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Multilinear Hölder-type inequalities on
Lorentz sequence spaces

by

Daniel Carando (Buenos Aires), Verónica Dimant (Buenos Aires)
and Pablo Sevilla-Peris (Valencia)

Abstract. We establish Hölder-type inequalities for Lorentz sequence spaces and
their duals. In order to achieve these and some related inequalities, we study diagonal
multilinear forms in general sequence spaces, and obtain estimates for their norms. We
also consider norms of multilinear forms in different Banach multilinear ideals.

1. Introduction. Given a sequence α ∈ `∞, the generalized Hölder
inequality states that, for 1 ≤ p ≤ n, there exists a constant C > 0 such
that for all x1, . . . , xn ∈ `p,

(1)
∣∣∣ ∞∑
k=1

α(k)x1(k) · · ·xn(k)
∣∣∣ ≤ C‖x1‖`p · · · ‖xn‖`p .

On the other hand, if n < p <∞, again Hölder’s inequality implies that (1)
holds if and only if α ∈ `p/(p−n). Moreover, it can be shown that the best
constant C in (1) is in each case ‖α‖`∞ and ‖α‖`p/(p−n)

. A natural question
now is if inequalities analogous to (1) can be found in other Banach sequence
spaces (see below for definitions). More precisely, given a Banach sequence
space E, under what conditions on α ∈ `∞ does there exist C > 0 such that
for all x1, . . . , xn ∈ E,

(2)
∣∣∣ ∞∑
k=1

α(k)x1(k) · · ·xn(k)
∣∣∣ ≤ C‖x1‖E · · · ‖xn‖E?

Our aim in this paper is to analyze the situation when E is a Lorentz space
d(w, p) or its dual d(w, p)∗. Our two main results are:

Theorem 1.1. Let α ∈ `∞ and E = d(w, p) with 1 ≤ p <∞. Then:

(a) If n ≤ p, then (2) holds if and only if α ∈ d(w, p/n)∗.
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(b) If n > p, then (2) holds if and only if α ∈ mΨ , where mΨ is the
Marcinkiewicz space associated with Ψ(N) = (

∑N
k=1w(k))n/p. If in

addition w is n/(n− p)-regular , then we can replace mΨ by `∞.

The best constant is ‖α‖d(w,p/n)∗ in case (a), and ‖α‖mΨ in case (b).

Theorem 1.2. Let α ∈ `∞ and E = d(w, p)∗ with 1 ≤ p <∞. Then:

(a) If n′ ≤ p, then (2) holds if and only if α ∈ `∞.

(b) If n′ > p > 1, then (2) holds if and only if α ∈ d
(
w

n′
n′−p , p′

p′−n
)
.

(c) If p = 1, then (2) holds if and only if α ∈ d(wn, 1).

The best constant in each case is the norm of α in the corresponding space.

Our approach is to study multilinear forms on the corresponding se-
quence spaces. Inequality (2) can be read as the continuity of the diagonal
multilinear form on E with coefficients (α(k))k. This way to look at Hölder
inequalities is crucial to our proofs of Theorems 1.1 and 1.2. Moreover, it
motivates an analogous question in a more general framework: if A is a Ba-
nach ideal of multilinear mappings and E is a Banach sequence space, under
what conditions on α ∈ `∞ does the diagonal multilinear form with coef-
ficients (α(k))k belong to A(nE)? As a direct application of our results in
this general framework, we consider nuclear and integral multilinear forms
on Lorentz spaces and their duals.

The article is organized as follows. In Section 2 we introduce notation,
definitions and some general results. Sections 3 and 4 are devoted to the
proofs of Theorems 1.1 and 1.2. In Section 5 we broaden the object of our
study, considering diagonal multilinear forms belonging to different ideals
defined on general sequence spaces. Combining this with the results of the
previous sections we characterize the diagonal integral (and nuclear) multi-
linear forms on Lorentz sequence spaces and their duals.

2. Preliminaries. Throughout the paper we use standard notation of
Banach space theory. We consider complex Banach spaces E,F, . . . and
their duals E∗, F ∗, . . . . Sequences of complex numbers are denoted by x =
(x(k))∞k=1. By a Köthe sequence space (also known as Banach sequence space)
we mean a Banach space E ⊆ CN such that `1 ⊆ E ⊆ `∞ and with the
property that if x ∈ CN and y ∈ E satisfy |x(k)| ≤ |y(k)| for all k ∈ N then
x ∈ E and ‖x‖ ≤ ‖y‖. For each element x ∈ E in a Köthe sequence space
its decreasing rearrangement (x?(k))∞k=1 is given by

x?(k) := inf{ sup
j∈N\J

|x(j)| : J ⊆ N, card(J) < k}.

A Köthe sequence space E is called symmetric if ‖(x(k))k‖E = ‖(x?(k))k‖E
for every x ∈ E. For each N ∈ N we consider the N -dimensional trun-
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cation EN := span{e1, . . . , eN} (where en denotes the nth canonical unit
vector: en(k) = δn,k for all k) and we denote by E0 the space of sequences
in E that are all 0 except for a finite number of coordinates. The canoni-
cal inclusion iN : EN ↪→ E and projection πN : E → EN are defined by
iN ((x(k))Nk=1) = (x(1), . . . , x(N), 0, 0, . . . ) and πN ((x(k))∞k=1) = (x(k))Nk=1.
Given two Banach spaces, we write E = F if they are topologically isomor-
phic, and E

1= F if they are isometrically isomorphic.
The Köthe dual of a Köthe sequence space E is defined as

E× :=
{
z ∈ CN :

∑
j∈N
|z(j)x(j)| <∞ for all x ∈ E

}
.

This can be considered even if E is not normed. If E is quasi-normed, E×

with the norm
‖z‖E× := sup

‖x‖E≤1

∑
j∈N
|z(j)x(j)|

is a Köthe sequence space. It is well known (see, for example, [3, Lemma
2.8]) that z ∈ E× if and only if

∑
j∈N z(j)x(j) converges for all x ∈ E and

that
‖z‖E× = sup

‖x‖E≤1

∣∣∣∑
j∈N

z(j)x(j)
∣∣∣.

Also, E× is symmetric whenever E is symmetric. Note that (EN )∗ 1= (E×)N
for every N .

Following [21, 1.d], a Köthe sequence space E is said to be r-convex
(with 1 ≤ r < ∞) if there exists a constant κ > 0 such that for any choice
x1, . . . , xm ∈ E we have∥∥∥(( m∑

j=1

|xj(k)|r
)1/r)∞

k=1

∥∥∥
E
≤ κ

( m∑
j=1

‖xj‖rE
)1/r

.

On the other hand, E is s-concave (with 1 ≤ s < ∞) if there is a constant
κ > 0 such that( m∑

j=1

‖xj‖sE
)1/s

≤ κ
∥∥∥(( m∑

j=1

|xj(k)|s
)1/s)∞

k=1

∥∥∥
E

for all x1, . . . , xm ∈ E. We denote by M(r)(E) and M(s)(E) the small-
est constants in the respective inequalities. Recall that E is r-convex (s-
concave) if and only if E∗ is r′-concave (s′-convex), where r′ and s′ are
the conjugates of r and s respectively (see [21, 1.d.4]). Moreover, we have
M (r)(E) = M(r′)(E∗) (M(s)(E) = M (s′)(E∗)). If E is r-convex for some
1 < r < ∞ or s-concave for some 1 ≤ s < ∞, then we say that E has
non-trivial convexity or non-trivial concavity.
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Following standard notation, given a symmetric Köthe sequence space
E we consider the fundamental function of E:

λE(N) :=
∥∥∥ N∑
k=1

ek

∥∥∥
E

for N ∈ N. For a detailed study and general facts on Köthe sequence spaces,
see [20, 21, 28, 3, 19].

Remark 2.1. With this notation we can give a first positive answer to
our question. If E is n-concave, then α satisfies (2) if and only if α ∈ `∞.
Indeed, it is easily seen that being n-concave implies E ↪→ `n (given x ∈ E,
just take xk = x(k)ek ∈ E and apply the definition of concavity). This and
(1) immediately show that (2) holds for any α ∈ `∞. Conversely, if (2) holds,
considering x1 = · · · = xn = ek we obtain |α(k)| ≤ C for all k, so α belongs
to `∞.

The space of continuous linear operators between two Banach spacesE,F
will be denoted by L(E;F ), and the space of continuous n-linear mappings
E1 × · · · × En → F by L(E1, . . . , En;F ); with the norm

‖T‖ := sup{‖T (x1, . . . , xn)‖F : ‖xi‖Ei ≤ 1, i = 1, . . . , n},
the latter is a Banach space. If E1 = · · · = En = E we write L(nE;F ) and
whenever F = C we simply write L(E1, . . . , En) or L(nE).

A mapping P : E → F is a continuous n-homogeneous polynomial if
there exists an n-linear mapping T ∈ L(nE;F ) such that P (x) = T (x, . . . , x)
for every x ∈ E. The space of all continuous n-homogeneous polynomi-
als from E to F is denoted by P(nE;F ); endowed with the norm ‖P‖ =
sup‖x‖≤1 ‖P (x)‖, it is a Banach space. If P is an n-homogeneous polynomial
and T is the associated symmetric n-linear mapping, then the polarization
formula gives (see [9, Proposition 1.8])

(3) ‖P‖ ≤ ‖T‖ ≤ nn

n!
‖P‖.

A general study of polynomials on Banach spaces can be found in [9].
Ideals of multilinear forms were introduced in [23]. Let us recall the

definition. An ideal of multilinear forms is a subclass A of L, the class of all
multilinear forms, such that for any Banach spaces E1, . . . , En the set

A(E1, . . . , En) = A ∩ L(E1, . . . , En)
satisfies:

• For any γ1 ∈ E∗1 , . . . , γn ∈ E∗n, the mapping
(x1, . . . , xn) 7→ γ1(x1) · · · γn(xn)

belongs to A(E1, . . . , En).
• If S, T ∈ A(E1, . . . , En), then S + T ∈ A(E1, . . . , En).
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• If T ∈ A(E1, . . . , En) and Si ∈ L(Fi, Ei) for i = 1, . . . , n, then T ◦
(S1, . . . , Sn) ∈ A(F1, . . . , Fn).

An ideal of multilinear forms is called normed if for each E1, . . . , En there
is a norm ‖ · ‖A(E1,...,En) in A(E1, . . . , En) such that

• ‖(x1, . . . , xn) 7→ γ1(x1) · · · γn(xn)‖A(E1,...,En) = ‖γ1‖ · · · ‖γn‖.
• ‖T ◦ (S1, . . . , Sn)‖A(F1,...,Fn) ≤ ‖T‖A(E1,...,En) · ‖S1‖ · · · ‖Sn‖.

Analogously ideals of homogeneous polynomials were defined and studied
in [10–13]. However, [12] shows that a polynomial is in a normed ideal of
polynomials if and only if its associated multilinear mapping is in some ideal
of multilinear forms. Hence, dealing with one or the other type of ideals will
not lead to essentially different conclusions.

If (a(k))k and (b(k))k are real sequences, we write a(k) ≺ b(k) when
there exists C > 0 such that a(k) ≤ Cb(k) for all k ∈ N. Also, we write
a(k) � b(k) when a(k) ≺ b(k) and b(k) ≺ a(k).

3. Lorentz spaces. Our aim in this section is to prove Theorem 1.1. Let
us first recall the definition of Lorentz spaces; further details and properties
can be found in [20, Section 4.e] and [21, Section 2.a]. Let (w(k))∞k=1 be a
decreasing sequence of positive numbers such that w(1) = 1, limk w(k) = 0
and

∑∞
k=1w(k) = ∞ and let 1 ≤ p < ∞. Then the corresponding Lorentz

sequence space, denoted by d(w, p), is defined as the space of all sequences
(x(k))k such that

‖x‖ = sup
π∈ΣN

( ∞∑
k=1

|x(π(k))|pw(k)
)1/p

=
( ∞∑
k=1

|x?(k)|pw(k)
)1/p

<∞

where ΣN denotes the group of permutations of the natural numbers. Each
d(w, p) is clearly a symmetric Köthe sequence space.

The sequence w is said to be α-regular (0 < α < ∞) if w(k)α �
k−1

∑k
j=1w(j)α, and regular if it is α-regular for some α.

In [24] it is proved that d(w, p) is r-convex (and M(r)(d(w, p)) = 1)
whenever 1 ≤ r ≤ p. Also [24, Theorem 2] shows that, for p < s < ∞,
d(w, p) is s-concave if and only if w is s/(s− p)-regular. It is non-trivially
concave if and only if w is 1-regular.

In [15] and [20] a description of d(w, p)∗, the dual of d(w, p), is given as
the space of those sequences x such that there exists a decreasing y ∈ B`p′
with

sup
N

∑N
k=1 x

?(k)∑N
k=1 y(k)w(k)1/p

<∞

for p > 1. The norm in d(w, p)∗ is the infimum of the expressions above over
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all possible decreasing y ∈ B`p′ . For p = 1,

d(w, 1)∗ =
{
x : ‖x‖ = sup

N

∑N
k=1 x

?(k)∑N
k=1w(k)

<∞
}
.

If w is regular, an easier description of d(w, p)∗ with p > 1 can be given
(see [2] and [25]):

d(w, p)∗ =
{
x :
(

x?(k)
w(k)1/p

)∞
k=1

∈ `p′
}
.

The `p′ norm of this sequence is a positive homogeneous function of x which,
although not a norm, is equivalent to the norm in d(w, p)∗ (see [25, Theo-
rem 1]).

The Lorentz spaces d(w, p) are reflexive whenever p > 1 [20, Section 4.e].
If p = 1 the predual of d(w, 1) can be described as (see [26, 14])

d∗(w, 1) =
{
x ∈ c0 : lim

N→∞

∑N
k=1 x

?(k)∑N
k=1w(k)

= 0
}

with the norm

‖x‖ = sup
N

∑N
k=1 x

?(k)∑N
k=1w(k)

.

Let us recall that, given a strictly positive, increasing sequence Ψ such
that Ψ(0) = 0, the associated Marcinkiewicz sequence space mΨ (see [17,
Definition 4.1], also [7, 16]) consists of all sequences (x(k))k such that

‖x‖mΨ = sup
N

∑N
k=1 x

?(k)
Ψ(N)

<∞.

In order to prove part (a) of Theorem 1.1 we make use of a general
result. Let us recall first that if E is a symmetric Köthe sequence space,
its n-concavification E(n) (see [21, Section 1.d]) is defined as the set of
those sequences (z(k))k such that (|z(k)|1/n)k ∈ E. On E(n) we can de-
fine a symmetric quasi-norm by ‖z‖E(n)

= ‖(|z(k)|1/n)k‖nE . This quasi-norm
satisfies the “monotonicity condition”: if z ∈ CN and w ∈ E(n) are such that
|z(k)| ≤ |w(k)| for all k ∈ N then z ∈ E(n) and ‖z‖E(n)

≤ ‖w‖E(n)
. If E is

n-convex and M(n)(E) = 1, then ‖ · ‖E(n)
is actually a norm and E(n) turns

out to be a symmetric Köthe sequence space.
We can now give the result we need. This could be deduced from a

result on orthogonally additive polynomials on Banach lattices given in [4,
Theorem 2.3]. However, in our setting (symmetric Köthe sequence spaces) it
is easier to give a direct proof. Note that the Köthe dual is by definition the
set in which we have some Hölder inequality. In (2) we aim at an n-linear
Hölder inequality; it is no surprise then that the Köthe dual of E(n) appears.
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Lemma 3.1. Let α ∈ `∞ and E be a symmetric Köthe sequence space.
Then (2) holds if and only if α ∈ (E(n))× and the best constant in (2) is
‖α‖(E(n))

×.

Proof. Let α satisfy (2); then there exists C > 0 such that for every
x ∈ E, ∣∣∣ ∞∑

k=1

α(k)x(k)n
∣∣∣ ≤ C‖x‖nE .

This implies that
∑

k α(k)z(k) is finite for every z ∈ E(n), hence α ∈ (E(n))×

and ‖α‖(E(n))
× ≤ C.

On the other hand, if α ∈ (E(n))× take x1, . . . , xn ∈ E. Note first that
the inequality

(4) (|x1(k)| · · · |xn(k)|)1/n ≤ |x1(k)|+ · · ·+ |xn(k)|
n

implies that ((x1(k) · · ·xn(k))1/n)k∈E and so z := (x1(k) · · ·xn(k))k∈E(n).
As a consequence of (4) we have ‖z‖E(n)

≤ ‖x1‖E · · · ‖xn‖E . Indeed, by
dividing by ‖x1‖E · · · ‖xn‖E , it is enough to prove the inequality for ‖x1‖E =
· · · = ‖xn‖E = 1. In this case we have

‖z‖E(n)
= ‖((|x1(k) · · ·xn(k)|)1/n)k‖nE ≤

∥∥∥∥( |x1(k)|+ · · ·+ |xn(k)|
n

)
k

∥∥∥∥n
E

≤
(
‖x1‖E + · · ·+ ‖xn‖E

n

)n
= 1.

Therefore∣∣∣ N∑
k=1

α(k)x1(k) · · ·xn(k)
∣∣∣ =

∣∣∣ N∑
k=1

α(k)z(k)
∣∣∣ ≤ ‖α‖(E(n))

×‖z‖E(n)

≤ ‖α‖(E(n))
×‖x1‖E · · · ‖xn‖E

for every N . Thus (2) holds with C = ‖α‖(E(n))
× , and this completes the

proof.

The last inequality in the previous proof can be seen as an estimate of
the norm of a multilinear form. Let us say that a multilinear form T on a
sequence space E is called diagonal if there exists a sequence α such that
for all x1, . . . , xn ∈ E,

T (x1, . . . , xn) =
∞∑
k=1

α(k)x1(k) · · ·xn(k).

In this case we write T = Tα. With this terminology, Lemma 3.1 states that
diagonal n-linear forms on E correspond to sequences α ∈ (E(n))× and

‖Tα‖ = ‖α‖(E(n))
× .
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The n-homogeneous polynomial associated to Tα is also called diagonal
and is denoted Pα.

Remark 3.2. We observe in (3) the general relationship between the
norms of a polynomial and its associated symmetric n-linear form. For diag-
onal forms and polynomials defined on a symmetric Köthe sequence space E
the situation is different. It is proved in the previous lemma that if x1, . . . , xn
are in E then ((x1(k) · · ·xn(k))1/n)k also belongs to E and

‖((x1(k) · · ·xn(k))1/n)k‖n ≤ ‖x1‖ · · · ‖xn‖.

Thus, the norm of any multilinear diagonal form on E coincides with the
norm of its associated diagonal polynomial, that is, ‖Tα‖ = ‖Pα‖.

Lemma 3.1 provides an abstract characterization of the sequences α
such that inequality (2) is satisfied. However, the Köthe dual of the n-
concavification of E is not always the simplest way to obtain an explicit
description of such sequences. Therefore, in some cases we use different ap-
proaches.

Now we prove our first theorem.

Proof of Theorem 1.1. For statement (a), since n ≤ p, the n-concavifi-
cation of d(w, p) is the space d(w, p/n). Then Lemma 3.1 gives the conclu-
sion.

For (b), let α and C > 0 satisfy (2) with E = d(w, p). For any fixed
N ∈ N, let JN ⊆ N be such that |JN | = N . Then for any (λk)k∈JN ⊂ C with
|λk| = 1, ∣∣∣ ∑

k∈JN

α(k)λnk
∣∣∣ ≤ C∥∥∥ ∑

k∈JN

λkek

∥∥∥n
d(w,p)

= C
( N∑
k=1

w(k)
)n/p

.

Choosing λk and JN so that
∑

k∈JN λ
n
kα(k) =

∑N
k=1 α

?(k) we get, for any N ,∑N
k=1 α

?(k)

(
∑N

k=1w(k))n/p
≤ C.

Thus, α ∈ mΨ with Ψ(N) = (
∑N

k=1w(k))n/p.
For the reverse inclusion, let α ∈ mΨ . Without loss of generality we can

assume α = α?. Consider the diagonal n-linear mapping Tα : d(w, p)× · · · ×
d(w, p)→ C. By Remark 3.2, Tα is continuous if and only if the associated
polynomial Pα : d(w, p)→ C is continuous, and their norms are equal. First
of all,

|Pα(x)| =
∣∣∣ ∞∑
k=1

α(k)x(k)n
∣∣∣ ≤ ∞∑

k=1

α(k)x?(k)n.
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If we prove that

(5)
N∑
k=1

α(k)x?(k)n ≤ ‖α‖mΨ
( N∑
k=1

w(k)x?(k)p
)n/p

for every N , then |Pα(x)| ≤ ‖α‖mΨ ‖x‖nd(w,p) and the result will follow.
We can assume that x = x?. By the definition of mΨ we have
N∑
k=1

α(k)x(k)n =
N−1∑
i=1

( i∑
k=1

α(k)
)

(x(i)n − x(i+ 1)n) +
( N∑
k=1

α(k)
)
x(N)n

≤ ‖α‖mΨ
N∑
i=1

Ψ(i)(x(i)n − x(i+ 1)n) + ‖α‖mΨΨ(N)x(N)n

= ‖α‖mΨ
[
Ψ(1)x(1)n +

N∑
i=2

(Ψ(i)− Ψ(i− 1))x(i)n
]
.

To obtain (5), we need to prove that for every N ,

(6) Ψ(1)x(1)n +
N∑
i=2

(Ψ(i)− Ψ(i− 1))x(i)n ≤
( N∑
k=1

w(k)x(k)p
)n/p

.

We proceed by induction. For N = 1, the inequality is obvious. By the
induction hypothesis we have

Ψ(1)x(1)n +
N+1∑
i=2

(Ψ(i)− Ψ(i− 1))x(i)n

≤
( N∑
k=1

w(k)x(k)p
)n/p

+ (Ψ(N + 1)− Ψ(N))x(N + 1)n.

We want to show that the last expression is at most (
∑N+1

k=1 w(k)x(k)p)n/p.
Equivalently, we have to prove

(7) Ψ(N + 1)− Ψ(N)

≤
(N+1∑

k=1

w(k)
(

x(k)
x(N + 1)

)p)n/p
−
( N∑
k=1

w(k)
(

x(k)
x(N + 1)

)p)n/p
.

Consider the increasing function φ(t) = (t+w(N + 1))n/p− tn/p (recall that
n ≥ p). Since x is decreasing,

∑N
k=1w(k) ≤

∑N
k=1w(k)(x(k)/x(N + 1))p.

Hence

φ
( N∑
k=1

w(k)
)
≤ φ

( N∑
k=1

w(k)
(

x(k)
x(N + 1)

)p)
;
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but this is exactly what we want in (7). This gives (6), hence (5) holds and
the result follows.

If in addition w is n/(n − p)-regular, then it is easy to see that mΨ is
isomorphic to `∞. This completes the proof.

Remark 3.3. It is known (and can be deduced, for example, from [16,
Lemma 3.3]) that mΨ is isomorphic to the dual of a Lorentz space d(w, 1)
for some sequence w, understanding d(w, 1) = `1 if w is not a null sequence.

In some cases, the sequence w can be determined. For example, for
w̆(k) = Ψ(k)− Ψ(k − 1), we have∑N

k=1 α
?(k)

Ψ(N)
=
∑N

k=1 α
?(k)∑N

k=1 w̆(k)
.

If w̆ is decreasing, we deduce that (2) holds for E = d(w, p) if and only if
α ∈ d(w̆, 1)∗. Moreover, there are universal constants An, Bn (not depend-
ing on α) such that the best C > 0 in (2) satisfies An‖α‖d(w̆,1)∗ ≤ C ≤
Bn‖α‖d(w̆,1)∗ .

If w is regular (i.e., 1-regular) and the sequence w̃(k) = (kw(k))n/p/k is
decreasing we get another description, namely mΨ = d(w̃, 1)∗. Indeed, by
the mean value theorem

Ψ(k)− Ψ(k − 1) =
n

p
z(k)n/p−1w(k)

for some
∑k−1

j=1 w(j) ≤ z(k) ≤
∑k

j=1w(j). But
∑k

j=1w(j) � kw(k) and∑k−1
j=1 w(j) � (k − 1)w(k − 1) ≥ (k − 1)w(k) � kw(k). So we have z(k) �

kw(k). Consequently, w̆(k) � (kw(k))n/p−1w(k) = w̃(k), and since (w̃(k))k
is decreasing, we have mΨ = d(w̃, 1)∗. Hence, in this case, (2) holds if and
only if α ∈ d(w̃, 1)∗.

Note that w̆(k) � w̃(k) if and only if w is regular. Also, if either w̆ or w̃
is decreasing but does not converge to zero, then the corresponding Lorentz
space d(·, 1) is in fact `1 and then its dual is `∞.

In the following example we apply our results to the Lorentz sequence
spaces `p,q. For the particular case q < n < p, this example shows that the
regularity condition in part (b) of Theorem 1.1 is sharp: for any r < n/(n−p)
there are r-regular sequences w such that (2) does not hold for some α ∈ `∞
and E = d(w, p).

Example 3.4. Special cases of Lorentz sequence spaces are the `p,q
spaces. For p > q ≥ 1 they are defined as

`p,q =
{
x : ‖x‖ =

( ∞∑
k=1

x?(k)q

k1−q/p

)1/q

<∞
}
.

The space `p,q is the Lorentz sequence space d(w, q) with w(k) = kq/p−1.
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We apply the above results to these particular spaces. By Theorem 1.1(a),
for n ≤ q, (2) holds for E = `p,q if and only if α ∈ (`p/n,q/n)∗.

If n ≥ p, then since `p,q ↪→ `n, (2) holds if and only if α ∈ `∞.
Finally, for q < n < p we can apply Theorem 1.1(b). Since w is regular

and w̃(k) = (kw(k))n/q/k = kn/p−1 is a decreasing sequence, Remark 3.3
gives that (2) holds if and only if α ∈ d(w̃, 1)∗ = (`p/n,1)∗.

It is easy to check that the sequence (kq/p−1)k is r-regular if and only if
r < p/(p− q). Therefore, for any r < n/(n− q) we can find p > n such that
r < p/(p − q). In this case, the sequence associated to `p,q is r-regular but
(2) does not hold for some α ∈ `∞.

4. Duals of Lorentz spaces. We now prove Theorem 1.2. We have seen
in Section 3 that using diagonal n-linear forms can sometimes be helpful. In
the same spirit, an operator D ∈ L(E;F ) between Köthe sequence spaces is
called diagonal if there exists a sequence σ such that D(x) = (σ(k)x(k))∞k=1;
in this case we write D = Dσ. Some relationship between diagonal operators
and diagonal n-linear forms is shown in the following lemma, which we will
need later.

Lemma 4.1. Let E be a symmetric Köthe sequence space and Tα : E ×
· · · × E → C a diagonal n-linear form. Let Dσ : E → `n be the diagonal
operator associated to σ = α1/n (coordinatewise). Then Tα is continuous if
and only if Dσ is continuous, and

‖Tα‖ = ‖Dσ‖n.

Proof. If Pα is the n-homogeneous polynomial associated to Tα, then by
Remark 3.2, we have ‖Tα‖ = ‖Pα‖ ≤ ‖Dσ‖n.

On the other hand, if |λ(k)| = 1 for all j, then ‖(λ(k)x(k))k‖E = ‖x‖E
and

‖Tα‖ ≥ sup
‖x‖E≤1

α(k)x(k)n≥0

∣∣∣ ∞∑
k=1

α(k)x(k)n
∣∣∣ = sup

‖x‖E≤1

∞∑
k=1

|α(k)| |x(k)|n = ‖Dσ‖n.

Now we are ready to prove our theorem for duals of Lorentz spaces.

Proof of Theorem 1.2. Part (a) follows from Remark 2.1 and the fact that
d(w, p)∗ is n-concave if and only if d(w, p) is n′-convex, and this happens if
and only if 1 ≤ n′ ≤ p. In this case the n-concavity constant M(n)(d(w, p)∗)
is 1. Since the norm of a diagonal multilinear form coincides with the norm
of its associated polynomial, the best constant is ‖α‖∞.

To get (b), take α ∈ `∞ and σ = α1/n. If Dσ : d(w, p)∗ → `n is the
diagonal operator associated to σ and D′σ : `n′ → d(w, p) is the adjoint
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operator, we want to show that

(8) ‖D′σ‖ = ‖α‖1/n
d(w

n′
n′−p , p′

p′−n )

.

If this is the case, then by Lemma 4.1,

‖α‖
d(w

n′
n′−p , p′

p′−n )
= ‖D′σ‖n = ‖Dσ‖n = ‖Tα‖

and for all x1, . . . , xn ∈ d(w, p)∗,∣∣∣∑
k

α(k)x1(k) · · ·xn(k)
∣∣∣ ≤ ‖α‖

d(w
n′
n′−p , p′

p′−n )
‖x1‖ · · · ‖xn‖.

Hence, (2) holds if and only if α ∈ d(w
n′
n′−p , p′

p′−n), and the best constant is
the norm of α in this space.

Let us now show that (8) holds. First,

‖D′σ(x)‖ = ‖(σ(k)x(k))k‖d(w,p) = sup
π∈ΣN

(∑
k

∣∣α(π(k))1/nx(π(k))
∣∣pw(k)

)1/p
.

Using Hölder’s inequality with exponents n′/p and n′/(n′ − p) we obtain,
for each π ∈ ΣN,(∑

k

|α(π(k))1/nx(π(k))|pw(k)
)1/p

≤
(∑

k

|x(π(k))|n′
)1/n′(∑

k

|α(π(k))|
p′

p′−nw(k)
n′
n′−p

)n′−p
n′p

≤ ‖x‖`n′
(∑

k

α?(k)
p′

p′−nw(k)
n′
n′−p

) p′−n
p′n

.

Hence

‖D′σ‖ ≤ ‖α‖
1/n

d(w
n′
n′−p , p′

p′−n )

.

Let us see now that this value is attained. Since all the spaces involved are
symmetric we can assume that α = α?. Let

xN (k) =
α(k)

p
(n′−p)nw(k)

1
n′−p

(
∑N

i=1 α(i)
p′

p′−nw(i)
n′
n′−p )1/n′

for k = 1, . . . , N . It is easily seen that ‖(xN (k))Nk=1‖`n′ = 1 and
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‖D′σ(xN )‖d(w,p) =
( N∑
k=1

α(k)
p′

p′−nw(k)
n′
n′−p

)1/p−1/n′

=
∥∥∥ N∑
k=1

α(k)ej
∥∥∥1/n

d(w
n′
n′−p , p′

p′−n )
.

Therefore ∥∥∥ N∑
k=1

α(k)ej
∥∥∥1/n

d(w
n′
n′−p , p′

p′−n )
≤ ‖D′σ‖

for all N and the result follows.
Statement (c) follows similarly.

5. A general approach. We have seen in Sections 3 and 4 that consid-
ering diagonal n-linear forms helps in proving Hölder-type inequalities. In
fact, if in (2) we take the supremum over ‖xi‖E ≤ 1, i = 1, . . . , n, then we
find that the best constant in (2) is precisely ‖Tα‖. We see that our problem
is closely related to determining the norm of diagonal n-linear forms. This
sits very much in the philosophy of considering norms of diagonal multilin-
ear forms in different ideals presented in [5, 6] and motivates us to broaden
our framework.

Following [18] for the linear case and [6] for the multilinear case, if A is a
Banach ideal of multilinear mappings we consider, for each n ∈ N, the space

`n(A, E) := {α ∈ `∞ : Tα ∈ A(nE)}.
With the norm ‖α‖`n(A,E) = ‖Tα‖A(nE), it is a symmetric Köthe sequence
space whenever E is.

If L denotes the ideal of all multilinear forms, then (1) can be rewritten
as

`n(L, `p)
1=
{
`∞ if 1 ≤ p ≤ n,
`p/(p−n) if n < p <∞,

and Theorems 1.1 and 1.2 can be summarized as

`n(L, d(w, p)) 1=
{
d(w, p/n)∗ if n ≤ p,
mΨ if n > p,

`n(L, d(w, p)∗) 1=


`∞ if n′ ≤ p,
d
(
w

n′
n′−p , p′

p′−n
)

if n′ > p > 1,
d(wn, 1) if p = 1,

where Ψ(N) = (
∑N

j=1w(j))n/p. If n > p and w is n/(n − p)-regular, then
`n(L, d(w, p)) = `∞.

Our aim in this section is to obtain descriptions of `n(A, d(w, p)) and
`n(A, d(w, p)∗) for ideals A other than L. We will make use of some general
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facts. If E is a Köthe sequence space, we consider the mapping ΦN : EN ×
· · · × EN → C given by

ΦN (x1, . . . , xn) =
N∑
k=1

x1(k) · · ·xn(k).

Clearly ‖ΦN‖A(nE) = λ`n(A,E)(N).
If F and G are symmetric Köthe sequence spaces so that F ↪→ G then,

by the closed graph theorem,

λG(N) ≺ λF (N).

A weak converse of this fact can be obtained under certain assumptions. We
first need a lemma.

Lemma 5.1. Let F and G symmetric Köthe sequence spaces and suppose
there exists α > 0 such that λG(N) ≺ λF (N)α. Then(

1
kελF (k)α

)
k∈N
∈ G for all ε > 0.

Proof. For each m ∈ N ∪ {0}, we define

Nm = {k ∈ N : 2m ≤ k < 2m+1} and xm =
∑
k∈Nm

e(k).

Since G is symmetric, ‖xm‖G = λG(2m) ≺ λF (2m)α. Hence,∑
m

1
2mελF (2m)α

xm ∈ G.

Now, for k ∈ Nm, we have 1/k ≤ 1/2m and 1/λF (k) ≤ 1/λF (2m), and the
result follows.

Proposition 5.2. Let F and G be symmetric Köthe sequence spaces for
which there exists 0 < ε < 1 such that λG(N) ≺ λF (N)1−ε. If N δ ≺ λF (N)
for some δ > 0, then F ↪→ G.

Proof. Let x ∈ F . We can assume that x(k) = x?(k) is decreasing. Then

x(k)λF (k) ≤
∥∥∥ k∑
j=1

x(j)ej
∥∥∥
F
≤ ‖x‖F .

Now, λF (k) = λF (k)ελF (k)1−ε � kεδλF (k)1−ε. Hence

x(k) ≺ ‖x‖F
kεδλF (k)1−ε .

By Lemma 5.1, x ∈ G.

Note that the additional condition on the sequence space F is automat-
ically satisfied whenever F or G have non-trivial concavity. The previous
results can be reformulated to obtain information on the space `n(A, E).
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Corollary 5.3. Let E, F and G be symmetric Köthe sequence spaces
and A be a Banach ideal of multilinear forms.

(a) If F ↪→ `n(A, E) ↪→ G, then λG(N) ≺ ‖ΦN‖A(nE) ≺ λF (N).
(b) If there exists ε > 0 such that ‖ΦN‖A(nEN ) ≺ λF (N)1−ε and F has

non-trivial concavity , then F ↪→ `n(A, E).
(c) If there exists ε > 0 such that λG(N)1+ε ≺ ‖ΦN‖A(nEN ) and G has

non-trivial concavity , then `n(A, E) ↪→ G.

If A is a normed ideal of n-linear forms, the maximal hull Amax of A is
defined as the class of all n-linear forms T such that

‖T‖Amax(E1,...,En) := sup{‖T |M1×···×Mn‖A(M1,...,Mn) :

Mi ⊂ Ei, dimMi <∞}
is finite. Amax is always complete and it is the largest ideal whose norm
coincides with ‖ · ‖A in finite-dimensional spaces. A normed ideal A is called
maximal if (A, ‖ · ‖A) = (Amax, ‖ · ‖Amax). Maximal ideals are those whose
norms are uniquely determined by finite-dimensional subspaces.

It is a well known fact that the space of n-linear forms on a finite-
dimensional spaceM can be identified with the n-fold tensor product

⊗nM∗

by identifying each tensor γ1 ⊗ · · · ⊗ γn with the mapping (x1, . . . , xn)  
γ1(x1) · · · γn(xn). Then the ideal norm induces a tensor norm η on

⊗nM∗

(the tensor product with this norm is denoted by
⊗n

η M
∗). By a standard

procedure the norm η can be extended from tensor norms in the class of
finite-dimensional normed spaces to the class of all normed spaces. In this
case, the tensor norm η and the ideal A are said to be associated. A detailed
study of the subject and presentation of the procedure can be found in [8,
10–13].

Given a normed ideal A associated to the finitely generated tensor norm
α, its adjoint ideal A∗ is defined by

A∗(nE) := (
⊗n

ηE)∗.

The adjoint ideal is called the dual ideal in [10]. The tensor norm associated
to A∗ is denoted by η∗. We also have the representation theorem [13, Section
3.2] (see also [10, Section 4])

Amax(nE) = (
⊗n

η∗E)∗.

In particular, this shows that the adjoint ideal A∗ is maximal.
For a maximal ideal A, the space `n(A, E) coincides isometrically with

`n(A, E××). This is a consequence of the following lemma.

Lemma 5.4. Let E be a symmetric Köthe sequence space and A a maxi-
mal Banach ideal of multilinear forms. Let T : E×· · ·×E → C be a diagonal
n-linear form and suppose there exists C > 0 such that , for every N ∈ N, the
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restriction TN to EN×· · ·×EN satisfies ‖TN‖A(nEN ) ≤ C. Then T ∈ A(nE)
and ‖T‖A(nE) ≤ C.

Proof. Since A is maximal, there exists a finitely generated tensor norm
ν such that (

⊗n
νE)∗ = A(nE). Also, E being a symmetric space, both the

inclusion iN : EN ↪→ E and the projection πN : E → EN have norm 1.
Now, the hypotheses mean that the sequence (TN )N is contained in the ball
CBA(nE), which is a weak-star compact set (by the weak-star topology we
mean the topology on A(nE) considered as the dual of

⊗n
νE). Therefore, it

has a weak-star accumulation point S in CBA(nE). But, since T is diagonal,
the truncations TN converge pointwise to T , so S must coincide with T and
consequently T belongs to CBA(nE), which ends the proof.

The previous lemma also holds if E is a Banach space with a 1-uncondi-
tional basis and T is an arbitrary (not necessarily diagonal) multilinear
form. In this case, we can apply the n-linear version of the Density Lemma
[8, 13.4], considering E0 (the subspace of E spanned by the canonical basis)
as the dense subspace of E. Also, if E has an unconditional basis with
unconditional constant K, we obtain the conclusion with ‖T‖A(nE) ≤ KC.

Proposition 5.5. Let E be a symmetric Köthe sequence space and A a
maximal Banach ideal of multilinear forms. Then

`n(A, E) 1= `n(A, E××).

Proof. Since E is contained in E×× with a norm one inclusion, it is
immediate that `n(A, E××) ⊂ `n(A, E) (with norm one inclusion).

Conversely, let α ∈ `n(A, E). For each N , ‖TNα ‖A(nEN ) ≤ ‖Tα‖A(nE).

Since EN
1= (EN )×× 1= (E××)N , we have ‖TNα ‖A(n(E××)N ) ≤ ‖Tα‖A(nE). By

Lemma 5.4, Tα belongs to A(nE××) and ‖Tα‖A(nE××) ≤ ‖Tα‖A(nE).

The ideal L of all multilinear forms is obviously maximal; then by The-
orem 1.2(c) we have the following reformulation of [22, Theorem 2.5]:

`n(L, d∗(w, 1)) 1= d(wn, 1).

Let us recall the trace duality between A∗(nE×N ) and A(nEN ). Suppose
T ∈ A∗(nE×N ) can be written as a finite sum of the form

T (γ1, . . . , γn) =
∑
j

γ1(xj1) · · · γn(xjn)

and S ∈ A(nEN ) is of the form

S(x1, . . . , xn) =
∑
i

γi1(x1) · · · γin(xn).
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Then the duality is given by

〈T, S〉 =
∑
i,j

γi1(xj1) · · · γin(xjn)(9)

=
∑
i

T (γi1, . . . , γ
i
n) =

∑
j

S(xj1, . . . , x
j
n).

The following finite-dimensional identifications are easy to check. These
will enable us to prove a duality result in the proposition below.

`n(A, EN ) 1= [`n(A, E)]N ,(10)

A(nEN )∗ 1= A∗(nE×N ) 1= A∗(nE∗N ),(11)

`n(A, E)×N
1= `n(A, EN )× 1= `n(A∗, E×N ) 1= `n(A∗, E×)N .(12)

Proposition 5.6. Let E be a symmetric Köthe sequence space and A a
Banach ideal of multilinear forms. Then

`n(A, E)× 1= `n(A∗, E×).

Proof. Take first α ∈ `n(A, E)×; then the associated n-linear form Tα
is defined on the space of finite sequences in E×. Moreover, using (12), we
have

‖Tα|E×N×···×E×N ‖A∗(nE×N ) = ‖πN (α)‖`n(A∗,E×N )

= ‖πN (α)‖`n(A,E)×N
≤ ‖α‖`n(A,E)× .

By Lemma 5.4, α belongs to `n(A∗, E×) and ‖α‖`n(A∗,E×) = ‖Tα‖A∗(nE×) ≤
‖α‖`n(A,E)× .

Take now α ∈ `n(A∗, E×) and a norm one β ∈ `n(A, E). For each j, let
β̃(j) be such that α(j)β̃(j) = |α(j)β(j)|. Then, by symmetry and (9),

N∑
j=1

|α(j)β(j)| =
N∑
j=1

α(j)β̃(j) = 〈TπN (α), TπN (β̃)〉A∗(nE×N ),A(nEN )

≤ ‖Tα‖A∗(nE×)‖Tβ̃‖A(nE) = ‖Tα‖A∗(nE×)‖Tβ‖A(nE) = ‖α‖`n(A∗,E×).

This completes the proof.

By applying Proposition 5.6 to the adjoint ideal and to the Köthe dual
of E, and Proposition 5.5, we get

`n(A∗, E×)× = `n(A∗∗, E××) = `n(Amax, E××) = `n(Amax, E)

isometrically. Therefore, if A is maximal we immediately have

`n(A, E) 1= `n(A∗, E×)×.

In view of Proposition 5.6 we can use Theorems 1.1 and 1.2 to get results
on ideals other than L. Let us recall that T ∈ L(nE) is called nuclear if
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there are sequences (γ1,k)k, . . . , (γn,k)k in E∗ with ‖γi,k‖ ≤ 1 for all k and
i = 1, . . . , n and there is (λ(k))k ∈ `1 so that for every x1, . . . , xn ∈ E,

T (x1, . . . , xn) =
∑
k

λ(k) · γ1,k(x1) · · · γn,k(xn).

We denote by N the ideal of nuclear forms. The nuclear norm is defined
as the infimum of

∑
k |λ(k)| ‖γ1,k‖ · · · ‖γn,k‖ over all possible representations.

A mapping T ∈ L(nE) is called integral if there exists a positive Borel-
Radon measure µ on BE∗ × · · · × BE∗ (with the weak∗ topologies) such
that

T (x1, . . . , xn) =
�

BE∗×···×BE∗
γ1(x1) · · · γn(xn) dµ(γ1, . . . , γn)

for all x1, . . . , xn ∈ X (see [8, 4.5] and [1]). The ideal of integral multilinear
forms is denoted by I. It is well known that L∗ = I. We then have

`n(I, d(w, p)) 1=


d(wn, 1)∗ if p = 1,

d
(
w

n′
n′−p , p′

p′−n
)∗ if 1 < p < n′,

`1 if n′ ≤ p,

`n(I, d(w, p)∗) 1=
{
m×Ψ = (m0

Ψ )∗ if 1 ≤ p < n,
d(w, p/n) if n ≤ p.

Here m0
Ψ denotes the subspace of order continuous elements of mΨ , and

satisfies (m0
Ψ )∗∗ = mΨ (see [16]). The equality m×Ψ = (m0

Ψ )∗ follows from the
proof of [16, Theorem 3.4].

Whenever a space E is reflexive or has a separable dual, the nuclear and
integral mappings on E coincide. Therefore, for 1 < p <∞, `n(I, d(w, p)) =
`n(N , d(w, p)) and `n(I, d(w, p)∗) = `n(N , d(w, p)∗). Also, `n(N , d∗(w, 1)) =
`n(I, d∗(w, 1)) = `n(I, d∗(w, 1)) (the last equality follows from Proposi-
tion 5.5).

By Remark 3.3, for p < n, `n(I, d(w, p)∗) can be identified isomorphically
with d(w, 1)∗∗ for some w. Moreover, if p < n and w is n/(n − p)-regular,
then `n(I, d(w, p)∗) = `1 by Theorem 1.1.

Remark 5.7. We have already mentioned that ‖ΦN‖A(nE) =λ`n(A,E)(N)
always holds. Therefore, all the previous results immediately give estimates
for the usual and the nuclear norms of ΦN (the nuclear and integral norms
of ΦN always coincide).

Moreover, these estimates have an immediate tensor counterpart, since
‖ΦN‖L(nE) = ‖

∑N
j=1 e

′
j ⊗ · · · ⊗ e′j‖Nn

εE
′ and ‖ΦN‖N (nE) = ‖

∑N
j=1 e

′
j ⊗ · · · ⊗

e′j‖Nn
πE
′ (ε and π denote respectively the injective and projective tensor

norms).
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