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Almost everywhere convergence of the inverse Jacobi
transform and endpoint results for a disc multiplier

by

Troels Roussau Johansen (Kiel)

Abstract. The maximal operator S∗ for the spherical summation operator (or disc

multiplier) SR associated with the Jacobi transform through the defining relation dSRf(λ)

= 1{|λ|≤R} bf(t) for a function f on R is shown to be bounded from Lp(R+, dµ) into
Lp(R, dµ) + L2(R, dµ) for 4α+4

2α+3
< p ≤ 2. Moreover S∗ is bounded from Lp0,1(R+, dµ)

into Lp0,∞(R, dµ) + L2(R, dµ). In particular {SRf(t)}R>0 converges almost everywhere
towards f , for f ∈ Lp(R+, dµ), whenever 4α+4

2α+3
< p ≤ 2.

1. Introduction. The importance of the disc multiplier in Euclidean
harmonic analysis—defined as the operator SR satisfying the relation ŜRf(ξ)
= 1‖ξ‖≤Rf̂(ξ)—was firmly established by Fefferman’s groundbreaking result
in [7] that SR is not bounded on Lp(Rn), n ≥ 2, unless p = 2. The op-
erator has since then played a role in other areas of mathematics. It usu-
ally appears whenever one studies convergence properties of eigenfunction
expansions for differential operators on manifolds, and it also appears as
an extreme endpoint case of Bochner–Riesz means. An interesting aspect,
however, is that the operator behaves much better when restricted to radial
Lp-functions. Indeed, according to [11], the operator is bounded on Lprad(Rn)
for 2n/(n+ 1) < p < 2n/(n− 1). This result has later been improved in sev-
eral directions, and we shall recall them one by one in the main text.

A natural analogue of the disc multiplier in the framework of spherical
analysis on Riemannian symmetric spaces of rank one was introduced by
Meaney and Prestini in the mid-90’s and the study was completed in the
paper [18] with almost sharp statements about the mapping properties of
the maximal operator associated with the disc multiplier. In the present
paper we follow in their footsteps and generalize their results to Jacobi
analysis, and we establish the missing endpoint results in the setting of
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Jacobi analysis. In particular we complement the paper [1]. This implies
almost everywhere convergence of {SRf(x)}R>0 for f ∈ Lp(dµ) for a certain
range of p, most directly related to [23] in the Euclidean case, whereas the
extension to Hankel transforms was considered in [4].

There are other ways to obtain almost everywhere convergence of
{SRf(x)}R>1. In [2], the authors obtain equiconvergence results for {SRf}
in the slightly more general framework of (noncompact) Chébli–Trimèche
hypergroups. The results of the present paper should generalize to their
setting without much effort. Our endpoint results are stronger, however, as
we are able to determine the endpoint behavior of the maximal operator at
the level of Lorentz spaces. Moreover, and this is a fundamental advantage
of working with maximal operators, we will use the results of the present
paper as part of a complex interpolation argument in a companion paper
to obtain convergence results for Bochner–Riesz means in Jacobi analysis
below the critical order of integrability. In order for this to work we need
norm estimates in the first place.

Finally we wish to point out that a “flat” version of our results on the
disc multipliers was recently obtained in [5]. By “flat” we refer to the modern
habit of regarding Dunkl analysis on R as a “zero curvature limit” of har-
monic analysis in rank one root systems, in the sense of Cherednik, Heckman
and Opdam. The proofs of [5] are more or less straightforward adaptations
of techniques from [23] and [21], since the size of balls, measured in terms of
the relevant measures in Dunkl theory, does not grow exponentially fast, in
contrast to what happens for noncompact Riemannian symmetric spaces. It
is well-understood that the “curved” situation—be it analysis on symmetric
spaces or slightly more generally, Jacobi analysis—is complicated by balls
having exponential volume growth.

We employ the same techniques as in [18], carried out in the more general
setting of Jacobi analysis. Most proofs are therefore structurally identical to
those in [18], which we wish to acknowledge at this point. There are several
technical difficulties, however, like the precise asymptotic expansion for the
c-function in Lemma 2.1. Also of importance is that we are able to incor-
porate the paper [22] by Prestini. The careful analysis, in turn, allows us to
establish new endpoint results, thereby showing to exactly what extent one
can generalize the spherical analysis on symmetric spaces of rank one. Since
we never use the actual formula for the measure dµ(t), but rather just its
behavior for t ∼ 1 and t� 1, and since the key ingredients for the proofs—
asymptotic estimates for ϕλ and the Plancherel density |c(λ)|−2—are also
available for Chébli–Trimèche hypergroups (see Theorem 1.2, Section 1.3,
Theorems 2.1 and 2.2 in [2]) the exact same calculations can be carried out
in the context of such hypergroups.
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2. Jacobi analysis. Let (a)0 = 1 and (a)k = a(a + 1) · · · (a + k − 1).
The hypergeometric function 2F1(a, b; c, z) is defined by

2F1(a, b; c, z) =
∞∑
k=0

(a)k(b)k
(c)kk!

zk, |z| < 1;

the function z 7→ 2F1(a, b; c, z) is the unique solution of the differential
equation

z(1− z)u′′(z) + (c− (a+ b+ 1)z)u′(z)− abu(z) = 0

which is regular at 0 and equals 1 there. The Jacobi functions for parameters
(α, β) are defined by

ϕ
(α,β)
λ (t) = 2F1

(
1
2(α+ β + 1− iλ), 1

2(α+ β + 1 + iλ);α+ 1,− sinh2 t
)
.

It is thereby clear that λ 7→ ϕλ(t) is analytic for all t ≥ 0. Moreover, for
=λ ≥ 0, there exists a unique solution φλ to the same equation satisfying
φλ(t) = e(iλ−ρ)t(1+o(1)) as t→∞, and λ 7→ φλ(t) is therefore also analytic
for t ≥ 0.

In what follows we assume that α 6= −1,−2, . . . , α > β > −1/2, and
|β| < α+ 1. Let ρ = α+β+ 1. The usual Lebesgue space on R+ will simply
be denoted Lp, whereas by Lp(dµ) we understand the weighted Lebesgue
space, with dµ(t) = dµα,β(t) = ∆(t) dt, where

∆(t) = ∆α,β(t) = (2 sinh t)2α+1(2 cosh t)2β+1, t > 0.

We adopt the notational convention of writing µ(A) for the weighted mea-
sure of a measurable subset A of R, that is, µ(A) = ‖1A‖L1(dµ). It is of
paramount importance to stress that the behavior of ∆(t) depends on the
“size” of t. More precisely,

|∆(t)| ≤
{
t2α+1 for t . 1,
e2ρt for t� 1.

In analogy with the case of symmetric spaces, one proceeds to show
the existence of a function c = cα,β for which ϕλ(t) = c(λ)e(iλ−ρ)tφλ(t) +
c(−λ)e(−iλ−ρ)tφ−λ(t). Since we adhere to the conventions and normalization
used in [9], the c-function is given by

c(λ) =
2ρΓ (iλ)Γ

(
1
2(1 + iλ)

)
Γ
(

1
2(ρ+ iλ)

)
Γ
(

1
2(ρ+ iλ)− β

) .
Observe that for α, β 6= −1,−2, . . . , c(−λ)−1 has finitely many poles for
=λ < 0 and none if =λ ≥ 0 and <ρ > 0. It follows from Stirling’s formula
that for every r > 0 there exists a positive constant cr such that

(2.1) |c(−λ)|−1≤cr(1 + |λ|)α+1/2 if =λ≥0 and c(−λ′) 6= 0 for |λ′ − λ|≤r.
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The following statement on the precise asymptotic expansion of the density
|c(λ)|−2 will play an important role later in the paper. We have included a
detailed proof since the result cannot be deduced directly from [25] or [18];
α and β need not correspond to integer-valued root multiplicities, so the
expression for c(λ) does not really simplify, unlike for rank one symmetric
spaces.

Lemma 2.1. Assume α > β > −1/2.

(i) For every integer M there exist constants ci, i = 0, . . . ,M − 1,
(depending on α, β, and M) such that

|c(λ)|−2 ∼ c0|λ|2α+1
{

1 +
M−1∑
j=1

cjλ
−j +O(λ−M )

}
as |λ| → ∞.

(ii) Let d(λ) = |c(λ)|−2, λ ≥ 0, and k ∈ N0. There exists a constant
ck = ck,α,β such that∣∣∣∣ dkdλkd(λ)

∣∣∣∣ ≤ ck(1 + |λ|)2α+1−k.

(iii) c′(λ) ∼ c(λ)O(λ−1) and c′′(λ) ∼ c(λ)O(λ−2).

This improves on the usual asymptotic statement that |c(λ)|−2 ∼ |λ|2α+1

as |λ| → ∞ and we will need this improvement at a later stage. This was
already observed in [18].

Proof. (i) Following the technique in [20, Subsection 2.2.1] we introduce
the auxiliary function

Q(λ) =
( q∏
r=1

Γ (1− br + βrλ)
)( p∏

r=1

Γ (1− ar + αrλ)
)−1

,

where we of course have in mind the particular parameters

(2.2)

{
p = 2, q = 4, b1 = b2 = 1− ρ/2, b3 = b4 = 1 + β − ρ/2,
a1 = a2 = 1, β1 = β2 = β3 = β4 = i/2, α1 = α2 = i,

so that |Q(λ)| = |c(λ)|−2 by the duplication formula for the Γ -function.
Recall that by Stirling’s formula,

logΓ (z) =
(
z − 1

2

)
log z − z + 1

2 log(2π) +Ω(z),

where

Ω(z) ∼
∞∑
r=1

B2r

2r(2r − 1)z2r−1
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for suitable numbers B2n (the Bernoulli numbers). Moreover,

Ω(z) =
n−1∑
r=1

B2r

2r(2r − 1)z2r−1
+Rn(z)

for every positive integer n, where—upon writing z = xeiθ—the remainder
term Rn(z) may be estimated according to

(2.3) |Rn(z)| ≤ |B2n|
2n(2n− 1)

(
sec θ

2

)2n
|z|2n−1

for |arg z| < π

(see [20, equation (2.1.6)]). Presently z will be of the form z = αrλ+ 1− ar
with αr ≥ 0, ar ∈ C, and λ ∈ R+, so that arg z remains constant as λ→∞.

For fixed M ∈ N and large |λ| we thus have

logQ(λ) =
q∑
r=1

logΓ (1− br + βrλ)−
p∑
r=1

logΓ (1− ar + αrλ)

=
q∑
r=1

{(
1
2 − br + βrλ

)
log(1− br + βrλ)− (1− br + βrλ)

+ 1
2 log(2π) +Ω(1− br + βrλ)

}
−

p∑
r=1

{(
1
2 − ar + αrλ

)
log(1− ar + αrλ)− (1− ar + αrλ)

+ 1
2 log(2π) +Ω(1− ar + αrλ)

}
/

q∑
r=1

(
1
2 − br + βrλ

)
log(βrλ)−

p∑
r=1

(
1
2 − ar + αrλ

)
log(αrλ)

+ 1
2(q − p)(log(2π)− 2)− sκ− θ

+
q∑
r=1

Ω(1− br + βrλ)−
p∑
r=1

Ω(1− ar + αrλ)

∼
q∑
r=1

(
1
2 − br + βrλ

)
(log βr + log λ)

−
p∑
r=1

(
1
2 − ar + αrλ

)
(logαr + log λ)

+ 1
2(q − p)(log(2π)− 2)− sκ− θ +

M−1∑
j=1

cjλ
−j +O(λ−M )

=
[

1
2(q − p) + θ + λκ

]
log λ− λ(log h+ κ)

+ log c̃0 − θ + 1
2(q − p)(log(2π)− 2) +

M−1∑
j=1

cjλ
−j +O(λ−M )
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where

h :=
( p∏
r=1

ααrr

)( q∏
r=1

β−βrr

)
, c̃0 :=

( q∏
r=1

β1/2−br
r

)( p∏
r=1

αar−1/2
r

)
,

θ :=
p∑
r=1

ar −
q∑
r=1

br, κ :=
q∑
r=1

βr −
q∑
r=1

αr.

With the parameters defined as in (2.2), one sees that κ = 0, θ = 1 + 1 −
(1− ρ/2) · 2− (1− ρ/2 + β) · 2 = 2α, and (q − p)/2 = 1, whence

Q(λ) ∼ c0λ
(q−p)/2+θ+sκe−sκ

{
1 +

M−1∑
j=1

cjλ
−j +O(λ−M )

}

= c0λ
2α+1

{
1 +

M−1∑
j=1

cjλ
−j +O(λ−M )

}
as |λ| → ∞.

(ii)&(iii) We have d′(λ) = −2d(λ)c′(λ)/c(λ), so it suffices to show that
c′(λ)/c(λ) ' O(1/λ). This may be seen as in the proof of [19, Lemma 8] as
follows: Since
c′(λ)
c(λ)

= icα,β

{
ψ(iλ)−ψ(α− β + iλ) +

1
2
ψ

(
α− β + iλ

2

)
− 1

2
ψ

(
ρ+ iλ

2

)}
,

where

ψ(z) :=
Γ ′(z)
Γ (z)

= −γ − 1
z

+
∞∑
n=1

z

n(n+ z)
,

γ being the Euler constant, it follows that

c′(λ)
c(λ)

= cα,β

{
− 1
iλ

+
1

ρ+ iλ
+
∞∑
n=1

z1 − z3
(z1 + n)(z3 + n)

+
1
2

∞∑
n=1

z2 − z4
(z2 + n)(z4 + n)

}
with z1 = iλ, z2 = 1

2(α − β + iλ), z3 = α − β + iλ, and z4 = 1
2(ρ + iλ).

Observe that∣∣∣∣− 1
iλ

+
1

ρ+ iλ

∣∣∣∣ =
∣∣∣∣ −ρ
iλ(ρ+ iλ)

∣∣∣∣ ≤ 1
|λ|
|ρ|2 + |ρ| |λ|
|ρ|2 + |λ|2

≤ c

|λ|
.

The assertion for k = 1 now follows from the estimate

|α− β|
2

∞∑
n=1

1
|z1 + n| |z3 + n|

+
|β + 1/2|

2

∞∑
n=1

1
|z2 + n| |z4 + n|

≤ cα,β
∞�

1

1
x2 + λ2

dx ≤
cα,β
|λ|

.
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The required estimate for d′′(λ) is obtained analogously: First observe that

d′′(λ) = −2d′(λ)
c′(λ)
c(λ)

− 2d(λ)
(

c′′(λ)
c(λ)

+
(

c′(λ)
c(λ)

)2)
.

In order to establish the assertion for k=2 it suffices to prove that c′′(λ)/c(λ)
' O(1/λ2). This can also be established as in the proof of [19, Lemma 8];
indeed,

c′′(λ)
c(λ)

= cα,β
(
ψ′(z1)− ψ′(z2) + 1

4ψ
′(z3)− 1

4ψ
′(z4)

)
+ cα,β

c′(λ)
c(λ)

(
ψ(z1)− ψ(z2) + 1

2ψ(z3)− 1
2ψ(z4)

)
where ψ′(z) = z−2 +

∑∞
n=1(z+n)−2, evaluated at the four points zi. Heuris-

tically, it is now easy to prove that the left hand side is O(λ−2). The second
half of the right hand side behaves as 1

λ
1
λ according to what we have already

established in the case of k = 1, so it suffices to show that∣∣∣∣ ∞∑
n=1

1
(zi + n)2

− 1
(zi+2 + n)2

∣∣∣∣ ≤ c

|λ|2
for i = 1, 2.

If, say, i = 1, the required estimate follows like this:∣∣∣∣ ∞∑
n=1

1
(z1 + n)2

− 1
(z3 + n)2

∣∣∣∣ ≤ ∞∑
n=1

∣∣∣∣ (α− β)(α− β + 2iλ+ 2n)
(iλ+ n)2(α− β + iλ+ n)2

∣∣∣∣
≤ cα,β

∞�

1

1
x3 + λ3

dx ≤
c′α,β
|λ|2

.

One proves by induction that c(k)(λ)/c(λ) = O(λ−k) for k = 0, 1, . . . ,
and one would then formally have to carry out another proof by induction
that the estimate for d(k)(λ) has the right order in |λ|. We leave the tedious
details to the energetic reader.

Remark 2.2. In principle one should be able to obtain the asymptotic
expansion for |c(λ)|−2 from the expansion of |c(λ)|2 in [2, Theorem 2.2] by
long division of the asymptotic series. Such computations are indeed justified
(cf. [6, Section 1.5]). We have opted for a self-contained proof, however, that
is inspired by [20, Section 2.2]. We found it worthwhile to use the explicit
formula for the c-function since we still need similar estimates for various
derivatives of c(λ) and |c(λ)|±2. The asymptotic expansion for |c(λ)|−2 will
therefore be more explicit than what could be obtained from [2].

Example 2.3 (Specialization to rank one symmetric spaces). For special
values of α and β, determined by the root system of a rank one Rieman-
nian symmetric space, the functions ϕλ are the usual spherical functions of
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Harish-Chandra, and the Jacobi transform is the spherical transform. To
be more precise assume G/K is a rank one Riemannian symmetric space of
noncompact type, with positive roots α and 2α. Furthermore let p denote
the multiplicity of α, and q the multiplicity of 2α (we allow q to be zero).
With α := 1

2(p+ q − 1) and β := 1
2(q − 1) both real, and p = 2(α− β) and

q = 2β + 1, the function ϕ
(α,β)
λ is precisely the usual elementary spherical

function ϕλ as considered by Harish-Chandra, ρ = α+ β + 1 = 1
2(p+ 2q) as

it should be, and dim(G/K) = p + q + 1 = 2(α + 1). According to Lemma
2.1 we write |c(λ)|−2 = P (λ) + E(λ), where

|E(λ)| = |P (λ)| ·


0 whenever q = 0, p = 2k,
|1− coth(πλ/2)| whenever q = 2l + 1, p = 4k + 2,
|1− tanh(πλ/2)| otherwise

(cf. the proof of Lemma 4.2 in [25]). Since |c(λ)|−2 ∼ λn−1 as λ → ∞, we
can at least say that degP (λ) = n− 1.

A similar choice of parameters α, β reveals that even spherical analysis on
Damek–Ricci spaces is subsumed under the present setup. This was already
exploited in [1] in order to extend results from spherical analysis on rank
one symmetric spaces to the framework of Damek–Ricci spaces.

Let dν(λ) = dνα,β(λ) = (2π)−1/2|c(λ)|−2 dλ and denote by Lp(dν) the as-
sociated weighted Lebesgue space on R+; note that c(λ)c(−λ) = c(λ)c(λ) =
|c(λ)|2 whenever α, β, λ ∈ R. The Jacobi transform, initially defined for, say,
a function f ∈ C∞c (R+) by

f̂(λ) =
√
π

Γ (α+ 1)

∞�

0

f(t)ϕλ(t) dµ(t)

extends to a unitary isomorphism from L2(dµ) onto L2(dν), and the inver-
sion formula is the statement that

f(t) =
∞�

0

f̂(λ)ϕλ(t) dν(λ)

holds in the L2-sense (cf. [16, formula (4.5)]. The limiting case α = β = −1/2
is the Fourier-cosine transform, which we will not study. One easily verifies
that L̂f(λ) = −(λ2 + ρ2)f̂(λ).

3. The disc multiplier: statement of results. Our starting point in
defining the disc multiplier is the inversion formula for the Jacobi transform,
that is,

f(t) =
∞�

0

f̂(λ)ϕλ(t) dν(λ),
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where dν(λ) = |c(λ)|−2 dλ. Let SRf(t) =
	R
0 f̂(λ)ϕλ(t) dν(λ) and notice that

for well-behaved functions f (say, in C∞c (R+)), SRf may be written as an
integral operator

SRf(t) =
R�

0

{∞�
0

f(r)ϕλ(r) dµ(r)
}
ϕλ(t) dν(λ) =

∞�

0

KR(t, r)f(r) dµ(r)

where KR(t, r) =
	R
0 ϕλ(t)ϕλ(r) dν(λ). The goal of the present paper is to

investigate the mapping properties of the associated maximal operator S∗ :
f 7→ S∗f ,

S∗f(t) = sup
R>0
|SRf(t)|

in order to establish almost everywhere convergence, SRf(t) → f(t), for f
in Lp(dµ), for a nontrivial range of p. The investigation follows [18] very
closely, but several complications of a purely technical nature (the Jacobi
parameters α, β not being integers, for example) will make the presentation
lengthier. The philosophy is simple, however; since the functions ϕλ behave
locally as a Euclidean eigenfunction (meaning a Bessel function since we
always have the spherical analysis in mind), we should analyse the kernel
KR in different regions of the (t, r)-domain R+ × R+ to probe similarities
with as well as deviations from a purely Euclidean harmonic analysis. This
will imply a decomposition of SRf as the sum SRf(t) =

∑4
i=1 Si,Rf(t),

where Si,Rf(t) =
	∞
0 Ki,R(t, r)f(r) dµ(r) and Ki,R(t, r) = 1Ai(t, r)KR(t, r),

i = 1, . . . , 4, where
A1 = {(t, r) : 0 ≤ t, r ≤ R0},
A2 = {(t, r) : t, r � R0},
A3 = {(t, r) : t� 1, 0 ≤ r ≤ R0},
A4 = {(t, r) : 0 ≤ t ≤ R0, r � R0}.
To be more precise, the constant R0 will be chosen as in the technical

lemma below (the proof of which can be found in [25] for rank one symmetric
spaces and more generally for Jacobi functions in [12]). Here Jµ(z) is the
usual Bessel function of order µ and Jµ(z) is the modified Bessel function
defined by Jµ(z) = 2µ−1Γ (1/2)Γ (µ+ 1/2)z−µJµ(z).

Lemma 3.1. Assume <α > 1/2, <α > <β > −1/2, and λ belongs either
to a compact subset of C \ (−iN) or a set of the form

Dε,γ = {λ ∈ C : γ ≥ =λ ≥ −ε|<λ|}
for some ε, γ ≥ 0. There exist constants R0, R1 ∈ (1,

√
π/2) with R2

0 < R1

such that for every M ∈ N and every t ∈ [0, R0],

ϕ
(α,β)
λ (t) =

2Γ (α+ 1)
Γ (α+ 1/2)Γ (1/2)

tα+1/2√
∆(t)

∞∑
m=0

am(t)t2mJm+α(λt)
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=
2Γ (α+ 1)

Γ (α+ 1/2)Γ (1/2)
tα+1/2√
∆(t)

M∑
m=0

am(t)t2mJm+α(λt) + EM+1(λt),

where a0(t) ≡ 1 and |am(t)| ≤ cα(t)R−(<α+m−1/2)
1 for all m ∈ N. Addition-

ally, the error term EM+1 is bounded as follows:

|EM+1(λt)| ≤
{
cM t

2(M+1) if |λt| ≤ 1,
cM t

2(M+1)|λt|−(<α+M+1) if |λt| > 1.
In the following four subsections we will establish the mapping properties

of the associated four maximal operators Si∗ individually, and the main
theorem will then follow by noting that |S∗f(t)| ≤

∑4
i=1 |Si,∗f(t)|. The

investigation in [18] and its outcome may be summarized roughly as follows:
For f ∈ Ls(K\G/K), we split the maximal operator S∗ associated to the
“disc multiplier” as

S∗f = S1,∗f + S2,∗f + S3,∗f + S4,∗f,

where

• S1,∗f is bounded on Ls(K\G/K) for 2n/(n+ 1) < s < 2n/(n− 1)
(this is the “Herz range”),
• S2,∗f is bounded into L2(G) + Ls(G) for 1 < s ≤ 2,
• S3,∗f is bounded into L2(G) for 1 < s ≤ 2,
• S4,∗f is bounded into L2(G) for 2n/(n+ 1) < s.

It thus follows—and this is the main result of [18]—that S∗f belongs to
L2(G) + Ls(G) for 2n/(n+ 1) < s ≤ 2 (since 2 ≤ 2n/(n− 1) for all n ∈ N).
Our first result is a generalization thereof to the setting of Jacobi analysis.
For the remainder of the paper we set

p0 =
4α+ 4
2α+ 3

and p1 =
4α+ 4
2α+ 1

.

Theorem 3.2. Assume α > β > −1/2. Then

(i) S1,∗ is bounded on Lp(R+, dµ) for p ∈ (p0, p1);
(ii) S2,∗ is bounded from Lp(R+, dµ) into Lp(R, dµ) + L2(R, dµ) for all

p ∈ (1, 2];
(iii) S3,∗ is bounded on Lp(R+, dµ) for all p ∈ (1, 2];
(iv) S4,∗ is bounded from Lp(R+, dµ) into L2(R, dµ) for all p ∈ (p0,∞).

Hence S∗ is bounded from Lp(R+, dµ) into Lp(R, dµ) + L2(R, dµ) for all
p ∈ (p0, 2].

Theorem 3.3. There exists a compactly supported function f in Lp0(dµ)
with the property that {SRf(x)}R>1 diverges for almost every x ∈ R+.

The part most closely resembling the Euclidean counterpart of the disc
multiplier is S1∗f , where the kernel KR(t, r) is localized in both t and r.
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The remaining three pieces of S∗f all derive their mapping properties, to
some extent, from the Kunze–Stein phenomenon, perhaps most clearly seen
in S3∗. Philosophically, the localized part S1 of SR (with R=1 for analogy)
should correspond to the Euclidean disc multiplier acting on radial func-
tions. Since the Euclidean disc multiplier is merely L2-bounded when acting
on functions not necessarily radial, we cannot expect S1 to be bounded on
Lp(G/K) unless p=2. Note that the full operator SR (R=1) is unbounded
on Lp(K\G/K) for p 6= 2, since the corresponding multiplier cannot be
analytically continued to the strip in the complex plane described in [3].

For the next result we must first recall the definition of Lorentz spaces.

Definition 3.4. Let (X,µ) be a measure space, 0<p<∞, and 0<q≤∞.
By the Lorentz space Lp,q(X,µ) we understand the space of equivalence
classes of measurable functions f with finite Lorentz space norm, ‖f‖Lp,q
<∞. Here

‖f‖Lp,q =


(
q

∞�

0

[tµ({x ∈ X : |f(x)| > t})1/p]q t−1 dt
)1/q

if q <∞,

sup
t>0

t1/pµ({x ∈ X : |f(x)| > t}) if q =∞.

See [10, Chapter 1] for a summary of the properties of Lorentz spaces.

Theorem 3.5.

(i) The maximal operator S1,∗ is bounded from Lpi,1(R+, dµ) into
Lpi,∞(R+, dµ), i = 0, 1, where p0 = 4α+4

2α+3 and p1 = 4α+4
2α+1 .

(ii) The maximal operator S4,∗ is bounded from Lp0,1(R+, dµ) into
L2(R, dµ).

The maximal operator S∗ is therefore bounded from Lp0,1(R, dµ) into the
space L2(R, dµ) + Lp0,∞(R, dµ).

This was not addressed by Meaney and Prestini but is to be seen as the
Jacobi-analysis analogue of the endpoint result in [23]. As for the sharpness
of the Lorentz space indices, we mention the following result.

Proposition 3.6. The disc multiplier SR is not bounded from the space
Lp0,r(R+, dµ) into Lp0,∞(R, dµ) + L2(R, dµ) for any r ∈ (1,∞].

Proof. The conclusion follows at once from the observation that even the
localized piece S1

R of the disc multiplier fails the stated mapping property,
according to [4, Theorem II].

4. Proof of the mapping properties for noncritical exponents.
The present section contains the lengthy proof of Theorem 3.2 as well as
Theorem 3.3. As already indicated, one studies S∗ in four different regions
of the (t, r)-plane, so we have split the proof into four subsections.
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4.1. Investigation of S1,∗. We begin the lengthy examination of S∗
with an analysis of the behavior of the kernel KR when both arguments are
small. We scale the corresponding operator S1,R slightly by writing

S1,Rf(t) =
�

A(t)

K1,R(t, r)f(r) dµ(r), A(t) =
{

[0, R0] if 0 < t ≤ R0/2,
[0, R0/2] if R0/2 < t < R0.

Moreover we assume 2(α+ 1) is not an integer since we may otherwise copy
the proofs from [18] verbatim, with n := 2(α + 1). Recall from Lemma 3.1
that ϕλ(t) may be written as

ϕλ(t) = c
tα+1/2√
∆(t)

(
Jα(λt) + t2a1(1)Jα+1(λt)

)
+ E2(λ, t),

so that

ϕλ(t)ϕλ(r)

= c
tα+1/2√
∆(t)

rα+1/2√
∆(r)

(
Jα(λt)Jα(λr) + Jα(λt)r2a1(r)Jα+1(λr)

+ t2a1(t)Jα+1(λt)Jα(λr) + t2a1(t)Jα+1(λt)r2a1(r)Jα+1(λr)
)

+ c
tα+1/2√
∆(t)

(
Jα(λt) + t2a1(t)Jα+1(λt)

)
E2(λ, r)

+ c
rα+1/2√
∆(r)

(
Jα(λr) + r2a1(r)Jα+1(λr)

)
E2(λ, t)

= c
tα+1/2√
∆(t)

rα+1/2√
∆(r)

(
c1
Jα(λt)
(λt)α

Jα(λr)
(λr)α

+ c2r
2a1(r)

Jα(λt)
(λt)α

Jα+1(λr)
(λr)α+1

+ c3t
2a1(t)

Jα+1(λt)
(λt)α+1

Jα(λr)
(λr)α

+ r2t2a1(t)a1(r)
Jα+1(λt)
(λt)α+1

Jα+1(λr)
(λr)α+1

)
+ negligible terms.

The indicated decomposition yields a compatible decomposition of K1,R and
S1,Rf(t), in the sense that K1,R =

∑5
i=1K

i
1,R and S1,Rf(t) =

∑5
i=1 S

i
1,Rf(t),

where

K1
1,R(t, r) =

tα+1/2√
∆(t)

rα+1/2√
∆(r)

1
rαtα

R�

0

Jα(λr)Jα(λt)
λ2α

dν(λ),

K2
1,R(t, r) = r2a1(r)

tα+1/2√
∆(t)

rα+1/2√
∆(r)

1
rα+1tα

R�

0

Jα+1(λr)Jα(λt)
λ2α+1

dν(λ),

K3
1,R(t, r) = t2a1(t)

tα+1/2√
∆(t)

rα+1/2√
∆(r)

1
rαtα+1

R�

0

Jα(λr)Jα+1(λt)
λ2α+1

dν(λ),
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K4
1,R(t, r) = r2a1(r)t2a1(t)

tα+1/2√
∆(t)

rα+1/2√
∆(r)

1
rα+1tα+1

×
R�

0

Jα+1(λr)Jα+1(λt)
λ2(α+1)

dν(λ),

K5
1,R = sum of negligible terms

(it is to be understood that all functions are extended by zero to all of R
for t not in [0, R0]), and

Si1,Rf(t) =


�

A(t)

Ki
1,R(t, r)f(r)∆(r) dr for 0 ≤ t ≤ R0, i = 1, . . . , 5,

0 otherwise.
A slightly more convenient expression for K1

1,R(t, r) is obtained by writing

K1
1,R(t, r)

=
tα+1/2√
∆(t)

rα+1/2√
∆(r)

1
rα

1
tα

{R�
1

Jα(λr)Jα(λt)
λ2α

dν(λ) +
1�

0

Jα(λr)Jα(λt)
λ2α

dν(λ)
}

= M1,R(t, r) + E1(t, r),

where

|E1(t, r)| .
∣∣∣∣ tα+1/2√

∆(t)
rα+1/2√
∆(r)

1
rα

1
tα

∣∣∣∣ 1�
0

|λr|α|λt|α

λ2α
dλ . 1.

The associated operator eS
1
1,Rf(t) = 1[0,R0](t)

	
A(t)E1(t, r)f(r)∆(r) dr is

therefore easily estimated. We have

|eS1
1,Rf(t)| ≤ ‖1[0,R0]E1(t, ·)‖Lp′ (dµ)‖1[0,R0]f‖Lp(dµ) . ‖f‖Lp(dµ),

where 1/p + 1/p′ = 1, 1 < p < ∞, so the associated maximal operator
t 7→ supR>1 |eS1

1,Rf(t)| is bounded on Lp(dµ) for 1 < p < ∞. The term
M1,R(t, r) in our kernel decomposition K1

1,R(t, r) = M1,R(t, r) + E1(t, r)
turns out to be fairly complicated, however.

Recall that

M1,R(t, r) =
tα+1/2√
∆(t)

rα+1/2√
∆(r)

1
rα

1
tα

R�

1

Jα(λr)Jα(λt)λ−2α|c(λ)|−2 dλ.

We need a description of not only the leading term in the asymptotic be-
havior of |c(λ)|−2 as λ→∞, so we use Lemma 2.1 with M = [2α+ 2] (the
integer part of 2α+ 2) to write

|c(λ)|−2 = λ2α+1 + c1λ
2α + c2λ

2α−1 + · · ·+ cM−1λ
2(α+1)−[2(α+1)]

+O(λ2α+1−[2(α+1)]).
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Note that 2α + 1 < M < 2(α + 1), since 2(α + 1) is not an integer.
Correspondingly the asymptotic expansion of |c(λ)|−2 still takes the form
|c(λ)|−2 = P (λ) + E(λ), but P is not a polynomial anymore. At any rate

(4.1) M1,R(t, r)

=
tα+1/2√
∆(t)

rα+1/2√
∆(r)

1
rα

1
tα

{R�

1

Jα(λr)Jα(λt)
(
λ+ c1 +

c2
λ

+ · · ·+ cM−1

λM−2

)
dλ

+
R�

1

Jα(λr)Jα(λt)E(λ) dλ
}
.

We thus need to consider separately a host of new operators, like

Md
1,R(t, r) =

tα+1/2√
∆(t)

rα+1/2√
∆(r)

1
rα

1
tα

R�

1

Jα(λr)Jα(λt)λd dλ, d=2−M, . . . , 1,

=
tα+1/2√
∆(t)

rα+1/2√
∆(r)

1
rα

1
tα

{R�
0

· · ·λd dλ−
1�

0

· · ·λd dλ
}

where the latter piece · · ·
	1
0 · · ·λ dλ (at least for d = 1) gives rise to an

operator comparable with eS
1
1,Rf considered above. We will keep the con-

stants ck, as they never influence the estimates. The conclusion, as before,
is that the “error” term gives rise to a maximal operator that is bounded
for the full range p ∈ (1,∞), hence uninteresting as far as the ongoing proof
is concerned.

The first piece in the above-mentioned decomposition of M1
1,R gives rise

to the operator

S
M1

1,R

1,R f(t) =
�

A(t)

M1
1,R(t, r)f(r)∆(r) dr

=
tα+1/2√
∆(t)

1
tα

R0�

0

{R�
0

Jα(λr)Jα(λt)λ dλ
}
f(r)

√
∆(r)r1/2 dr.

Since 0 ≤ r, t ≤ R0, we can introduce the approximation
√
∆(r) ∼ rα+1/2,√

∆(t) ∼ tα+1/2 in order to arrive at the favorable estimate

|S
M1

1,R

1,R f(t)| . 1
tα

∣∣∣R0�

0

{R�
0

Jα(λr)Jα(λt)λ dλ
}
f(r)rα+1 dr

∣∣∣
≤ 1
tα

∣∣∣∞�
0

{R�
0

Jα(λr)Jα(λt)λ dλ
}
f(r)rα+1 dr

∣∣∣ = cTRf(t),

where TR is formally the standard partial sum operator for Euclidean Fourier
integrals, f being viewed as a radial function on Rn, with n := 2(α+1). More
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precisely, TR is indeed the partial sum operator for the Hankel transform Hα,

and by [15] the maximal operator t 7→ supR>1 |S
M1

1,R

1,R f(t)| is bounded on
Lp(R+, x

2α+1dx) for 4α+4
2α+3 < p < 4α+4

2α+1 . This also explains the appearance of

the Herz range. The result of Kanjin applies to S
M1

1,R

1,R as well, since we have
localized its integral kernel in both arguments. We must still consider the

remaining pieces S
M0

1,R

1,R f(t), S
M−1

1,R

1,R f(t), . . . and S
ME

1,R

1,R f(t).
Next on the list is the piece (of the kernel M1,R)

M0
1,R(t, r) = c

tα+1/2√
∆(t)

1
tα

rα+1/2√
∆(r)

1
rα

R�

1

Jα(λt)Jα(λr) dλ.

Recall that we DO allow the possibility that r ≥ t in this analysis. So let us
assume that r ≥ t and choose a smooth partition of unity 1 = g(1)+g(2)+g(3)

on (0,∞), indicated schematically by

[1, R] = [1, 1/r]
(1)

∪ [1/r, 1/t]
(2)

∪ [1/t,R]
(3)

where only the piece g(3) =: gt will be important. Here gt is taken to be
identically 1 on (1/t,R] and supported in (1/r,R] (we will later choose gt
more carefully). The corresponding expansion of M0

1,R will be written

(4.2) M0
1,R(t, r)

= c
tα+1/2√
∆(t)

rα+1/2√
∆(r)

1
tα

1
rα

{1/r�

1

· · · dλ+
1/t�

1/r

· · · dλ+
R�

1/t

· · · gt(λ) dλ
}

=: M0,(1)
1,R (t, r) +M

0,(2)
1,R (t, r) +M

0,(3)
1,R (t, r).

We first analyze the range 1 ≤ λ ≤ 1/r, corresponding to the function
M

0,(1)
1,R . Here we estimate

|M0,(1)
1,R (t, r)| . 1

tαrα

1/r�

1

|Jα(λt)| |Jα(λr)| dλ .
1

tαrα

1/r�

1

(λt)−1/2 dλ

=
1

tα+1/2rα
[λ1/2]1/r1 =

1
tα+1/2rα

(
1
r1/2

− 1
)

.
1

tα+1/2rα+1/2
,

where we have used that 1/r ≥ 1. It thus follows by the Hölder inequality
(with 1/p+ 1/p′ = 1) that

|S
M

0,(1)
1,R

1,R f(t)| . 1
tα+1/2

R0�

0

|f(r)|
rα+1/2

∆(r) dr
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=
1

tα+1/2

(R0�

0

|f(r)|p∆(r) dr
)1/p(R0�

0

r−(α+1/2)p′∆(r) dr
)1/p′

.
1

tα+1/2
‖f‖Lp(dµ)

(R0�

0

r2α+1−(α+ 1
2
)p′ dr

)1/p′

,

which is finite precisely when 2α+ 1− (α+ 1/2)p′ > −1, that is, 4α+4
2α+1 > p′

or equivalently when p > 4α+4
2α+3 . The associated maximal operator S

M
0,(1)
1,R

1,∗
therefore satisfies the estimate

|S
M

0,(1)
1,R

1,∗ f(t)| . t−(α+1/2)‖Lp for p > 4α+4
2α+3 and 0 ≤ t ≤ R0.

It follows that

‖S
M

0,(1)
1,R

1,∗ f‖pLp . ‖f‖pLp
R0�

0

t−(α+1/2)p∆(t) dt . ‖f‖pLp
R0�

0

t−(α+1/2)p+2α+1 dt,

which is finite precisely when −(α + 1/2)p + 2α + 1 > −1, that is, when

p < 4α+4
2α+1 . We have therefore established that S

M
0,(1)
1,R

1,∗ is bounded on Lp

precisely when 4α+4
2α+3 < p < 4α+4

2α+1 .

The range 1/r ≤ λ ≤ 1/t, corresponding to the piece M0,(2)
1,R , is just as

easily handled: The standard estimates |Jµ(λr)| . (λr)−1/2 and |Jµ(λt)| . 1
imply that

|M0,(2)
1,R (t, r)| . 1

tαrα

1/t�

1/r

1
λ1/2

dλ .
1

tα+1/2rα+1/2
.

Prior analysis shows that the associated maximal operator S
M

0,(2)
1,R

1,∗ is Lp-
bounded for 4α+4

2α+3 < p < 4α+4
2α+1 .

It turns out to be more difficult to estimate the piece M0,(3)
1,R , correspond-

ing to the range 1/t ≤ λ ≤ R. In order to get started we use the more precise
Bessel function estimate

Jα(t) = c
cos(t− απ/2− π/4)

t1/2
+O(t−3/2)

from [26, p. 199] to write

M
0,(3)
1,R (t, r)

= c
tα+1/2√
∆(t)

rα+1/2√
∆(r)

1
tα

1
rα

R�

1/t

cos
(
λt− 2α+1

4 π
)

(λt)1/2
cos
(
λr − 2α+1

4 π
)

(λr)1/2
gt(λ) dλ+E
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= c
tα+1/2√
∆(t)

rα+1/2√
∆(r)

1
tα

1
rα

R�

1/t

cos
(
λt− 2α+1

4 π
)

cos
(
λr − 2α+1

4 π
)

λ
gt(λ) dλ+E

= c
tα+1/2√
∆(t)

rα+1/2√
∆(r)

1
tα

1
rα

∑
ε,ν=±1

R�

1/t

eiλε(t+νr)

λ
gt(λ) dλ+E

where E is an error term. Observe that

R�

0

eiλε(t+νr)

λ
gt(λ) dλ =

(
λ 7→ 1[0,R](λ)

gt(λ)
λ

)∧
(ε(t+ νr))

=
((

λ 7→ gt(λ)
λ

)∧
?

(
x 7→ eiRx

x

))
(ε+ νr),

where (· · · )∧ designates the Euclidean Fourier transform. Let σt denote the
Fourier transform of λ 7→ gt(λ)/λ and set σ∗(y) = supt |σt(y)|. Choosing
gt as in [18, Lemma 1], it follows that σ∗ is Lebesgue integrable on R, so

that—apart from the error term E—we can estimate S
M

0,(3)
1,R

1,∗ f(t) as follows:

|S
M

0,(3)
1,R

1,∗ f(t)|

.
1

tα+1/2

∑
ε,ν=±1

sup
t,R

∣∣∣∣ �(σt ? (x 7→ eiRx

x

))
(ε(t+ νr))f(r)

√
∆(r) dr

∣∣∣∣
=

1
tα+1/2

∑
ε,ν=±1

sup
t,R

∣∣∣∣ � σt(ε(t+ νr))
(
eiRx

x
? (f(x)

√
∆(x))

)
(r) dr

∣∣∣∣
≤ 1
tα+1/2

∑
ε,ν=±1

�
σ∗(ε(t+ νr)) sup

R>0

∣∣∣∣(eiRxx ? (f(x)
√
∆(x))

)
(r)
∣∣∣∣ dr

where we recognize the Carleson operator

C(f
√
∆)(r) = sup

R>0

(
eiRx

x
? (f(x)

√
∆(x))

)
(r)

applied to the function f
√
∆. Since convolution with the L1-function σ∗

is an Lp-bounded operation, it follows from the weighted estimates for the
Carleson operator, developed in [21] (see also [22]), that

(4.3) ‖S
M

0,(3)
1,R

1,∗ f‖Lp(dµ) ≤ c‖f‖Lp(dµ)

for 4α+4
2α+3 < p < 4α+4

2α+1 . As for the error term E in our decomposition of
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M
0,(3)
1,R , we notice that

|E| ≤ 1
rα

1
tα

1
r1/2

1
t3/2

R�

1/t

1
λ2
dλ ≤ 1

rα+1/2tα+1/2

since 1/r < 1/t and 1/R < t. It thus follows, as above, that the error term
E gives rise to a maximal operator that is Lp-bounded for the same range
of p.

It could, however, also happen that R < 1/r, in which case we do not
decompose [0, R] but rather estimate M0

1,R directly: trivially |M0
1,R(r, t)| ≤

r−(α+1/2)t−(α+1/2), so once again we end up with a maximal operator that
is Lp-bounded for the stated range of p.

The last remaining case is 1/r < R < 1/t, where we use the decomposi-
tion [0, R] = [0, 1/r]∪ [1/r,R] and carry out the exact same type of estimate
as before. This completes our analysis of M0

1,R.
Now consider

M−1
1,R(t, r) =

tα+1/2√
∆(t)

rα+1/2√
∆(r)

1
tα

1
rα

R�

1

Jα(λt)Jα(λr)
λ

dλ

and assume without loss of generality that r ≥ t. Decompose the domain of
integration smoothly as

[1, R] = [1, 1/r]
(1)

∪ [1/r, 1/t]
(2)

∪ [1/t,R]
(3)

.

The resulting pieces M−1,(1)
1,R and M

−1,(2)
1,R are trivially estimated since they

happen to resemble the error terms appearing in the analysis of M0
1,R above.

The final piece M−1,(3)
1,R is also easily handled, since∣∣∣∣ R�

1/t

Jα(λr)Jα(λt)
λ

dλ

∣∣∣∣ ≤ 1
r1/2t1/2

R�

1/t

1
λ2
dλ .

1
r1/2t1/2

.

For the remaining terms M i
1,R, i = 2−M, . . . ,−2, and ME

1,R we employ the
trivial estimate |Jµ(t)| ≤ c for all t to see that

|M−2
1,R(t, r) + · · ·+M2−M

1,R (t, r) +ME
1,R(t, r)| . 1

tα+1/2

1
rα+1/2

,

hence the associated maximal operator is Lp-bounded for p ∈ (p0, p1). We
have thus finished the proof for the operator S1

1,R.
Regarding S2

1,R, we first recall that the associated kernel is

K2
1,R(t, r) =

tα+1/2√
∆(t)

rα+1/2√
∆(r)

1
tα
a1(r)r2

rα

R�

0

Jα+1(λr)Jα(λt)
λ2α+1

|c(λ)|−2 dλ.
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We once more break up the domain of integration as [0, R] = [0, 1] ∪ [1, R]
and use the basic estimate |Jµ(t)| ≤ ctµ to estimate in the range λ ∈ [0, 1]
as follows:∣∣∣∣ 1�

0

Jα+1(λr)Jα(λt)
λ2α+1

|c(λ)|−2 dλ

∣∣∣∣ . 1�

0

(λr)α+1(λt)α

λ2α+1
dλ ≤ rα+1tα.

In the range λ ∈ [1, R] we once again use the asymptotic expansion of
|c(λ)|−2 from Lemma 2.1 to decompose the integral

R�

1

Jα+1(λr)Jα(λt)
λ2α+1

|c(λ)|−2 dλ

further, giving rise to integrals of the sort encountered in M1,R.
By symmetry in t and r, the same estimates hold for K3

1,R(t, r), so it
remains to investigate the kernels K4

1,R and K5
1,R (the error term) together

with the associated operators S4
1,R and S5

1,R. To this end recall that

K4
1,R(t, r)=

tα+1/2√
∆(t)

rα+1/2√
∆(r)

r2a1(r)
rα+1

t2a1(t)
tα+1

R�

0

Jα+1(λr)Jα+1(λt)
λ2(α+1)

|c(λ)|−2 dλ.

For λ ∈ [0, 1] in the domain of integration we may proceed as above, and
for λ ∈ [1, R] we once again use Lemma 2.1, leading us to consider terms
already analysed for M3

1,R.
A favorable estimate for the maximal operator associated with the error

term K5
1,R also follows from earlier considerations: If r > t, we decompose

[0, R] = [0, 1]∪ [1, 1/r]∪ [1/r, 1/t]∪ [1/t,R] smoothly, thereby breaking K5
1,R

into four pieces. Using that |E2(λ, t)| . t4 for |λt| ≤ 1 and |E2(λ, t)| .
t2(λt)2−(α+1/2) for |λt| > 1 (cf. Lemma 3.1), it follows that |K5

1,R(t, r)| .

r−(α+1/2)t−(α+1/2). The associated maximal operator S5
1,∗ is therefore Lp-

bounded for the usual range p ∈ (p0, p1).
By piecing together all the estimates in the present section we have thus

finally proved that S1,∗ is bounded on Lp(R+, dµ) if and only if 4α+4
2α+3 < p <

4α+4
2α+1 . We have also seen that the reason for this restricted range is purely
Euclidean. At this stage in the analysis, the curved geometry of the under-
lying symmetric space is not strong enough for non-Euclidean phenomena
to overpower the Euclidean structure.

4.2. Investigation of S2,∗. From now on the analysis of SR will in-
volve the behavior of the Jacobi function ϕλ(t) when t tends to infinity,
and Lemma 3.1 is not applicable in this region. As in the case of symmetric
spaces, this investigation requires sharp bounds on the c-function, a close
study of the Harish-Chandra series for ϕλ, and an analogue of the Gan-
golli estimates in the Jacobi setting. Recall that ϕλ(t) = c(λ)e(iλ−ρ)tφλ(t) +
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c(−λ)e(−iλ−ρ)tφ−λ(t), where we now formally expand φλ(t) as a power series
(the “Harish-Chandra series”),

φλ(t) =
∞∑
k=0

Γk(λ)e−2kt.

Since φλ is a solution to Lα,βϕ + (λ2 + ρ2)ϕ = 0, the Γk(λ) are given
recursively—according to [25, formula (3.4)]—by Γ0(λ) ≡ 1,

(k + 1)(k + 1− iλ)Γk+1(λ) = (α− β)
k∑
j=0

(ρ+ 2j − iλ)Γj(λ)

+ (β + 1/2)
[(k+1)/2]∑
j=1

(ρ+ 2(k + 1− 2j)− iλ)Γk+1−2j(λ),

where [x] is the integer part of x. In fact, Γk+1 = akΓk +
∑k−1

j=0 b
k
jΓj , where

(by [25, Corollary 3.4])

ak = 1 +
α− β − 1
k + 1

+
α− β − 1 + 1

k+1(α(α− 1)− β(β − 1) + 1)
k + 1− iλ

,

bkj = (−1)k+j+1 2β + 1
k + 1

(
1 +

ρ+ 2j − 1
k + 1− iλ

)
.

Lemma 4.1 (Gangolli estimates). Let D be either a compact subset of
C \ (−iN) or a set of the form D = {λ = ξ + iη ∈ C | η ≥ −ε|ξ|} for some
ε ≥ 0. There exist positive constants K, d such that

(4.4) |Γk(λ)| ≤ K(1 + k)d for all k ∈ Z+, λ ∈ D.
Proof. See [8, Lemma 7].

It follows that the expansion for φλ(t) converges uniformly on sets of the
form {(t, λ) ∈ [c,∞)×D}, where c is a positive constant. More precisely, if
λ ∈ D, and c > 0 is fixed, we see that

∀t ≥ c : |φλ(t)| ≤
∞∑
k=0

K(1 + k)de−2kt .
∞∑
k=0

(1 + k)de−2ck . 1,

that is, φλ(t) is bounded uniformly in λ ∈ D for t ≥ c > 0. We will take
c = R0 in later applications. Since λ 7→ φλ(t) is analytic in a strip containing
the real axis, it follows as in the proof of [18, Lemma 7] that derivatives of
φλ in λ are bounded independently of λ as well.

Remark 4.2. It is easy to prove that
∣∣ ∂k
∂λk

φλ(t)
∣∣ ≤ ck for all t ≥ R0 and

λ ∈ [0, 2ρ]. This was done for symmetric spaces in [18, Lemma 7], whereas
a more general statement in the context of Jacobi analysis was obtained in
[13, Lemma 4.1].
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The asymptotic behavior of ϕλ(t) as t increases can now be investigated.
The result is formally the same as the analogues in [25] and [24], and the
proof will even work for complex parameters α, β.

Theorem 4.3.

(i) For every M ≥ 0, 0 ≤ m ≤ M and λ ∈ C with =λ ≥ 0, there exist
polynomials flm in λ of degree m such that

Γk(λ) =
M∑
m=0

γkm + EkM+1,

where γkm is a sum of terms 1/flm, and where

|γkm(λ)| ≤ A |ρ|
me2k

|<λ|m
, |Da

<λγ
k
m| ≤ 2aA

|ρ|me2k

|<λ|m+a
,

|EkM+1| ≤ A
|ρ|M+1e2k

|<λ|M+1
;

the constant A is independent of M and λ.
(ii) Let Λm(λ, t) =

∑∞
j=0 γ

m+j
m (λ)e−2jt. There exists a function EM+1

such that, for every M ≥ 0, t ≥ R0, and λ ∈ C with =λ ≥ 0,

φλ(t) =
∞∑
m=0

Λm(λ, t)e−2mt

=
M∑
m=0

Λm(λ, t)e−2mt + e−2(M+1)tEM+1(λ, t),

where

|Da
λD

b
tΛm| ≤ 2a+bA

|ρ|me2m

|<λ|m+a
Gb(t),

|Db
tEM+1| ≤ 2bA

e2(M+1)|ρ|M+1

|<λ|M+1
Gb(t),

with Gk(t) :=
∑∞

j=0 j
ke2k(1−t).

Proof. The algebraic properties of the Harish-Chandra series are inves-
tigated in [25, Section 3], along with the estimates in part (i) of the the-
orem, and it is an arduous (yet elementary) matter to redo the proofs for
complex parameters α, β instead. The improved statement in (ii) via the
presence of the exponential factor in e−2(M+1)tEM+1(λ, t) was established in
[18, Lemma 6], the proof of which need not be repeated.

Proposition 4.4. For t ≥ 1 consider the operator

Uf(t) = e−ρt sup
R>1

∣∣∣∣∞�
1

eiR(t−r)

t− r
f(r)∆(r)e−ρr dr

∣∣∣∣.
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Then U maps Lp(R+, dµ) boundedly into L2(R, dµ)+Lp(R, dµ) for 1<p≤2.

Proof. The proof is similar to the one for [18, Theorem 3] and immediate
for p = 2. For 1 < p < 2 fixed and k ∈ N write ϕk(t) = 1[−k,k](t), ϕk(t) +
ψk(t) ≡ 1 for all t > 1, and correspondingly

e−ρt
∞�

1

eiR(t−r)

t− r
f(r)∆(r)e−ρr dr = e−ρt

∞∑
k=1

k+1�

k

eiR(t−r)

t− r
f(r)∆(r)e−ρr dr

= e−ρt
∞∑
k=1

(ϕk(t) + ψk(t))
k+1�

k

eiR(t−r)

t− r
f(r)∆(r)e−ρr dr

=
∞∑
k=1

(Ak,Rf(t) +Bk,Rf(t)),

where

Ak,Rf(t) = e−ρtϕk(t)
k+1�

k

eiR(t−r)

t− r
f(r)∆(r)e−ρr dr,

Bk,Rf(t) = e−ρtψk(t)
k+1�

k

eiR(t−r)

t− r
f(r)∆(r)e−ρr dr.

Then

Uf(t) ≤
∞∑
k=1

Ak,∗f(t) + sup
R>1

∣∣∣ ∞∑
h=1

Bh,Rf(t)
∣∣∣

with

Ak,∗f(t) = e−ρtϕk(t) sup
R>1

∣∣∣∣k+1�

k

eiR(t−r)

t− r
f(r)∆(r)e−ρr dr

∣∣∣∣
= e−ρtϕk(t)C(gk(·))(t),

C(gk) being the Carleson operator applied to the function

gk(r) = f(r)∆(r)e−ρr1[k,k+1)(r).

For p ∈ (1,∞) it follows that∥∥∥ ∞∑
h=1

Ak,∗f
∥∥∥p
Lp(R,dµ)

≤
∞∑
k=1

‖Ak,∗f‖pLp =
∞∑
k=1

‖e−ρtϕk(t)C(gk)(t)‖pLp

=
∞∑
k=1

k+2�

k−1

e−ρptϕk(t)p(C(gk)(t))p∆(t) dt

.
∞∑
k=1

e−ρp(k−1)
k+2�

k−1

(C(gk)(t))p∆(t) dt
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(])

.
∞∑
k=1

eρ(k−1)(2−p)
k+2�

k−1

|gk(r)|p dr

=
∞∑
k=1

eρ(k−1)(2−p)
∞�

1

|gk(r)|p dr

.
∞∑
k=1

eρ(k−1)(2−p)
k+1�

k

|f(r)|peρpr dr

=
∞∑
k=1

eρ(k−1)(2−p)
k+1�

k

|f(r)|pe2ρreρpr−2ρr dr

∼ cp

∞∑
k=1

k+1�

k

|f(r)|pe2ρr dr ∼ cp‖f‖pLp .

Here cp = eρ(p−2) for p < 2 and cp = e2ρ(p−2) for p ≥ 2. The actual value of
cp is immaterial of course, but it should be noted that it can become very
large. At (]) we have used the classical weighted estimates for the Carleson
operator corresponding to the weight w ≡ 1.

It now suffices to establish the estimate

(4.5)
∥∥∥sup
R>1

∣∣∣ ∞∑
k=1

Bk,Rf(t)
∣∣∣∥∥∥
L2(R,dµ)

≤ cp‖f‖Lp(R,dµ) for 1 < p ≤ 2.

For p = 2 this follows from the easy estimate supR>1

∣∣∑∞
k=1Bk,Rf

∣∣ ≤
Uf +

∑∞
k=1Ak,∗f , since U is trivially L2-bounded. It remains to establish

a restricted (Lp, L2)-estimate for 1 < p < 2 by the interpolation theorem
of Marcinkiewicz. Fix a measurable subset E ⊂ [1,∞). If ‖1E‖L2(R,dµ) ≥ 1,
then ∥∥∥∑

k

Bk,∗1E
∥∥∥
L2(R,dµ)

. ‖1E‖L2(R,dµ) . ‖1E‖Lp(R,dµ)

for p ≤ 2.
On the other hand, if ‖1E‖Lp(R,dµ) < 1,

|Bk,∗1E(t)| ≤ e−ρt
(k+1�

k

1
|t− r|

1E(r)∆(r)e−ρr dr
)
ψk(t)

≤ e−ρt

|t− h|
eρk|Ek|ψk(t),

where |Ek| denotes the µ-measure of the set Ek = E ∩ [k, k + 1). But then∥∥∥ ∞∑
k=1

Bk,∗1E
∥∥∥
L2(R,dµ)

≤
∞∑
k=1

‖Bk,∗1E‖L2(R,dµ) ≤ c
∞∑
k=1

eρk|Ek|
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≤ c
∞∑
k=1

e2ρk|Ek| = c

∞�

1

1E(r)∆(r) dr ≤ c‖1E‖pLp(R,dµ),

thus proving the restricted (Lp, L2)-estimate in this case as well. This also
finishes the proof of the proposition.

Lemma 4.5. Let T be either the Carleson operator, the Hilbert transform
on R, or a convolution operator with Lebesgue integrable kernel on R. The
maximal operator associated with the function t 7→ e−ρtT (f(r)∆(r)e−ρr)(t)
maps Lp(R+, dµ) boundedly into Lp(R, dµ) + L2(R, dµ) for 1 < p ≤ 2.

Proof. The corresponding statement in [18] was established by using [21],
hence cast in terms of radial Fourier analysis on Rn. Prestini later generalized
her weighted estimates to a setting that applies to Jacobi analysis, witness
the paper [22]. Hence there is nothing new to prove.

Theorem 4.6. The maximal operator S2,∗ associated with the operator

S2,Rf(t) =
∞�

R0

K2,R(t, r)f(r)∆(r) dr

is bounded from Lp(R+, dµ) into Lp(R, dµ)+L2(R, dµ) for 1 < p ≤ 2 (where
it is implicitly understood that we are in the range t ≥ R0).

The clever technique of proof—originating in [18]—is to bound S2,∗ by
means of maximal operators associated with the Carleson operator and the
Hilbert transform, using Proposition 4.4 and Lemma 4.5. This is a standard
technique when working on spaces of homogeneous type, but for weighted
measures where the volume of large balls grows exponentially more care is
needed. The above technical results are designed to deal with this problem.

Proof of Theorem 4.6. Adopting an earlier idea we decompose smoothly
the domain of integration appearing in the definition of K2,R as [0, R] =
[0, 2ρ]∪ [2ρ,R] by means of a partition of unity g1 + g2 ≡ 1 on [0,∞), where
g2 ∈ C∞even(R) is chosen so that g2(λ) ≡ 1 for λ > 2ρ, and supp g2 ⊂ [ρ,∞).
The kernel K2,R decomposes accordingly as K2,R = KE

2,R + KM
2,R, where

KE
2,R—to be regarded as an error term—is

2KE
2,R(t, r) =

�

R
e(iλ−ρ)(r+t)φλ(t)φλ(r)g1(λ)

c(λ)2

|c(λ)|2
dλ

+
�

R
eiλ(t−r)−ρ(t+r)φλ(t)φ−λ(r)g1(λ)

c(λ)c(−λ)
|c(λ)|2︸ ︷︷ ︸

=1

dλ

+
�

R
eiλ(r−t)−ρ(t+r)φ−λ(t)φλ(r)g1(λ)

c(−λ)c(λ)
|c(λ)|2

dλ
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+
�

R
e(−iλ−ρ)(r+t)φ−λ(t)φ−λ(r)g1(λ)

c(−λ)2

|c(λ)|2
dλ.

Since |c(±λ)2/|c(λ)|2| = 1, all four terms are estimated in a similar manner,
as follows: Let Fλ denote the Euclidean Fourier transform in λ. Then∣∣∣�

R
eiλxφ±λ(t)φ±λ(r)g1(λ) dλ

∣∣∣ = |Fλ(φ±λ(t)φ±λ(r)g1(λ))(x)|

≤
{
c if |x| < 1,
1/x2 if |x| > 1,

that is, the functions
	
Re

iλ(t−r)φ±λ(t)φ±λ(r)g1(λ) dλ are Lebesgue integrable
on R with respect to t and r separately, with L1-norm independent of either
t or r. Additionally,∣∣∣�

R
eiλ(t+r)φ±λ(t)φ±λ(r)

c(∓λ)2

|c(λ)|2
g1(λ) dλ

∣∣∣ ≤ c

t+ r
,

so that the maximal operator associated with KE
R is well behaved.

To avoid notational clutter we will now indicate how to proceed with
estimates for integrands of the form φ±(t)φ±(r)eiλ(t±r)g1(λ)c(∓λ)2/|c(λ)|2;
here we allow all possible combinations of signs on λ and r. Use the first
few terms in the Harish-Chandra series expansion for φλ to write φλ(t) =
Λ0(λ, t) + Λ1(λ, t)e−2t + E2(λ, t)e−4t. Strictly speaking we would obtain 12
terms in the expansion of KM

2,R upon inserting the Harish-Chandra series for
φ±(λ). By abuse of notation we simply write the decomposition of KM

2,R as
KM

2,R = KM,0
2,R +KM,1

2,R + E, where E is whatever remains. More precisely

KM,0
2,R (t, r) = e−ρ(t+r)

[ R�

−R
eiλ(t−r)g2(λ)Λ0(λ, t)Λ0(λ, r) dλ

+
R�

−R
eiλ(t+r)g2(λ)Λ0(λ, t)Λ0(λ, r)

c(∓λ)2

|c(λ)|2
dλ+ similar terms

]
.

Since Λ0(λ, t) = 1 +
∑∞

k=1 γ
k
0 (λ)e−2kt, one has

R�

−R
eiλ(t−r)g2(λ) dλ = −

�

R
eiλ(t−r)g1(λ) dλ+

R�

−R
eiλ(t−r) dλ

= −ĝ1(t− r) +
eiR(t−r)

t− r
− e−iR(t−r)

t− r
,

where ĝ1 is Lebesgue integrable on R. Proposition 4.4 is therefore applicable.
As for the remaining terms in Λ0(λ, t)Λ0(λ, r), we use the fact that γk0 (λ) is
in fact a constant (cf. [25, p. 262]). Since all these terms decay exponentially
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fast, their associated maximal operators will be Ls-bounded in the full range
1 < s <∞ and therefore uninteresting.

Moreover, by integration by parts,

R�

−R
eiλ(t+r)G2(λ) dλ = 2

R�

ρ

eiλ(t+r)G2(λ) dλ

=
[
eiλ(t+r)

t+ r
G2(λ)

]R
ρ

+
[
eiλ(t+r)

(t+ r)2
G′2(λ)

]R
ρ

+
1

(t+ r)2

R�

ρ

eiλ(t+r)G′′2(λ) dλ

where

G2(λ) =
c(∓λ)2

|c(λ)|2
g2(λ)Λ0(λ, t)Λ0(λ, r).

For λ ≥ ρ we have |G2(λ)| ≤ c, |G′2(λ)| ≤ c/λ, and |G′′λ| ≤ c/λ2, meaning
that ∣∣∣ R�

−R
eiλ(t+r)G2(λ) dλ

∣∣∣ ≤ c

t+ r
.

The remaining piece of K2,R is slightly more troublesome, but since the
γk0 in the expansion Λ0(λ, t) = 1 +

∑
k γ

k
0 (λ)e−2kt are constants, we can

simplify the investigation at hand by writing

KM,1
2,R (t, r) = e−ρ(t+r)

[ R�
−R

eiλ(t−r)H−(t, r, λ) dλ

+
R�

−R
eiλ(t+r)H+(t, r, λ)

c(∓λ)2

|c(λ)|2
dλ+ similar terms

]
,

with

H±(t, r, λ)

= {Λ1(±λ, r)e−2r + Λ1(λ, t)e−2t + Λ1(±λ, r)Λ1(λ, t)e−2re−2t}g2(λ).

The kernels associated with the indicated three pieces of, say, H−, are all
estimated in the same manner, so let us simply consider the first term; it
gives rise to the kernel

e−2r
R�

−R
eiλ(t−r)Λ1(−λ, r)g2(λ) dλ = e−2r

∞∑
j=0

R�

−R
eiλ(t−r)γ1+j

1 (λ)g2(λ) dλ

= e−2r
∞∑
j=0

e−2jr
(
1̂[−R,R] ∗ (γ1+j

1 g2)∧
)
(t− r),
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where we use the estimate |γ1+j
1 (λ)| ≤ c(e2(1+j)/λ) for λ ≥ ρ to conclude

that the Euclidean Fourier transform of γ1+j
1 g2 is Lebesgue integrable on R,

whereas the Fourier transform of 1[−R,R] is eiRx/x. Again Proposition 4.4
applies.

The kernel associated with H+ is slightly different, but the kernel asso-
ciated with each of the three terms in H+ satisfies∣∣∣∣e−2r

R�

−R
eiλ(t+r)Λ1(λ, r)

c(∓λ)2

|c(λ)|2
g2(λ) dλ

∣∣∣∣ ≤ e−2r

t+ r
.

The final remaining piece KM
2,R − KM,0

2,R − KM,1
2,R is easily bounded by	R

ρ λ
−2 dλ ≤ c, for all R > 1, thereby completing the proof.

4.3. Investigation of S3,∗. Recall that we are concerned with the op-
erator

S3,Rf(t) =
�
K3,R(t, r)f(r)∆(r) dr

in the region where r > R0 and t < R0/2.

Lemma 4.7. For r > R0, t < R0/2, and R > 1 we have

|K3,R(t, r)| . e−ρt

tα+1/2

1
r
.

We shall prove the lemma in a moment but first we observe that it leads
to the desired bound on the relevant maximal function S3,∗. Indeed, by
Lemma 4.7,

|S3,Rf(t)| . 1
tα+1/2

∞�

R0

|f(r)|e
ρr

r
dr .

‖f‖Lp(dµ)

tα+1/2

∞�

R0

eρr(1−2/p)p′

rp′
dr

≤ cp

tα+1/2
‖f‖Lp(dµ)

for 1/p + 1/p′ = 1, 1 < p ≤ 2. By typical arguments we conclude that
‖S3,∗f‖Lp(R,dµ) ≤ cp‖f‖Lp(R+,dµ) for 1 < p ≤ 2.

Proof of Lemma 4.7. Observing that 1/|t− r| . 1/r and 1/(t+ r) .

1/r, we decompose the kernel K3,R(t, s) as K3,R = K
(1)
3,R + K

(2)
3,R + K

(3)
3,R

where

K
(1)
3,R(t, r) =

2ρ�

0

ϕλ(t)ϕλ(r)|c(λ)|−2 dλ,

K
(2)
3,R(t, r) =

1/t�

2ρ

ϕλ(t)ϕλ(r)|c(λ)|−2 dλ,
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K
(3)
3,R(t, r) =

R�

1/t

ϕλ(t)ϕλ(r)|c(λ)|−2 dλ.

Here

K
(1)
3,R(t, r) =

2ρ�

0

ϕλ(t)
(
c(λ)e(iλ−ρ)rφλ(r) + c(−λ)e(−iλ−ρ)rφ−λ(r)

)
|c(λ)|−2 dλ

= e−ρr
[

1
ir
eiλr

ϕλ(t)φλ(r)
c(−λ)

]2ρ

0

− 1
ir
e−ρr

2ρ�

0

eiλr
d

dλ

(
ϕλ(t)φλ(r)

c(−λ)

)
dλ

+ e−ρr
[
− 1
ir
e−iλr

ϕλ(t)φ−λ(r)
c(λ)

]2ρ

0

+
1
ir
e−ρr

2ρ�

0

e−iλr
d

dλ

(
ϕλ(t)φ−λ(r)

c(λ)

)
dλ

by integration by parts. By Lemma 2.1 and Remark 4.2, the derivatives
d
dλ

(ϕλ(t)φλ(r)
c(−λ)

)
and d

dλ

(ϕλ(t)φ−λ(r)
c(λ)

)
are bounded for 0 ≤ λ ≤ 2ρ, so |K(1)

3,R(t, r)|
. e−ρr/r. Note that this estimate is stronger than what was stated in Lemma
4.7, since for small t the factor 1/tα+1/2 would become large, implying a very
poor kernel estimate.

Integration by parts, now for K(2)
3,R, shows that

K
(2)
3,R(t, r) = e−ρr

[
1
ir
eiλr

ϕλ(t)φλ(r)
c(−λ)

]1/t

2ρ

− 1
ir
e−ρr

1/t�

2ρ

eiλr
d

dλ

(
ϕλ(t)φλ(r)

c(−λ)

)
dλ

+ e−ρr
[
− 1
ir
e−iλr

ϕλ(t)φ−λ(r)
c(λ)

]1/t

2ρ

+
1
ir
e−ρr

1/t�

2ρ

e−iλr
d

dλ

(
ϕλ(t)φ−λ(r)

c(λ)

)
dλ

where we utilize the estimates |ϕλ(t)| ≤ c, |φ±λ(r)| ≤ c, |1/c(±λ)| ≤
cλα+1/2, |ϕ′λ(t)| ≤ c/λ, |φ′±λ(r)| ≤ ce−2r/λ, and

∣∣ d
dλ(ϕλ(t)φ±λ(r)/c(±λ))

∣∣ ≤
cλα−1/2 to conclude that

|K(2)
3,R(t, r)| ≤ c e

−ρr

tα+1/2

1
r
.

It remains to study K
(3)
3,R but since λ is allowed to become either very

large (when R is large) or small (less than one, at least), here we have to
be slightly more careful in the estimates, especially since the proof in [18]
leaves out most terms in the calculation (similar to what happened in the
analysis of K2,R). First write

ϕλ(t) =
tα+1/2√
∆(t)

[
Jα(λt)
(λt)α

+ E1(λ, t)
]
,
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so that

K
(3)
3,R(t, r) = e−ρr

t1/2√
∆(t)

R�

1/t

Jα(λt)
λα

φλ(r)eiλr
dλ

c(−λ)

+ e−ρr
t1/2√
∆(t)

R�

1/t

Jα(λt)
λα

φ−λ(r)e−iλr
dλ

c(λ)

+ e−ρr
tα+1/2√
∆(t)

R�

1/t

E1(λ, t)φλ(r)eiλr
dλ

c(−λ)

+ e−ρr
tα+1/2√
∆(t)

R�

1/t

E1(λ, t)φ−λ(r)e−iλr
dλ

c(λ)

where the first two terms satisfy the same estimates. We therefore concen-
trate on the first one. To this end recall that Jα(t) ∼ t−1/2 cos

(
t− 2α+1

4 π
)

+
O(t−3/2) for t→∞, so that

R�

1/t

Jα(λ)
λα

φλ(r)eiλr
dλ

c(−λ)
= γ1t

−1/2
R�

1/t

eiλ(r+t)

λα+1/2
φλ(r)

dλ

c(−λ)

+ γ−1t
−1/2

R�

1/t

eiλ(r−t)

λα+1/2
φλ(r)

dλ

c(−λ)
+

R�

1/t

E(λ)
λα+1/2

eiλrφλ(r)
dλ

c(−λ)

where γ±1 = exp
(
±i2α+1

4 π
)
. Since E(λ) ∼ O(λ−3/2) and c(−λ)−1 ∼ λα+1/2,

the third integral is easily bounded. As for the first two integrals, we have

R�

1/t

eiλ(r±t)

λα+1/2
φλ(r)

dλ

c(∓λ)
=
[
eiλ(r±t)

i(r ± t)
φλ(r)

λα+1/2c(∓λ)

]R
1/t

− 1
i(r ± t)

R�

1/t

eiλ(r±t) d

dλ

(
φλ(r)

λα+1/2c(∓λ)

)
dλ.

The first term is dominated by c/r, which is what we need, whereas the
second term is controlled by an additional integration by parts. This gives
rise to the additional contribution[
eiλ(r±t)

(r ± t)2
d

dλ

(
φλ(r)

λα+1/2c(∓λ)

)]R
1/t

+
1

(r ± t)2
R�

1/t

eiλ(r±t) d
2

dλ2

(
φλ(r)

λα+1/2c(∓λ)

)
dλ,

where the first term is bounded by c/r2 and where the integral is bounded
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by

c

r2

R�

1/t

1
λ2
dλ ≤ c

r2
.

Collecting powers in t (noting that
√
∆(t) ∼ tα+1/2 for t < R0 and that we

gained the factor t−1/2 when estimating
	R
1/t Jα(λt)λ−αφλ(r)eiλrc(−λ)−1dλ),

the required kernel estimate follows. The remaining terms in the decompo-
sition of K(3)

3,R are treated analogously.

Remark 4.8. The proof is as in [18] but it must be pointed out that the
proof in [18] has a technical gap, in that the authors ignore φ−λ and c(−λ)
in the estimates. The results on asymptotic properties of ϕλ and |c(λ)|−2

are stated under the assumption that λ is nonnegative, so one must be more
careful. Moreover, as we do not complex conjugate anywhere, and since the
original proof was a bit short, we have filled out the gaps along the way.
Lemma 2.1 and the results on the asymptotic behavior of ϕλ(t) have been
stated and proved in a way that repairs this small deficiency.

4.4. Investigation of S4,∗. It remains to analyze S4,∗ but the required
estimates follow at once from those for S3,∗ once we interchange t and r.
The resulting kernel estimate is

(4.6) |K4,R(t, r)| ≤ ce
−ρt

t

1
rα+1/2

for r < R0/2 and t > R0,

which implies that

|S4,Rf(t)| .
R0/2�

0

e−ρt

t

1
rα+1/2

|f(r)|∆(r) dr

.
e−ρt

t
‖f‖Lp

(R0/2�

0

r−(α+1/2)p′+2α+1 dr
)1/p′

,

which is finite whenever p′< 4α+4
2α+1 . Unlike the operator S1,∗, the Lp-bounded-

ness of S4,∗ does not require an additional constraint on the range of p.
Indeed |S4,∗f(t)| . e−ρt

t ‖f‖Lp , whence

‖S4,∗f‖2L2(dµ) =
∞�

R0

|S4,∗f(t)|2∆(t) dt

.
∞�

R0

e−2ρt

t2
‖f‖2Lp∆(t) dt . ‖f‖2Lp

∞�

R0

dt

t2
. ‖f‖pLp .

In other words ‖S4,∗f‖L2(dµ) ≤ c‖f‖Lp for 4α+4
2α+3 < p.
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4.5. Divergence at p = p0. We will presently prove Theorem 3.3 re-
garding the existence of a particularly unpleasant function f ∈ Lp0(dµ). The
technique is an easy extension of the one used to establish [18, Theorem 4],
which we review for the sake of completeness. It was already used in [17],
which in turn was an extension of the classical Cantor–Lebesgue Lemma
(for trigonometric series) to the setting of Jacobi polynomials on [−1, 1].

In the following, one should think of the parameter α (which Meaney
and Kanjin use for the Hankel transform) as our Jacobi parameter α; the
point is that we may ignore the other Jacobi parameter β when we are
merely interested in the local (Euclidean) behavior of the Jacobi functions.
So assume α ≥ −1/2, p ∈ [1,∞), and 0 ≤ a < b ≤ ∞. Let Lpα((a, b)) denote
the space of all measurable functions g on R+ for which

‖g‖α,p =
( b�
a

|g(t)|pt2α+1 dt
)1/p

<∞.

Lemma 4.9. Assume 4α+2
2α+3 ≤ p ≤ 2, and that F ∈ Lp

′
α ((1,∞)) has the

property that

lim
R→∞

R+h�

R

F (λ)
(
Jα(λt)
(λt)α

)
λ2α+1 dλ = 0

uniformly in h ∈ [0, 1]. Then

lim
R→∞

R+h�

R

F (λ)λα+1/2 dλ = 0

uniformly in h ∈ [0, 1].

We refer to [15] for a proof. The lemma will be applied to F = f̂ , which is
permissible since the Hausdorff–Young inequality implies that ‖f̂‖Lp′ (dν) .

‖f‖Lp(dµ) whenever f belongs to Lp(dµ). Since |c(λ)|−2 ∼ λ2α+1 for λ→∞,

it thus follows that f̂ |[1,∞) ∈ L
p′
α ((1,∞)).

Lemma 4.10. Assume that p ∈
[

4α+2
2α+3 , 2

]
and f ∈ Lp(R+, dµ) has the

property that limR→∞ SRf(t) exists for every t in a subset E ⊂ [0, 1] of
positive measure. Then

(4.7) lim
R→∞

R+h�

R

f̂(λ)|c(λ)|−1 dλ = 0

uniformly in h ∈ [0, 1].

The proof of Theorem 3.3 will be completed once we produce a function
f ∈ Lp0(R+, dµ) that violates the conclusion (4.7).
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Proof. We may assume without loss of generality that E is contained in
an interval of the form [ε, 1], λ > 1/ε. Using that

ϕλ(t) = c
tα+1/2√
∆(t)

(
Jα(λt)
(λt)α

+ t2a1(t)
Jα+1(λt)
(λt)α+1

)
+ E2(λ, t)

with |E2(λ, t)| . t2−(α+1/2)λ−(2α+5)/2 for |λt| > 1, it suffices (due to the fact
that |c(λ)|−2/λ2α+1 . 1 for λ→∞) to show that if

lim
R→∞

R+h�

R

f̂(λ)ϕλ(t)|c(λ)|−2 dλ = 0

for ε < t < 1, then

lim
R→∞

R+h�

R

f̂(λ)
Jα(λt)
(λt)α

λ2α+1 dλ = 0,

since Lemma 4.9 is then applicable. Note that the conclusion is not auto-
matic, since the integrands are not always positive. There could be lots of
oscillation going on that would prevent the requirement in Lemma 4.9 to be
satisfied. We must therefore prove the statements

lim
R→∞

R+h�

R

f̂(λ)
Jα+1(λt)
(λt)α+1

λ2α+1 dλ = 0,(i)

lim
R→∞

R+h�

R

f̂(λ)E2(λ, t)λ2α+1 dλ = 0.(ii)

For (i), it follows from the usual Bessel function estimate |Jµ(x)| . x−1/2

for large x that∣∣∣∣R+h�

R

f̂(λ)
Jα+1(λt)
(λt)α+1

λ2α+1 dλ

∣∣∣∣ ≤ ct−(2α+3)/2
R+h�

R

|f̂(λ)|λ−(2α+3)/2λ2α+1 dλ

≤ ct−(2α+3)/2
(R+h�

R

|f̂(λ)|p′λ2α+1 dλ
)1/p′(R+h�

R

λ−(2α+3)/2pλ2α+1 dλ
)1/p

where the first integral is bounded by ‖f̂‖
Lp
′
α ((1,∞))

. The second integral is

roughly of size (hR−(2α+3)p/3+2α+1)1/p, which tends to zero as R→∞, since
the assumption that p be larger than 4α+2

2α+3 implies that 2α+1−(α+3/2) < 0.
Therefore (i) holds; the proof of (ii) is just as easy.

Proof of Theorem 3.3. Let

FR(f) =
R+1�

R

f̂(λ)|c(λ)|−1 dλ =
1�

0

{R+1�

R

ϕλ(t)|c(λ)|−1 dλ
}
f(t)∆(t) dt
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for R > 0 and f ∈ Lp(dµ) with supp f ⊂ [0, 1]. It is seen that the operator
norm of FR is precisely

‖FR‖ =
( 1�

0

∣∣∣R+1�

R

ϕλ(t)|c(λ)|−1 dλ
∣∣∣p′∆(t) dt

)1/p′

,

which in turn is the norm of t 7→
	R+1
R ϕλ(t)|c(λ)|−1 dλ in Lp

′
([0, 1], ∆(t)dt).

Keeping in mind that

ϕλ(t) = c
tα+1/2√
∆(t)

Jα(λt)
(λt)α

+ E1(λ, t)

with |E1(λ, t)| . t2(λt)−(2α+3)/2 for |λt| > 1, we infer from the proof of [15,
Lemma 2] (see also the proof of [14, Lemma 1]) that∥∥∥∥t 7→ R+1�

R

Jα(λt)
(λt)α

λα+1/2 dλ

∥∥∥∥
Lp′ ([0,1],∆(t)dt)

∼
∥∥∥∥t 7→ R+1�

R

Jα(λt)
(λt)α

λα+1/2 dλ

∥∥∥∥
Lp′ ([0,1],t2α+1dt)

% (logR)1/p
′
.

Moreover
1�

1/R

∣∣∣R+1�

R

E1(λ, t)λα+1/2 dλ
∣∣∣p′∆(t) dt

is uniformly bounded in R, when we take p = p0. Indeed,

1�

1/R

∣∣∣R+1�

R

E1(λ, t)λα+1/2 dλ
∣∣∣p′∆(t) dt

≤
1�

1/r

∣∣∣R+1�

R

c1t
2(λt)−(2α+3)/2λα+1/2 dλ

∣∣∣p′∆(t) dt

≤
1�

1/R

∣∣∣R+1�

R

c1λ
−1 dλ

∣∣∣p′tp′(2−(2α+3)/2)t2α+1 dt

= c

(
log

R+ 1
R

)p′ 1�

1/R

t
2α+3
2α+1 dt = c′

(
log

R+ 1
R

)p′[
t

4α+4
2α+1

]1
1/R

= c′
(

log
R+ 1
R

) 4α+4
2α+1

R−
4α+4
2α+1 = o(1)

for R → ∞. By the Banach–Steinhaus theorem there exists a function f ∈
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Lp0α ((0, 1)) so that

lim sup
R→∞

∣∣∣R+1�

R

f̂(λ)|c(λ)|−1 dλ
∣∣∣ = 0.

It thus follows from Lemma 4.10 that {SRf(t)}R diverges for almost every
t ∈ [0, 1].

5. Proof of the mapping properties for critical exponents. We
now prove Theorem 3.5. Since S2,∗ and S3,∗ do not behave worse on Lp0 than
on other Lp-spaces, it suffices to establish the endpoint mapping properties
of S1,∗ and S4,∗. The endpoint mapping property of S4,∗ is stated below as
Lemma 5.1, so we shall presently concentrate on S1,∗.

Recall from Subsection 4.1 that we decomposed the integral kernel K1,R

for the localized piece S1,R of the disc multiplier into a large collection of
pieces. The contributions K2

1,R, . . . ,K
5
1,R are easily handled, so we begin

with those:
For K1

1,R, we introduced a further decomposition K1
1,R(t, r)=M1,R(t, r)

+E1(t, r), where M1,R was decomposed even further (cf. (4.1)) into functions
of the form

Md
1,R(t, r) =

tα+1/2√
∆(t)

rα+1/2√
∆(r)

1
rα

1
tα

R�

1

Jα(λr)Jα(λt)λd dλ, d = 2−M, . . . , 1.

The operator S
M1

1,R

1,R associated with M1
1,R was already seen to be con-

trolled by the spherical summation operator for the Hankel transform, so
the associated maximal operator has the stated mapping property accord-
ing to [4]. The case d = 0 (cf. (4.2)) entails an analysis of three pieces,
M

0,(1)
1,R , M0,(2)

1,R , and M
0,(3)
1,R , corresponding to a suitable smooth partition of

the interval [1, R].

The piece M0,(1)
1,R (t, r) was seen to satisfy the estimate |M0,(1)

1,R (t, r)| .

t−(α+1/2)r−(α+1/2), whence

|S
M

0,(1)
1,R

1,R f(t)| .
R0�

0

|M0,(1)
1,R (t, r)| |f(r)|∆(r) dr .

1
tα+1/2

R0�

0

|f(r)|
rα+1/2

∆(r) dr

.
1

tα+1/2
‖f‖Lp0,1([0,R0],dµ) · ‖r 7→ r−(α+1/2)‖Lp1,∞([0,R0],dµ)

.
1

tα+1/2
‖f‖Lp0,1(R+,dµ).
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The relevant level function for S
M

0,(1)
1,R

1,∗ therefore satisfies the estimate

d(λ) = µ({t ∈ [0, R0] : |S
M

0,(1)
1,R

1,∗ f(t)| > λ}) ≤ 1
λp0

R0�

0

|S
M

0,(1)
1,R

1,∗ f(t)|p0∆(t) dt

.
‖f‖p0

Lp0,1

λp0

R0�

0

t2α+1−(α+1/2)p0 dt

where the integral is finite since

2α+ 1−
(
α+

1
2

)
p0 = 2α+ 1−

(
α+

1
2

)
4α+ 4
2α+ 3

=
2α+ 1
2α+ 3

> 0 > −1

(α > −1/2 by the standing assumption), implying ‖S
M

0,(1)
1,R

1,∗ f‖Lp0,∞(R+,dµ)

. ‖f‖Lp0,1(R+,dµ) as claimed.

The mapping properties of the maximal operator associated with M0,(2)
1,R

are the same as for M0,(1)
1,R since |M0,(2)

1,R (t, r)| . t−(α+1/2)r−(α+1/2).

The most difficult piece, M0,(3)
1,R , gave rise to an operator that was con-

trolled by the Carleson operator applied to the function f
√
∆, the upshot

being the estimate (4.3). It is seen by close inspection of the argument on
top of page 75 in [4] that the Carleson maximal operator is even bounded
from Lp0,1 into Lp0,∞ (the underlying measure space now being R+ with
weighted Lebesgue measure x2α+1dx), so it follows that the maximal oper-

ator S
M

0,(3)
1,R

1,R is bounded from Lp0,1(R+, dµ) into Lp0,∞(R+, dµ). Recall here

that S
M

0,(3)
1,R

1,R f(t) is only considered for 0 ≤ t ≤ R0, hence the stated result on

the Carleson operator is applicable. Hence S
M0

1,R

1,R enjoys the stated endpoint
mapping property.

The cases d = 2 − M, . . . ,−2,−1 now follow at once; above we have
merely used that the relevant kernels were dominated by ct−(α+1/2)r−(α+1/2).
Since all the remaining operators satisfy the same estimates, we are effec-
tively done; the maximal operator S1,∗ is bounded from Lp0,1(R+, dµ) into
Lp0,∞(R+, dµ).

As for S4,∗ we will state the precise result as a lemma:

Lemma 5.1. The maximal operator S4,∗ is bounded from Lp0,1(R+, dµ)
into L2(R, dµ).

Proof. Recall that the level function of a function f ∈ Lp0(R+, dµ) is
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defined by df (λ) = µ({t : |f(t)| > λ}), hence

dS4,∗f (λ) ≤ 1
λ2

∞�

R0

|S4,∗f(t)|2∆(t) dt

.
1
λ2

∞�

R0

(
e−ρt

t

)2∣∣∣∣R0/2�

0

|f(r)|
rα+1/2

∆(r) dr
∣∣∣∣2∆(t) dt.

Observe that ∆(t) grows as eρt for t→∞, so that the t-integrand is domi-
nated by 1/t2 on [R0,∞). For the inner integral, we intend to use the Lorentz
space version of the Hölder inequality, that is (with p0 = 4α+4

2α+3),∣∣∣R0/2�

0

f(r) · r−(α+1/2) dµ(r)
∣∣∣ ≤ ‖f‖Lp0,1([0,R0/2],dµ)‖r−(α+1/2)‖

Lp
′
0,∞([0,R0/2],dµ)

,

to which end it suffices to show that g : [0, R0/2] → R, r 7→ r−(α+1/2),
belongs to Lp

′
0,∞([0, R0/2], dµ). This is easy: It follows from the estimate

dg(γ) = µ({r ∈ [0, R0/2] : r−(α+1/2) > γ}) ≤ µ({r ≥ 0 : rα+1/2 < 1/γ})

= µ(r ∈ R+ : r < γ
− 1
α+1/2 ) ≤ (γ−

1
α+1/2 )2α+2 = γ

− 2α+2
α+1/2

that dg(γ)1/p
′
0 ≤ (γ−

2α+2
α+1/2 )

2α+1
4α+4 = γ−1, and therefore

‖g‖
Lp
′
0,∞([0,R0/2],dµ)

= sup
γ>0

γdg(γ)1/p
′
0 ≤ 1.

This completes the proof of Theorem 3.5.

Remark 5.2. Lemma 5.1 should be seen as a “non-Euclidean” analogue
of the result from [23] and the statement is new even for rank one symmetric
spaces.
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