∈ B(p, d− δ)∩K we have ‖p1−a‖ ≥ δ. By
convexity, this implies that a′ = p1 + δ(a− p1)/‖a− p1‖ is in K. Lemma 8
applied to the line connecting a and p1 shows that for any two points b, c
on this line,

|f(b)− f(c)|
‖b− c‖ ≤ |f(a′)− f(p1)|

‖a′ − p1‖
+ 4L ≤ ε

δ
+ 4L.

By Lemma 7 the distances between p and u and between p and v are at
least c(d− δ)/10 ≥ cd/20. On the other hand, the distance between p1 and
any of the points p, u, v is at most 2d. Hence

|f(u)− f(p)| ≤ |f(u)− f(p1)|+ |f(p)− f(p1)| ≤
(
ε

δ
+ 4L

)
· 4d

≤
(
ε

δ
+ 4L

)
· 80‖u− p‖

c
.

That is,
|f(u)− f(p)|
‖u− p‖ ≤ 80

c

(
ε

δ
+ 4L

)
,

and similarly,
|f(v)− f(p)|
‖v − p‖ ≤ 80

c

(
ε

δ
+ 4L

)
.

In addition, we know that α(p, u, v) ≥ c3/120.
Now we use the continuity of f to find some p′ = p+ λy ∈ K ∩ ` where

λ > 0 is small enough to ensure that

max
( |f(u)− f(p′)|

‖u− p′‖ ,
|f(v)− f(p′)|
‖v − p′‖

)
≤ 100

c

(
ε

δ
+ 4L

)
.

Let s be the intersection point of the line segments between p and u, and
p′ and v (note that p′ − p and u− v have the same direction, therefore this
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intersection point exists). By Lemma 8,

|f(p)− f(s)|
‖p− s‖ ≤ |f(p)− f(u)|

‖p− u‖ + 4L ≤ 100
c

(
ε

δ
+ 5L

)
,

and similarly for p′ replacing p and v replacing u. Hence if λ is small enough
then

|f(p′)− f(s)|
‖p′ − s‖ ≤ 100

c

(
ε

δ
+ 6L

)
.

By choosing λ to be small enough, we can also ensure that α(s, u, v) =
α(s, p, p′) ≥ c3/200. Hence

|f(p)− f(p′)| ≤ |f(p)− f(s)|+ |f(p′)− f(s)|

≤ 2 max(‖p− s‖, ‖p′ − s‖) · 100
c
·
(
ε

δ
+ 6L

)

=
‖p− p′‖
β(s, p, p′)

· 200
c
·
(
ε

δ
+ 6L

)
≤ ‖p− p

′‖
α(s, p, p′)

· 200
c
·
(
ε

δ
+ 6L

)

≤ 40000‖p− p′‖
c4

(
ε

δ
+ 6L

)
.

This proves that f is Lipschitz on each line ` with Lipschitz constant

40000
c4

(
ε

δ
+ 6L

)
.

Proof that (iii)⇒(ii). It is convenient to distinguish three cases:

Case 1: K is bounded.

Case 2: K is unbounded, and there is an x∗ ∈ SX∗ for which

sup
x∈K
|x∗(x)| <∞.

Case 3: For every x∗ ∈ SX∗ we have

sup
x∈K
|x∗(x)| =∞.

Proof for Case 1. In this case condition (ii) of Theorem 4 is equivalent
to the fact that for some ε > 0, K contains a line segment of length ε in each
direction. Indeed, (ii) clearly implies the existence of such line segments. On
the other hand, if there are segments of length ε in each direction, then
by convexity for every x ∈ K and r < diamK the ball B(x, r) contains a
segment of length εr/diamK in every direction.

Fix any y∗ ∈ SX∗ and x, y ∈ K such that y∗(x) < y∗(y). Assume that
(ii) does not hold. Then there are unit vectors {yn}∞n=1 ⊂ SX and a sequence
{εn}∞n=1 of positive numbers tending to zero such that εnyn 6∈ K −K. Our
assumption (∗) on K ensures that there is a zn of norm arbitrarily close
to εn which can be separated from K −K. Therefore there is an x∗n ∈ SX∗
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such that x∗n(u) − x∗n(v) ≤ 3εn for all u, v ∈ K. But condition (iii) implies
the existence of u, v ∈ K for which

c(y∗(y)− y∗(x)) < x∗n(u)− x∗n(v) ≤ 3εn,

which is a contradiction when n is large enough.

Proof for Case 2. In this case it is easy to see that (iii) cannot hold.
Indeed, sinceK is unbounded, we can find y∗ ∈ SX∗ for which supx∈K |y∗(x)|
=∞. Then for every c > 0 there are x, y ∈ K such that

c(y∗(y)− y∗(x)) > 2 sup
x∈K
|x∗(x)| ≥ sup

u,v∈K
|x∗(u)− x∗(v)|.

Proof for Case 3. Assume first that (ii) fails for some constant 0 < c <
1/3. In other words, there are 0 < c < 1/3, x ∈ K, y ∈ SX and r > 0 for
which

cry 6∈ Kx,r −Kx,r.

Without loss of generality, we may assume that x = 0. Hence, for every
ε > 0 we can find z∗ ∈ SX∗ such that z∗(u) − z∗(v) ≤ (c + ε)r for all
u, v ∈ K ∩ B(0, r), that is, by choosing ε < 1/3 − c and by replacing c + ε
by c we find z∗ ∈ SX∗ and c ∈ (0, 1/3) such that z∗(u) − z∗(v) ≤ cr for
all u, v ∈ K ∩ B(0, r). In particular, for every u ∈ K ∩ B(0, r) we have
|z∗(u)| ≤ cr. Define

A+ = {x ∈ X : z∗(x) > cr and z∗(x) > c‖x‖},
A− = {x ∈ X : z∗(x) < −cr and z∗(x) < −c‖x‖}.

We claim that bothA+ andA− are disjoint fromK. Indeed, if z∗(x) > cr and
z∗(x) > c‖x‖ for some x ∈ K, then there is a λ > 1 such that z∗(x) > λcr
and z∗(x) > λc‖x‖. Then λcrx/|z∗(x)| ∈ K∩B(0, r), so |z∗(λcrx/|z∗(x)|)| ≤
cr, which is a contradiction. Similarly for A−.

By the Hahn–Banach theorem, since A+, A− are convex with nonempty
interior, we can find x∗, v∗ ∈ SX∗ and α ≥ 0 ≥ β for which

inf
u∈A+

x∗(u) ≥ α ≥ sup
u∈K

x∗(u), inf
u∈K

v∗(u) ≥ β ≥ sup
u∈A−

v∗(u).

Since x∗, v∗ are unbounded on K by our assumption, we have x∗ 6= v∗.
Let δ > 0, and take x, z ∈ B(0, 1 + δ) for which x∗(x) = z∗(z) = 1. Note
that z∗(u) ≤ c‖u‖ for any u ∈ ker(x∗), since otherwise for λ large enough
and u′ = λu ∈ ker(x∗) we would have u′ ∈ int(A+), a contradiction. Since
z = x∗(z)x+ (z − x∗(z)x) and z − x∗(z)x ∈ ker(x∗), for δ sufficiently small
we have

1 = z∗(z) = x∗(z)z∗(x) + z∗(z − x∗(z)x)

≤ x∗(z)z∗(x) + c‖z − x∗(z)x‖ ≤ x∗(z)z∗(x) + 3c.
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It is also easy to see that λz ∈ A+ if λ is large enough and δ is small
enough, therefore x∗(z) ≥ 0. Then, since c < 1/3 and 1 ≤ x∗(z)z∗(x) + 3c,
it is immediate to see that x∗(z) > 0 and z∗(x) > 0. Therefore

1 ≤ x∗(z)z∗(x) + 3c ≤ (1 + δ)z∗(x) + 3c,

that is, z∗(x) ≥ (1 − 3c)/(1 + δ) > 1 − 4c if δ is small enough. Hence, for
any u ∈ SX ,

c(2 + δ) ≥ c‖u− x∗(u)x‖ ≥ |z∗(u− x∗(u)x)| = |z∗(u)− x∗(u)z∗(x)|
= |z∗(u)− x∗(u) + x∗(u)(1− z∗(x))| ≥ |z∗(u)− x∗(u)| − 4c.

Thus ‖z∗−x∗‖ ≤ c(6+δ) for every δ small enough, therefore ‖z∗−x∗‖ ≤ 6c.
Similarly, we find that ‖z∗ − v∗‖ ≤ 6c.

Let
c0 = ‖x∗ − v∗‖ ≤ 12c,

take an arbitrary point x1 ∈ K, and define

y∗ =
x∗ − v∗
c0

∈ SX∗ .

By assumption, no functional is bounded on K, and yet

y∗(x) ≤ α− β
c0

∀x ∈ K.

Therefore for every t < y∗(x1) we can find an x2 ∈ K for which y∗(x2) = t.
Fix x2 with

y∗(x2) = 2y∗(x1)− α− β
c0

.

Since v∗(x) ≥ β, we have x∗(x) ≥ β+x∗(x2)−v∗(x2) for any x ∈ K for which
y∗(x2) ≤ y∗(x). Thus, for any y1, y2 ∈ K for which y∗(x2) ≤ y∗(yi) ≤ y∗(x1),
we see that α ≥ x∗(yi) ≥ β + x∗(x2)− v∗(x2). That is,

|x∗(y1)− x∗(y2)| ≤ α− β − x∗(x2) + v∗(x2) = α− β − y∗(x2)c0

= (2y∗(x1)− y∗(x2))c0 − y∗(x2)c0

= 2c0(y∗(x1)− y∗(x2))

≤ 24c(y∗(x1)− y∗(x2)).

Summarizing, we have proved that if condition (iii) is satisfied with a
constant c, then condition (ii) must be satisfied with constant c/24, provided
that c/24 < 1/3. But if (iii) is satisfied for some c then it is also satisfied for
every c′ < c, which completes our proof.

This finishes the proof of the implication (iii)⇒(ii).

For later purposes, we record here that from the proof of Case 2 it follows
that if K is unbounded and (iii) fails for some constant c, then there are
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x∗, y∗ ∈ SX∗ and x, y ∈ K such that (iii) fails for c, x, y, x∗, y∗ and y∗ is not
bounded on K. By symmetry, we can assume that supx∈K y

∗(x) =∞.
It remains to prove that if (iii) fails then there are continuous functions

f, g : K → R such that f is not Lipschitz, g is Lipschitz and h1 = g + f ,
h2 = g − f are convex.

We begin by defining some auxiliary functions:

Lemma 9. Fix 0 < ε < 1/2, β > 0 and L > 1. Let α = ε2β and γ = eLβ.
Then there are continuous functions f, g : R2 → R for which

(A) g + f , g − f are both convex on ([−α, α]× R) ∪ (R× (R \ [0, 2γ]));
(B) |fy| < ε and |gx|, |gy| < 40ε on ([−α, α]× R) ∪ (R× (R \ [0, 2γ]));
(C) |f(x, y)| ≤ αL on [−α, α]×R and f(x, y) = 0 on R×(R\ [β, 2γ−β]);
(D) fx(x, γ) = L and |fx(x, y)| ≤ L for every x, y ∈ R.

(Here fx, fy, gx, gy denote the partial derivatives of f and g.)

Proof. Denote the sets {y ≤ β}, {β ≤ y ≤ γ}, {γ ≤ y ≤ 2γ − β} and
{2γ − β ≤ y} by S1, S2, S3 and S4, respectively. Let

f(x, y) =
{

0, y ∈ S1,

x log(y/β), y ∈ S2,

and extend f to R × S3 and R × S4 by f(x, y) = f(x, 2γ − y). Clearly (C)
and (D) hold. Let g = p+ q + r, where

p(x, y) =





0, y + |x| ≤ β,

ε(y + |x| − β)2/α, y ≤ β ≤ y + |x|,
εx2/α, y ∈ S2,

q(x, y) =
{

0, y ∈ S1,

−α log(y/β)/ε, y ∈ S2,

r(x, y) =





0, y ∈ S1,

12ε(y − β), y ∈ S2,

12ε(2y − β − γ), y ∈ S3,

12ε(3y − 3γ), y ∈ S4,

and extend p, q to the whole plane by p(x, y) = p(x, 2γ − y), q(x, y) =
q(x, 2γ − y). These are well defined continuous functions.

It is easy to check that the restriction of g to R×S1 is convex, and thus,
as the restriction of f to R×S1 is 0, it follows that g+f and g−f are convex
on R×S1. It is also straightforward to verify that the restrictions of g+f and
g−f to {−α ≤ x ≤ α, y ∈ S2} are convex: Indeed, on this set g+f and g−f
may be written as the sum of linear functions together with the functions
h+ and h−, respectively, where h±(x, y) = ±x log y + εx2/α − (α log y)/ε.
On calculating the second partial derivatives of h± we find h±xx = 2ε/α > 0
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and

h±xxh
±
yy − (h±xy)

2 =
2ε(α/ε∓ x)/α− 1

y2 =
2∓ 2εx/α− 1

y2 ≥ 1− 2ε
y2 > 0,

that is, the functions h± are convex on R×S2. This also shows that g+f and
g − f are convex on the sets R× S4 and {−α ≤ x ≤ α, y ∈ S3}. Therefore,
in order to show that g± f are convex on ([−α, α]×R)∪ (R× (R \ [0, 2γ])),
it only remains to check their convexity around the points of the segments
{y = β}, {y = γ} and {y = 2γ − β}.

At the points (x, y) ∈ ([−α, α]× R) ∪ (R× (R \ [0, 2γ])) we have

fx(x, y) =
{

0, y ∈ S1,

log(y/β), y ∈ S2,
|fy(x, y)| ≤ α

β
< ε, |px|, |py| ≤ 2ε,

qx = rx = 0, |qy| ≤
α

εβ
= ε, ry =





0, y ∈ S1,

12ε, y ∈ S2,

24ε, y ∈ S3,

36ε, y ∈ S4.

Since |fy|, |py|, |qy| are at most 2ε each, and ry|Si+1 − ry|Si = 12ε, it follows
that

(gy ± fy)|Si+1 − (gy ± fy)|Si ≥ 0.

From this it easily follows that g ± f are also convex around the points of
the required segments. This also shows that (B) is satisfied.

Proof that (i)⇒(iii). Suppose that (iii) does not hold. For every n fix
cn > 0, xn, yn ∈ K and x∗n, y

∗
n ∈ SX∗ such that cn → 0, y∗n(xn) < y∗n(yn) and

for every n and u, v ∈ K with y∗n(xn) ≤ y∗n(u) ≤ y∗n(v) ≤ y∗n(yn) we have

|x∗n(u)− x∗n(v)| ≤ cn(y∗n(yn)− y∗n(xn)).

For simplicity we use the notation

un(x) = x∗n(x)− x∗n(xn),

vn(x) = y∗n(x)− y∗n(xn),

ϕn(x) = (un(x), vn(x)) ∈ R2,

αn = cn(y∗n(yn)− y∗n(xn)),

ηn =
y∗n(yn)− y∗n(xn)

2
.

Using this notation, we know that ηn > 0 and

un(xn) = vn(xn) = 0, vn(yn) = 2ηn, αn = 2cnηn,

and for all x ∈ K,

(?) 0 ≤ vn(x) ≤ 2ηn ⇒ −αn ≤ un(x) ≤ αn.
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If K is bounded, then αn = 2cnηn ≤ cn diamK, and so αn → 0. Moreover,
since vn(xn) = 0 and vn(yn) = 2ηn, for each n there exists x ∈ K with
vn(x) = ηn. Let K be unbounded; since un and vn are both affine, ϕn(K)
must be convex, and as ϕn(xn) = (0, 0) ∈ ϕn(K), it is clear that (?) remains
true if we replace αn, ηn by Nαn, Nηn with any N ≥ 1. In this way we
can ensure that αn → ∞ and ‖xn‖/αn → 0. As we noticed after the proof
that (iii)⇒(ii), we can assume that supx∈K vn(x) = ∞. Hence, also in this
case, there is an x ∈ K for which vn(x) = ηn. Thus we obtain the following
lemma:

Lemma 10. Suppose that condition (iii) of Theorem 4 fails. Then for
every constant c > 0 there is a sequence of positive numbers cn with cn → 0
as n→∞ and there are sequences of positive numbers αn, ηn such that :

(a) 0 ≤ vn(x) ≤ 2ηn ⇒ −αn ≤ un(x) ≤ αn for all x ∈ K;
(b) αn = 2cnηn;
(c) there is an x ∈ K for which vn(x) = ηn;
(d) at least one of the following is satisfied :

(d1) αn → 0,
(d2) cαn − ‖xn‖ → ∞.

In order to complete the proof that (i)⇒(iii), it suffices to prove the
following lemma:

Lemma 11. Assume that for every c > 0 there are sequences of positive
numbers αn, ηn, cn with cn → 0 for which conditions (a)–(d) of Lemma 10
are satisfied. Then for every 0 < ε < 1, δ > 0 and L > 1 there are continuous
functions F,G : K → R such that :

• G+ F and G− F are convex ;
• Lip(G) ≤ ε;
• 2L ≥ Lip(F ) ≥ L; and
• either (d1) holds and sup |F | ≤ δ, or (d2) holds and F (x) = 0 for every

‖x‖ ≤ δ.

Indeed, by Lemma 11, for any sequences εn → 0, Ln → ∞ and δn > 0
we can find Fn, Gn : K → R and points an, bn ∈ K such that Gn ± Fn are
convex, Lip(Gn) ≤ εn, Lip(Fn) ≤ 2Ln, |Fn(bn)−Fn(an)| > Ln‖bn−an‖, and
either (d1) holds and sup |Fn| ≤ δn, or (d2) holds and Fn(x) = 0 for every
‖x‖ ≤ δn. We can also assume that for a fixed point x0 ∈ K, Gn(x0) = 0
for every n. Then, by choosing

∑
n εn < ∞, g =

∑
nGn is Lipschitz. By

requiring
∑

n δn < ∞ in case (d1) and δn → ∞ in case (d2), we can also
ensure that f =

∑
n Fn exists and is continuous. Since the sum of convex

functions is convex, g + f and g − f are convex. If we also require that∑
i<n 2Li < Ln/3 for every n, and

∑
i>n 2δi < (Ln/3)‖bn − an‖ for every n



282 M. Csörnyei and A. Naor

if (d1) holds, or δi > max(‖an‖, ‖bn‖) for every i > n if (d2) holds, then, in
the first case,

|f(bn)− f(an)| > Ln‖bn− an‖−
∑

i<n

2Li‖bn− an‖− 2
∑

i>n

δi ≥
Ln
3
‖bn− an‖,

and in the second case,

|f(bn)− f(an)| =
∣∣∣
n∑

i=1

Fi(bn)− Fi(an)
∣∣∣ > Ln|bn − an‖ −

∑

i<n

2Li‖bn − an‖

>
2Ln

3
‖bn − an‖.

In either case, we deduce that f is not Lipschitz and (i)⇒(iii), as required.

Before passing to the proof of Lemma 11, we prove the following simple
result. This is the only place in our proof at which the assumption 0 ∈ K is
crucial, since the statement is clearly false for the set {1} × R ⊂ R2.

Lemma 12. For all η, % > 0, x ∈ K and w ∈ SX there are y, z ∈
B(x, %) ∩K such that ∥∥∥∥

y − z
‖y − z‖ − w

∥∥∥∥ < η.

Proof. Since for all u, v in B(0, %) ∩K and x ∈ K the vectors

u′ =
%

‖x‖+ %
u+

‖x‖
‖x‖+ %

x and v′ =
%

‖x‖+ %
v +

‖x‖
‖x‖+ %

x

are in B(x, %)∩K and (u′− v′)/‖u′− v′‖ = (u− v)/‖u− v‖, it is enough to
prove the lemma for x = 0.

Since span(K) = X, there are positive numbers a1, . . . , an, b1, . . . , bm
and there are u1, . . . , un, v1, . . . , vm ∈ K such that

∥∥∥∥
∑n

i=1 aiui −
∑m

j=1 bjvj

‖∑n
i=1 aiui −

∑m
j=1 bjvj‖

− w
∥∥∥∥ < η.

Then for M = max(
∑n

i=1 ai,
∑m

j=1 bj), the vectors u =
∑n

i=1 aiui/M and∑m
j=1 bjvj/M are in K, and satisfy the claim of the lemma.

Proof of Lemma 11. Set

c =
1

(ε/80)2 ,

and choose n to be so large that

cn <
(ε/80)2

2eL+2ε .
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In addition, in case (d1), for n large enough we know that

αn <
δ

L+ 2ε
,

and in case (d2), for n large enough,
αn

(ε/80)2 − ‖xn‖ > δ.

Fix an n for which these inequalities are satisfied, and set η = ηn, α = αn,

β =
αn

(ε/80)2 , γ = eL+2εβ < η,

and u(x) = un(x), v(x) = vn(x), ϕ(x) = (u(x), v(x)). Let f and g be the
functions given by Lemma 9 when the parameters are ε/80, L + 2ε, α, β
and γ. Define

F (x) = f(ϕ(x)), G(x) = g(ϕ(x)).

Since γ < η, from (a) of Lemma 10 we can see

ϕ(K) ⊂ ([−α, α]× R) ∪ (R× (R \ [0, 2γ])).

Thus G+F and G−F are continuous convex functions. We also know from
(C) of Lemma 9 that if (d1) holds, then sup |F | ≤ α(L + 2ε) < δ, and if
(d2) holds, any x with ‖x‖ ≤ δ satisfies v(x) ≤ ‖x‖+ ‖xn‖ ≤ δ + ‖xn‖ < β
and hence F (x) = 0 by (C). We also see from (B), (D) of Lemma 9 that
Lip(g) < ε and Lip(F ) ≤ Lip(f) ≤

√
L2 + ε2 ≤ 2L.

By continuity and the fact that γ < η, by applying (c) of Lemma 10 we
can find an x = x0 for which v(x0) = γ. By Lemma 12, for every % > 0 and
ϑ < 1 we can find y, z ∈ B(x0, %)∩K for which x∗n(y− z) > (1− ϑ)‖y− z‖.
If % is small enough then v(y) and v(z) are close to v(x0) = γ. From (B) of
Lemma 9 we get

|f(u(z), v(y))− f(u(z), v(z))| < (ε/80)|v(y)− v(z)| < (ε/2)‖y − z‖,
and if % is small enough then (D) of Lemma 9 gives

|f(u(y), v(y))− f(u(z), v(y))| > ((L+ 2ε)− ε)|u(y)− u(z)|
= (L+ ε)|x∗n(y)− x∗n(z)|
≥ (L+ ε)(1− ϑ)‖y − z‖.

Therefore
|F (y)− F (z)| = |f(u(y), v(y))− f(u(z), v(z))|

≥ |f(u(y), v(y))− f(u(z), v(y))|
− |f(u(z), v(y))− f(u(z), v(z))|

≥ ((L+ ε)(1− ϑ)− ε/2)‖y − z‖.
For ϑ small enough this gives Lip(F ) > L, and the lemma is proved.
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Remark 13. Let X = `1, and let e1, e2, . . . be the standard basis of `1.
Let

C0 =
{∑

j

λjej ∈ `1 : 0 ≤ λj ≤
λ1

j

}
,

Cn =
{∑

j

λjej ∈ `1 : λj ≥ 0,
∑

j

λj ≤ 2λn ≤ 2n
}
,

D =
{ ∞∑

n=1

an : an ∈ Cn,
∞∑

n=1

an ∈ `1
}
,

K0 = {x ∈ `1 : d(x,C0) < 1},
K1 = {x ∈ `1 : d(x,D) < 1}.

It is easy to see that K0 and K1 are open, unbounded convex sets containing
the origin, with span(C0) = X, C0 ⊂ K0 and span(K1) = X. However, K1
does not contain any half-line, and conditions (i)–(iii) of Theorem 4 fail
for K0, but hold for K1.

Proof. It is easy to check that for every u =
∑
λjej ∈ B(0, n+ 1) ∩ C0

we have 0 ≤ λn ≤ 1, and then B(0, n + 1) ∩K0 does not contain any u, v
with u− v = 4en, which contradicts (ii) for K0.

For all x = d + z ∈ K1, d ∈ D, ‖z‖ < 1, r > 0, n > max(‖d‖, r) and
y =

∑
j yjej ∈ SX we have

2ne4n + d+ n
∑

{j : yj≥0}
yjej ∈ C4n, 2ne4n + d− n

∑

{j : yj<0}
yjej ∈ C4n,

therefore

u = 2ne4n + x+ n
∑

{j : yj≥0}
yjej ∈ K1 ∩B(x, 3n),

v = 2ne4n + x− n
∑

{j : yj<0}
yjej ∈ K1 ∩B(x, 3n),

and u− v = ny. Then u′ = x+ (r/n)(u− x) and v′ = x+ (r/n)(v − x) are
both in K1 ∩B(x, 3r) and u′ − v′ = ry. That is, (ii) is satisfied for K1 with
c = 1/3.

It only remains to check that K1 does not contain any half-line. Assume
instead that K1 contains a half-line of direction y =

∑
ynen ∈ SX . It is

clear that yn ≥ 0 for every n. Choose an N ≥ 4 for which
N−1∑

n=1

yn >
2
3

and
∞∑

n=N

yn <
1
3
.

For every x ∈ K1 and λ ≥ 0, we have x+ λy ∈ K1. Indeed, fix some v ∈ K1

such that v + [0,∞)y ⊂ K1. Since K1 is open, there is an ε > 0 such that
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x+ ε(x− v) ∈ K1. By convexity,

x+ λy =
1

1 + ε
(x+ ε(x− v)) +

ε

1 + ε

(
v +

1 + ε

ε
· λy

)
∈ K1.

In particular, 4N2y ∈ K1, and so 4N2∑
n ynen =

∑
n an + b, where an =∑

j λjnej ∈ Cn for every n and b =
∑

j bjej ∈ B(0, 1). We also have λjn ≥ 0
for every j and n, and

∑
j,n λjn <∞. Since Cn ⊂ B(0, 2n), we obtain

N−1∑

n=1

N−1∑

j=1

λjn ≤
N−1∑

n=1

2n < N2.

Hence

4N2
(N−1∑

j=1

yj −
∞∑

j=N

yj

)
=
∞∑

n=1

(N−1∑

j=1

λjn −
∞∑

j=N

λjn

)
+
N−1∑

j=1

bj −
∞∑

j=N

bj

≤ N2 −
∞∑

n=N

( ∞∑

j=N

λjn −
N−1∑

j=1

λjn

)
+
N−1∑

j=1

bj −
∞∑

j=N

bj ,

where for every n ≥ N we have
∞∑

j=N

λjn −
N−1∑

j=1

λjn = 2
∞∑

j=N

λjn −
∞∑

j=1

λjn ≥ 2
∞∑

j=N

λjn − 2λnn ≥ 0

and
N−1∑

j=1

bj −
∞∑

j=N

bj ≤ 1.

Therefore

4N2
(N−1∑

j=1

yj −
∞∑

j=N

yj

)
≤ N2 + 1.

This is a contradiction, since
∑N−1

j=1 yj −
∑∞

j=N yj > 1/3.

Remark 14. Note that it does not make any difference if, instead of (i),
we assume that for some (or every) k ≥ 2, and for any convex functions
h1, . . . , hk, the functions must be Lipschitz whenever their sum is Lips-
chitz.
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