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Ergodic theorems and perturbations of
contraction semigroups

by

Marta Tyran-Kamińska (Katowice)

Abstract. We provide sufficient conditions for sums of two unbounded operators on
a Banach space to be (pre-)generators of contraction semigroups. Necessary conditions
and applications to positive emigroups on Banach lattices are also presented.

1. Introduction. Let X be a Banach space, A : D(A) ⊆ X → X be a
densely defined linear operator with a nonempty resolvent set ρ(A), and let
B : D(B) ⊆ X → X be a linear operator such that D(B) ⊇ D(A). If the
operator (A + B,D(A)) is dissipative then by the Lumer–Phillips theorem
[10] the closure of the operator A + B is the (infinitesimal) generator of a
C0-semigroup of contractions if and only if the range of the operator λ−A−B
is dense in X for some λ > 0. The verification of the range condition is not
an easy task and makes the theorem hard to apply.

In this paper we provide generation results in terms of ergodic properties
of the operator BR(λ,A), where we let R(λ,A) := (λ−A)−1 be the resolvent
of A. A linear bounded operator T on X is called mean ergodic if the Cesàro
means

1
n

n−1∑
k=0

T k converge strongly in X,

and uniformly ergodic if the means converge in the uniform operator topol-
ogy. Our main result is the following

Theorem 1.1. Let (A,D(A)) be a densely defined linear operator in
a Banach space X such that ρ(A)+ := ρ(A) ∩ (0,∞) 6= ∅. Suppose that
(A + B,D(A)) is dissipative and BR(λ,A) is mean ergodic for some λ ∈
ρ(A)+. Then the closure of (A+B,D(A)) generates a C0-semigroup of con-

2010 Mathematics Subject Classification: 47A35, 47B44, 47B60, 47D06.
Key words and phrases: C0-semigroup of contractions, perturbation of semigroups, posi-
tive semigroups, generators, dissipative operators, mean ergodic, power bounded, quasi-
compact.

DOI: 10.4064/sm195-2-4 [147] c© Instytut Matematyczny PAN, 2009



148 M. Tyran-Kamińska

tractions on X. Moreover , if BR(λ,A) is uniformly ergodic then
(A+B,D(A)) is closed.

Recall that a linear operator T is called power bounded if supn ‖Tn‖ <∞,
and quasi-compact if there exists a compact operator K and m ∈ N such
that ‖Tm−K‖ < 1. By the Yosida–Kakutani uniform ergodic theorem [14],
every power bounded and quasi-compact operator is uniformly ergodic. Since
power bounded operators on reflexive Banach spaces are mean ergodic, we
obtain the following perturbation result from Theorem 1.1.

Corollary 1.2. Let (A+ B,D(A)) be densely defined and dissipative.
Assume that for some λ ∈ ρ(A)+ the operator BR(λ,A) is power bounded.

(i) If BR(λ,A) is quasi-compact , then (A + B,D(A)) generates a C0-
semigroup of contractions.

(ii) If X is reflexive then the closure of (A+ B,D(A)) generates a C0-
semigroup of contractions.

Theorem 1.1 and its partial converse (Theorem 3.3) are proved in Sec-
tion 3. Let us now indicate how some perturbation results are related to our
result. The operator B is (relatively) A-bounded if there exist nonnegative
constants a, b such that

(1) ‖Bx‖ ≤ a‖Ax‖+ b‖x‖
for all x ∈ D(A); the infimum of all possible a is called the relative A-bound
of B. If the A-bound is sufficiently small so that ‖BR(λ,A)‖ < 1 for some λ
then BR(λ,A) is power bounded and quasi-compact. This is the case for
example when A is a generator and B is a bounded operator, or when A
is the generator of a semigroup of contractions and B is A-bounded with
A-bound less than 1/2 (note that we do not require that B is dissipative).
For examples of operators with a small A-bound see Chapter III of [5].

Now we let X be an ordered Banach space with a normal and generating
cone X+, i.e., X = X+ − X+, X∗ = X∗+ − X∗+, where X∗ denotes the
topological dual with the duality pairing 〈·, ·〉. The order in X and X∗ will
be denoted by ≥. A linear operator A is said to be positive if Ax ≥ 0
for x ∈ D(A)+ := D(A) ∩ X+. A semigroup {S(t)}t≥0 is called positive if
every operator S(t) is positive. In Section 4 we show that if A and A + B
generate positive C0-semigroups and the operator (B,D(A)) is positive then
BR(λ,A) is power bounded and quasi-compact for all sufficiently large λ,
which provides a converse to Corollary 1.2(ii).

Yet another consequence of our Theorem 1.1 is a generalization of [4,
Theorem 3.2], proved in Section 4.

Theorem 1.3. Let X be a real Banach lattice. Assume that the operators
(A,D(A)) and (B,D(B)) in X satisfy :
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(G1) (A,D(A)) generates a C0-semigroup of positive contractions on X;
(G2) D(B) ⊇ D(A) and Bx ≥ 0 for x ∈ D(A)+;
(G3) for every x ∈ D(A)+ there is x∗ ∈ X∗+ with ‖x∗‖ ≤ 1 such that

〈x∗, x〉 = ‖x‖ and
〈x∗, Ax+Bx〉 ≤ 0.

If for some λ > 0 the operator BR(λ,A) is mean ergodic then the closure of
(A+B,D(A)) generates a C0-semigroup of positive contractions.

In [4] it is assumed that the Banach lattice is a KB-space (Kantorovich–
Banach space), i.e., every increasing norm bounded sequence of elements of
the positive cone X+ is norm convergent, and that (G1)–(G3) hold together
with r(BR(λ,A)) ≤ 1 for some λ > 0, where r denotes the spectral radius.
The conclusion of [4, Theorem 3.2] is that there is a generator C of a C0-
semigroup of positive contractions which is an extension of the operator
(A + B,D(A)). Our theorem removes the restriction on the lattice being
a KB-space, but the assumption onBR(λ,A) is stronger. In the case of a KB-
space, we obtain not merely the existence of a generator extending A + B,
but identify it (under our stronger condition) as the closure of (A+B,D(A)).

Finally, let us suppose that the operator BR(λ,A) is a contraction for
some λ > 0. This can be achieved for example if X = L1(E, E ,m) (see
e.g. [4, Corollary 3.13]), where (E, E ,m) is a σ-finite measure space, or [4,
Remark 3.3] if −A is a positive operator and

‖Bx‖ ≤ ‖Ax‖, x ∈ D(A)+.

Then from Theorems 1.3 and 3.3 it follows that when (G1)–(G3) hold, then
the closure of (A+B,D(A)) is a generator if and only if BR(λ,A) is mean
ergodic. As a corollary we obtain the following characterization.

Corollary 1.4. Let X = L1(E, E ,m) and the operators (A,D(A)) and
(B,D(B)) satisfy (G1)–(G2). Suppose that for all x ∈ D(A)+,�

E

(Ax+Bx) dm ≤ 0.

(i) The operator (A + B,D(A)) generates a C0-semigroup of positive
contractions if and only if BR(λ,A) is quasi-compact for some
λ > 0.

(ii) The closure of (A + B,D(A)) generates a C0-semigroup of posi-
tive contractions if and only if BR(λ,A) is strongly stable for some
λ > 0, i.e.,

lim
n→∞

‖(BR(λ,A))nx‖ = 0 for all x ∈ L1(E, E ,m).

Part (i) seems to be new and contains the particular cases from [6].
The equivalence in (ii) first appeared in [7] in the case of an l1 space and
was generalized by numerous authors (see [3] for a detailed exposition).
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By (G1), R(λ,A) is positive for λ > 0, so (G2) implies that BR(λ,A) is
a positive operator. Since the positive operator BR(λ,A) has no nonzero
fixed points, strong stability is equivalent to mean ergodicity by additivity
of the L1 norm. Other conditions equivalent to strong stability can be found
in [12, Proposition 2.1].

2. Preliminaries. Let X be a Banach space. We will denote by D(A)
the domain of the operator A, by Im(A) its image, by Ker(A) its kernel
(null space), and by σ(A) its spectrum. The spectral bound of A is defined
as s(A) = sup{Reλ : λ ∈ σ(A)} if the supremum exists (s(A) = −∞ if σ(A)
is empty). If A is a bounded operator then r(A) denotes the spectral radius
of A and we have r(A) = limn→∞

n
√
‖An‖.

We say that A ⊆ C, or that C is an extension of A, if D(A) ⊆ D(C)
and Cx = Ax for x ∈ D(A). The operator A is said to be closable if it has
a closed extension. If A is closable, then the closure A of A is the minimal
closed extension of A; more specifically, it is the closed operator whose graph
is the closure in X ×X of the graph of A. The operator A is dissipative if
‖λx − Ax‖ ≥ λ‖x‖ for all x ∈ D(A) and λ > 0. If A is a densely defined
dissipative operator, then A is closable and Im(λI −A) = Im(λI − A) for
every λ > 0. For the semigroup theory we refer to [5].

A bounded linear operator T on X is called Cesàro bounded if

sup
N≥1

1
N

∥∥∥N−1∑
n=0

Tn
∥∥∥ <∞.

The following result is well known as the mean ergodic theorem [8, Theorem
2.1.3].

Theorem 2.1. Let T be a Cesàro bounded operator on X satisfying

(2) lim
n→∞

1
n
‖Tnx‖ = 0 for every x ∈ X.

Then {
x ∈ X : lim

n→∞

1
n

n−1∑
k=0

T kx exists
}

= Ker(I − T )⊕ Im(I − T )

and for any x ∈ X we have x ∈ Im(I − T ) if and only if

lim
n→∞

1
n

n−1∑
k=0

T kx = 0.

If T is mean ergodic, then it is Cesàro bounded by the Banach–Steinhaus
theorem; it also satisfies (2) since
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Tnx

n
=
n+ 1
n

1
n+ 1

n∑
k=0

T kx− 1
n

n−1∑
k=0

T kx→ 0.

Hence we obtain the following

Corollary 2.2. Let T be a bounded linear operator on X. Then T is
mean ergodic and Ker(I − T ) = {0} if and only if T is Cesàro bounded ,
condition (2) holds, and X = Im(I − T ).

Remark 2.3. If the operator T is Cesàro bounded, then r(T ) ≤ 1, since

‖Tn‖ ≤ (2n+ 1) sup
N≥1

1
N

∥∥∥N−1∑
k=0

T k
∥∥∥, n ≥ 1.

From the uniform ergodic theorem [9, Theorem 1] and its proof we obtain
the following result.

Theorem 2.4. Let T be a bounded linear operator on X. Then T is
uniformly ergodic if and only if ‖Tn‖/n → 0 as n → ∞ and Im(I − T )
is closed. Moreover , if T is uniformly ergodic and Ker(I − T ) = {0}, then
1 ∈ ρ(T ).

3. Perturbations in Banach spaces. In this section we assume that
(A,D(A)) and (B,D(B)) are linear operators in a Banach space X such
that D(A) ⊆ D(B) and

ρ(A)+ := ρ(A) ∩ (0,∞) 6= ∅.
Lemma 3.1. Let λ ∈ ρ(A) and let BR(λ,A) be a bounded operator on X.

Then the operator (A+B,D(A)) satisfies

Im(λI −A−B) = Im(I −BR(λ,A)).

Moreover , λ ∈ ρ(A+B) if and only if 1 ∈ ρ(BR(λ,A)). In that case,

R(λ,A+B) = R(λ,A)(I −BR(λ,A))−1.

Proof. Since λ∈ρ(A), we have Im(R(λ,A))=D(A) and (λ−A)R(λ,A)x
= x for x ∈ X, which gives

(3) (λI −A−B)R(λ,A)x = (I −BR(λ,A))x for all x ∈ X.
Thus, the first assertion follows. We also have

(λI −A−B) = (I −BR(λ,A))(λI −A),

which together with (3) proves the claim.

Lemma 3.2. If (A + B,D(A)) is closable, then BR(λ,A) is a bounded
operator on X for all λ ∈ ρ(A).

Proof. Let λ ∈ ρ(A). We have A+B ⊆ A+B, thus, for all x ∈ X,

(A+B)R(λ,A)x = A+BR(λ,A)x,



152 M. Tyran-Kamińska

which implies that

BR(λ,A)x = A+BR(λ,A)x+ x− λR(λ,A)x.

Since R(λ,A) is continuous and A+B is closed, it follows that the operator
BR(λ,A) has a closed graph, so it is bounded.

Proof of Theorem 1.1. Since the operator (A + B,D(A)) is dissipative,
it is closable, so BR(λ,A) is a bounded operator for all λ ∈ ρ(A). Moreover,
(since A+B is dissipative) for λ ∈ ρ(A)+ we have, by (3),

‖x−BR(λ,A)x‖ = ‖(λI −A−B)R(λ,A)x‖ ≥ λ‖R(λ,A)x‖
for all x ∈ X. Hence, if x ∈ Ker(I −BR(λ,A)), then ‖R(λ,A)x‖ = 0, which
shows that x = 0 and Ker(I −BR(λ,A)) = {0} for every λ ∈ ρ(A)+. From
Corollary 2.2 and Lemma 3.1 it follows that Im(λI −A−B) is dense in X
for some λ > 0. Thus, the claim follows from the Lumer–Phillips theorem.

If BR(λ,A) is uniformly ergodic, then Im(λI − A − B) is closed in X,
by Theorem 2.4. Hence the operator (A + B,D(A)), being dissipative, is
closed.

We conclude this section with a partial converse of Theorem 1.1.

Theorem 3.3. If the closure of (A+B,D(A)) generates a C0-semigroup
of contractions and BR(λ,A) is power bounded for some λ ∈ ρ(A)+,
then BR(λ,A) is mean ergodic. Moreover , if (A + B,D(A)) is closed then
BR(λ,A) is uniformly ergodic.

Proof. Since the generator of a contraction semigroup is dissipative and
densely defined, so is (A+B,D(A)). Thus we have

Im(λI −A+B) = Im(λI − (A+B)) for all λ > 0.

Hence, X = Im(I −BR(λ,A)) and the claim follows from Corollary 2.2 and
Theorem 2.4, respectively.

Remark 3.4. The assumption in Theorem 3.3 that BR(λ,A) is power
bounded can be weakened in accordance with Corollary 2.2 and Theo-
rem 2.4.

4. Aspects of positivity. In this section we assume that X is an or-
dered Banach space with normal and generating cone X+. A linear operator
A is called resolvent positive if there exists ω ∈ R such that (ω,∞) ⊆ ρ(A)
and R(λ,A) ≥ 0 for all λ > ω. In that case, if (B,D(A)) is a positive opera-
tor, then BR(λ,A) is an everywhere defined positive linear operator for all
λ > ω, thus it is bounded. By combining [2, Proposition 3.11.2], [1, Theo-
rem 3.1], [13, Theorem 1.1], and [11, Theorem 4.2] we obtain the following
characterization.
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Proposition 4.1. Let A be a resolvent positive operator. Then s(A)
<∞, s(A) ∈ σ(A) when s(A) > −∞, and

R(λ,A) ≥ R(µ,A) ≥ 0 whenever µ > λ > s(A).

Moreover , if (B,D(A)) is a positive operator , then A+B is resolvent positive
if and only if r(BR(λ,A)) < 1 for some λ > s(A), in which case

s(A+B) = inf{λ > s(A) : r(BR(λ,A)) < 1}.

Corollary 4.2. Let (A,D(A)) be resolvent positive and (B,D(A)) be
positive. If (A+B,D(A)) is the generator of a positive C0-semigroup, then
BR(λ,A) is power bounded and quasi-compact for all λ > s(A+B).

If A is a generator of a C0-semigroup {S(t)}t≥0 then A is resolvent pos-
itive if and only if the semigroup {S(t)}t≥0 is positive. However, there are
resolvent positive operators which are not generators of C0-semigroups [1,
Section 3]. We have the following generation result in real Banach lattices.

Lemma 4.3. Let (A,D(A)) be a densely defined resolvent positive opera-
tor in a real Banach lattice X and let ω ∈ R. Then (A−ωI,D(A)) generates
a C0-semigroup of positive contractions if and only if for every x ∈ D(A)+
there is x∗ ∈ X∗+ with ‖x∗‖ ≤ 1 such that 〈x∗, x〉 = ‖x‖ and

〈x∗, Ax〉 ≤ ω‖x‖.

Proof. Suppose first that (A− ωI,D(A)) is the generator of a C0-semi-
group {S(t)}t≥0 of positive contractions. Let x ∈ D(A)+ and x 6= 0. By the
Hahn–Banach theorem, there is x∗ ∈ X∗+ such that ‖x∗‖ = 1 and 〈x∗, x〉 =
‖x‖ (see e.g. [4, Lemma 3.1]). Since 〈x∗, v〉 ≤ ‖v‖ for all v ∈ X, we obtain

〈x∗, Ax〉 − ω‖x‖ = 〈x∗, (A− ωI)x〉 = lim
t→0

〈x∗, S(t)x〉 − 〈x∗, x〉
t

≤ lim sup
t→0

‖S(t)x‖ − ‖x‖
t

≤ 0.

To prove the converse, we make use of the Hille–Yosida theorem. Since
A − ωI is also resolvent positive by the definition, we may assume that
ω = 0. Since A is resolvent positive, A is closed and the resolvent R(λ,A)
is a positive operator for all λ > s(A), by Proposition 4.1. Thus, it remains
to check that s(A) ≤ 0 and that λR(λ,A) is a contraction for all λ > 0.
For x ∈ D(A)+ take x∗ ∈ X∗+ with ‖x∗‖ ≤ 1 such that 〈x∗, x〉 = ‖x‖ and
〈x∗, Ax〉 ≤ 0. Then, for any λ > 0, we have

‖(λ−A)x‖ ≥ 〈x∗, (λ−A)x〉 = λ〈x∗, x〉 − 〈x∗, Ax〉 ≥ λ‖x‖.

Consequently, if λ > max{0, s(A)} then

‖v‖ ≥ λ‖R(λ,A)v‖ for all v ∈ X+,
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and λ‖R(λ,A)‖ ≤ 1, since R(λ,A) is positive. Suppose now that s(A) > 0.
Let λn > s(A) and λn ↓ s(A). We have

‖R(λn, A)‖ ≤ 1
λn
≤ 1
s(A)

, n ≥ 0.

Since s(A) > −∞, we obtain s(A) ∈ σ(A), thus ‖R(λn, A)‖ → ∞, which
completes the proof.

Proof of Theorem 1.3. By (G1), A is resolvent positive. Let α ∈ (0, 1)
and Cα = A+αB. Since BR(λ,A) is Cesàro bounded, we have r(BR(λ,A))
≤ 1, by Remark 2.3. Thus, r(αBR(λ,A)) ≤ α < 1 and the operator
(Cα,D(A)) is resolvent positive, by Proposition 4.1. If x ∈ D(A)+ and
x∗ ∈ X∗+, then 〈x∗, Bx〉 ≥ 0 and we have

〈x∗, Cαx〉 = 〈x∗, (A+B)x〉+ (α− 1)〈x∗, Bx〉 ≤ 〈x∗, (A+B)x〉.
From (G3) and Lemma 4.3 (applied to Cα with ω = 0) it follows that
(Cα,D(A)) is the generator of a C0-semigroup of positive contractions on X.
Hence ‖R(λ,Cα)‖ ≤ 1/λ for λ > 0, so (Cα,D(A)) is dissipative and we
obtain

λ‖x‖ ≤ ‖(λI − Cα)x‖ ≤ ‖(λI −A−B)x‖+ (1− α)‖Bx‖
for all λ > 0, x ∈ D(Cα) = D(A), and α ∈ (0, 1), which shows that the
operator (A + B,D(A)) is dissipative. By Theorem 1.1, the closure of this
operator generates a C0-semigroup of contractions. Similar arguments to
those in [4] show, by the Trotter–Kato approximation theorem (see e.g. [5,
Theorem 4.8]), that the semigroup is positive.

We conclude this section with the following result which is a consequence
of Theorems 1.3, 1.1, Corollary 4.2 and Proposition 4.1.

Corollary 4.4. Let X be a real Banach lattice and let the operators
(A,D(A)) and (B,D(B)) satisfy (G1)–(G3). Then the following are equiva-
lent :

(i) (A+B,D(A)) generates a C0-semigroup of positive contractions;
(ii) r(BR(λ,A)) < 1 for some λ > 0;

(iii) BR(λ,A) is uniformly ergodic for some λ > 0;
(iv) BR(λ,A) is power bounded and quasi-compact for some λ > 0.
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