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The Campanato, Morrey and Holder spaces on
spaces of homogeneous type
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Dedicated to Professor Sin-FEi Taokahasi on his siztieth birthday

Abstract. We investigate the relations between the Campanato, Morrey and Hoélder
spaces on spaces of homogeneous type and extend the results of Campanato, Mayers,
and Macias and Segovia. The results are new even for the R"™ case. Let (X,d,p) be a
space of homogeneous type and (X,d, ) its normalized space in the sense of Macias
and Segovia. We also study the relations of these function spaces for (X,d, ) and for
(X, 9, p). Using these relations, we can show that theorems for the Campanato, Morrey
or Hélder spaces on the normal space are valid for the function spaces on any space of
homogeneous type. As an application we obtain boundedness of some operators related to
partial differential equations, boundedness of fractional differential and integral operators,
and give characterizations of pointwise multipliers.

1. Introduction. The theory of function spaces on spaces of homoge-
neous type has been developed by many authors: Coifman and Weiss [4, 5],
Macias and Segovia [14], Han and Sawyer [9], etc. In this paper we inves-
tigate the relations between the Campanato, Morrey and Hoélder spaces on
spaces of homogeneous type and extend the results of Campanato [2, 3],
Mayers [15] and Macias and Segovia [14]. We also show the relations be-
tween these function spaces for (X,d, ) and for (X,0, ), its normalized
space in the sense of Macfas and Segovia [14].

Let X = (X,d, ) be a space of homogeneous type, i.e. X is a topological
space endowed with a quasi-distance d and a nonnegative measure p such
that

d(z,y) >0 and d(z,y) = 0 if and only if x = y,
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2 E. Nakai

d(z,y) = d(y, ),
(1.1) d(x,y) < K1(d(x, 2) + d(z,y)),

the balls (d-balls) B(z,r) = B(x,r) = {y € X : d(z,y) <r}, r >0, form a
basis of neighborhoods of the point x, i is defined on a o-algebra of subsets
of X which contains the balls, and

(1.2) 0 < pu(B(z,2r)) < Ky u(B(x,r)) < 00,

where K; > 1 (i = 1,2) are constants independent of x,y,z € X and r > 0.

We note that every open subset of X is expressible as a countable union
of balls (see [4, p. 70]), and so it is measurable.

Let 1 <p<ooand ¢: X x Ry — Ry. For a ball B= B(z,r), we shall
write ¢(B) in place of ¢(x,r). For a function f € Ll (X) and for a ball
B, let fp = p(B)*{ f(z)du(x). Then the Campanato spaces Ly 4(X),
Morrey spaces Ly, »(X) and Holder spaces Ag(X) are defined to be the sets
of all f such that |||z, , < oo, || fllz,, < oo and | f|la, < oo, respectively,
where

1 1
e -y

S
B
1 1 p
£z, = su —— V(@) [Pdp(z) |
Ly.s = SUD < ; m )

¢(B)
2f(x) = f(y)l
flla, = sup .
W0 = 0, 1y 00 ) + o, iy, )
For ¢(x,r) = r* (a > 0), we shall write Lip,(X) in place of Aya(X). If
p =1, then £y 4(X) = BMOy4(X). If ¢ = 1, then £; 4(X) = BMO(X) and
Ag(X) = L®(X). If ¢(B) = u(B)~YP, then L, 4(X) = LP(X).

If X =R" d(z,y) = |r — y|, p is Lebesgue measure and ¢(x,r) = r®,
then the following are known (Campanato [2, 3], Mayers [15] and Peetre
[22]):

—n/p<a<0 = L, 4(R")/C=L,sR") (= LP(R") if @« = —n/p),
a=0 = £, 4(R") = BMO(R") O L, 4(R") = A4(R") = L®(R"),
0<a<l = L,s(R") = A4(R") = Lip,(R"),

where C is the space of all constant functions (see also Spanne [23], Janson
[10] and Nakai [18]). In this paper we give necessary and sufficient conditions
on ¢ : X x Ry — R for the relations

Lpp(X)/C=Lpp(X), Lpo(X)=1Lps(X), Lpe(X)=Ap(X)
to hold.
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If there are constants # (0 < 6 < 1) and K3 > 1 such that
(1.3) |d(z,2) —d(y,2)| < K3 (d(z,2) + d(y, 2)) Pd(z,y)’, z,y,2€X,

then the balls are open sets. Note that (1.1) for some K; > 1 follows from
(1.3) (Lemarié [11]). Conversely, from (1.1) it follows that there exist 6 > 0,
K3 > 1 and a quasi-distance which is equivalent to the original d such that
(1.3) holds (Macias and Segovia [14]).

Following Macias and Segovia [14], we shall say that a space of homo-
geneous type is normal if there are constants K4y > 0 and K5 > 0 such
that

(1.4)  Kyr < u(B(z,r)) < Ksr  for x € X and p({z}) <r < p(X).

For a space (X, d, u) of homogeneous type such that the balls are open sets,
let

(1.5)

5z, y) = { inf{u(B?) : B% is a d-ball containing = and y} if z#y,
7 0 if z=y.
Macias and Segovia [14] showed that (X,J, x) is a normal space of homo-

geneous type, that the topologies induced on X by d and J coincide, and
that

(1.6) Lps(X,d, p) =Lip,(X,0,u) for ¢(x,r) = ,u(Bd(x,r))a.

In this paper we also study the relations of our function spaces for (X, d, )
and (X, 0, ). Our results include the equality (1.6) as a special case. More-
over, using these relations, we can show that theorems for the Campanato,
Morrey or Holder spaces on the normal space are valid for the function spaces
on any space of homogeneous type. Conversely, results for these function
spaces on any space of homogeneous type, for example spaces associated to
vector fields (see [17]), adapt to the normal space. As an application we ob-
tain boundedness of some operators related to partial differential equations,
boundedness of fractional differential and integral operators, and character-
izations of pointwise multipliers.

We regard L, 4(X) and L, 4(X) as spaces of functions modulo null-
functions, and A,(X) as a space of functions defined at all z € X. Then
Lps(X)/C, Lps(X) and Ay(X)/C are Banach spaces with the norms
I fllc, 1]z, s and [|f]la,, respectively. For any fixed ball By and for any
fixed point zo, || fllz,. + [fBo| and [|f]la, + |f(z0)| are norms on L, 4(X)
and Ag(X), respectively. Thereby £, 4(X) and A4(X) are Banach spaces. If
1€ Ly 4(X), then L, 4(X)/C is a Banach space with the norm || f — fp,][1, ,-

We note that for each ball By and for each point z1 € X, ||fllz, , + | /5ol
~ flle, s + fpal and [flla, + 1f @o)| ~ Iflla, + f (@) 1€ Lyy(X),
then || f — fBoHLp,¢ ~If - fBl”Lp’d)' If p(X) < oo, then ||f||Cp,¢ + ’fBo‘ ~
Ifllz,o + Ifllze- (See (3.3) and (2.7).)
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We state our main results in the next section and prove them in the third
section. We give applications in Section 4.

The letter C' shall always denote a constant, not necessarily the same
one.

2. Main results. Let (X, d, ) be a space of homogeneous type satis-
fying (1.3), zo a fixed point in X, and By = B(xo, 1).
We shall consider the following conditions on ¢:

1 o(a,s)

(2.1) A—1§ a.r) < Ay, 1/2<s/r <2,

(2.2) ¢(z5T) < Ay ¢(ZGZ S), 0<s<r,

@3 (B 2% g < 4y u(Blar) @), >0
0

(2.4) Ai4 < 2((22 <Ay, dab) <7

where A; > 0 (i = 1,2,3,4) are independent of r,s > 0, a,b € X.

Let 79 > 0. The following are equivalent (see [21, Lemma 5.2]):
(2.5) B(zg, K¢r) \ B(zo,7) #0, r>ry, forsome Kg > 1,
(2.6) u(B(zo,7)) < 2u(B(zo, K§r)), 1 >109, for some K > 1,
where K¢ and K are independent of r > 7. We shall consider these condi-
tions if pu(X) = oc.

Our first result is the following.

THEOREM 2.1. Let u(X) = oo and X satisfy (2.5) for some rg > 0. If
1 <p < oo and ¢ satisfies (2.1)—(2.4), then the following are equivalent:

(i) There is a constant C > 0 such that
°5° 6(a,t)
: t

(11) L"P’¢(X)/C = LP#)(X) and ||f||£p,¢ ~ ||f - hmr—>oo fB(mo,T)HLp,¢7 i.e.
for every f € Ly, 4(X), fB(zo,r) converges as r tends to infinity, and
the mapping [+ f —limy— oo fB(xg,r) 18 bijective and bicontinuous
from L, 4(X)/C to L, (X).

In this case, limy oo fB(a,r) = liMy—oo fB(xg,r) for all a € X.

REMARK 2.1. (i)=-(ii) can be proved without (1.3), (2.1)—(2.5). In the
case that X = R", d(x,y) = |x —y| and p is Lebesgue measure, (i)=-(ii) has
been proved by Mizuhara [16].

dt < C¢(a,r), ae€X,r>0.
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For ¢ : X x Ry — Ry, we define
max(2,d(zo,a),r) max(2,d(zo,a),r)
t
@*(a’ 7,) — S @dt, @**(a,T’) = S
1 T
Then we have the following.

¢(a,t)
t

dt.

THEOREM 2.2. If u(X) = oo, then assume (2.5) for some rog > 0. If
1 <p< oo and ¢ satisfies (2.1)—(2.4), then the following are equivalent:

(i) There is a constant C > 0 such that
&*(a,r) + D (a,r) < Co(a,r), a€ X,r>0.

() £350) = Ly () and 1., + 13|~ 1],

(ii1) 1€ Lpo(X), Lpo(X)/C = Lpy(X)/C and ||f||z:p¢, ~ = IBollL,. -

REMARK 2.2. (i)=(ii) can be proved without (1.3), (2.2)—(2.5). (ii)<(iii)
can be proved without (1.3), (2.1)—(2.5).

REMARK 2.3. Let u(B(a,7)) ~ % (3 > 0) and ¢(a,r) = r~*max(2,
d(zp,a),r), for 1 — 0 < a < min(1,3/p) and 1 < p < oo. Then ¢ satisfies
(2.1)—(2.4) and (i).

If 4(X) < oo, then there is a constant Ry > 0 such that

(2.7) X =B(z,Ry) forallze X
(see [21, Lemma 5.1]). For ¢, we define
2R
t
P(a,r) = S gb(c;, ) dt, 0<r <Ry

T

Then we have the following.

COROLLARY 2.3. Let u(X) < o0. If 1 < p < o0 and ¢ satisfies (2.1)—
(2.4), then the following are equivalent:

(i) There is a constant C > 0 such that
P(a,r) < Cop(a,r), ae€X,0<r <Ry
() £30(0) = Ly () and 1., |~ 111,
(ii1) 1€ Lpo(X), Lpg(X)/C = Lpg(X)/C and |[flc, o ~ | ~ f5yllL, .-

REMARK 2.4. On the assumption that & > C > 0, (i)=-(ii) can be
proved without (1.3), (2.2)-(2.4). (ii)«<(iii) can be proved without (1.3),
(2.1)-(2.4).

To consider the Holder spaces A,(X), we assume that there is a constant
As > 0 such that

(2.8) o(a,r) < As¢(b,s) for B(a,r) C B(b,s).
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THEOREM 2.4. If1 <p < oo and ¢ satisfies (2.1)—(2.4) and (2.8), then
the following are equivalent:

(i) There is a constant C > 0 such that

d(z,y)

S ¢($7 t)
t
0
(i) Lno(X) = A5(X) and [flc, , + ool ~ | £lla, +1F@o)].

(iil) Lpp(X)/C = Ag(X)/C and |||z, , ~ [If]la,-

REMARK 2.5. (i)=(ii) can be proved without (1.3), (2.2)—(2.4). On the
assumption that Sé @(zo,t)/tdt < oo, (i)« (iil) can be proved without (1.3),
(2.2)-(2.4).

Let 0 be defined by (1.5). The relations of the function spaces for (X, d, p1)
and (X, 4, u) are as follows.

dt < C¢(xz,d(z,y)), z,y€X.

THEOREM 2.5. Suppose that ¢ : X x Ry — Ry salisfies (2.1). Let
¢(x,7) = ¢z, (B (x,7))) and s (z,7) = (2, max(r, u({z}))). Then
Lpo(X,d,p) = Lpy(X, 0, 1),
Lpp(Xyd, 1) /C = Ly y(X,0,1)/C,
Ly (X, d, ) = Ly, (X, 6, 1),
with equivalent norms. If 1 satisfies (2.8) also, then
Ap(X,d, p) = Ay(X, 6, ),
Ap(X,d, 1) [C = Ay (X, 6,11)/C,
with equivalent norms.
Let ¢(z,7) = r* (o > 0) in this theorem. Then ¢ satisfies (2.1),

2.1), (
and (i) in Theorem 2.4. From Remark 2.5 it follows that £, (X, 4,
Lip, (X, 0, ). Therefore we have the following.

2.8
)

COROLLARY 2.6 (Macfas and Segovia [14]). Let ¢(x,7) = pu(B%(x,r))®
with a > 0. Then

£P7¢(X’ d’ /L) = Llpa(X7 57 M)v
Ly,s(X,d, 1)/C = Lip, (X, 4, 1) /C,
with equivalent norms.

Let My, »(X) be the set of all f such that || f||az, , < oo, where

1 » 1/p
s = s (5§ 1@Pdu)

a,r) B(a,r)
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Let ¢(x,r) = r* (v < 0) in Theorem 2.5. Then ) satisfies (2.1) and (i) in
Theorem 2.1 and (i) in Corollary 2.3. If p({z}) = 0 for all x € X, then
p(B%(z,7)) ~ r and 1, = 1). Therefore we have the following.

COROLLARY 2.7. Let u({z}) = 0 for all x € X, and let ¢(x,r) =
w(B(x, 7)), —1/p<a <0, \=1+pa. Then
Lpo(X,d, 1) /C = Mp (X, 0,p) if p(X) = oo,
Ly s(X,d, ) = M, (X, 9,
{ (X, dy ) = Mp (X, 6, 1) if p(X) < o0
EP@(X’ d7 /J,)/C = MP)\(Xa 57 M)/C
with equivalent norms.

3. Proofs. Let 1 < p < oo and
1 1/p
MO£,8) = (i f i) - abauts))
First, we state some simple inequalities (see for example [21]):
/ /
61 (1) ol du@) " < 2mr (] 1£) — P du) "
B B
(32)  |F(21) = F(22)| < Cla1 — 22| = MO(F(f), B) < 2CMO,(f, B),
B
(33) s — fml < ZE ng MO, (f,Bs) for By C Bo,
(34) |fB(a,r) - fB(a,s)|
2s
< 2K3(log2) " | MOp(f’tB(a’t

T

))dt for0<r <s.

If ¢ satisfies (2.1), then

2s s

(3.5) S¢(t )dt< 1+A18 dt for 0 < 2r <s.
From (3.4) it follows that, if f € £, 4(X ), then

2s

a,t
1 S ¢(t )

3.1. Proof of Theorem 2.1. We state two lemmas.
LeMMA 3.1 ([21]). If 1 < p < o0 and ¢ satisfies (2.1)—(2.4), then

¢(a,t)
t

(36) |fB(a,r) _fB(zz,s)| < 2K22(10g 2)_ dt HfHﬁp@ for 0 <r < s.

1
(37) fa(x) = S dt
d(a,x)
is in Ly, 4(X) for all a € X, and there is a constant C > 0, independent

of a, such that || falc, , < C.
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LEMMA 3.2. If S;’O @(xo,t)/tdt < oo, then for every f € L, 4(X) there
exists a constant o(f) such that o(f) = lim,; o fp(a, for alla € X.

Proof. Let f € L,4(X). As r and s tend to infinity with r < s, the
right-hand side of (3.6), with a = x¢, tends to zero. Thus

|fB(m0,r) - fB(zO,5)| —0 asr,s— oowithr <s.

Hence fp(s, ) converges as r tends to infinity. Let o(f) = lim; oo fB(agr)- If
d(xo,a) <r, then B(a,r) C B(xo,2K1r) and u(B(a,r)) ~ p(B(zo, 2K17)).
From (3.3) it follows that

(38) ’fB(a,r) - J(f)’ < ’fB(a,r) - fB(x0,2K1T)‘ + ‘fB(aco,2K1r) - U(f)‘

< B0 KAD) 0, 23) + i) — o)

—0 asr—o00. =
Proof of Theorem 2.1. (i)=(ii): Let f € £, 4(X). Letting s — oo in
(3.6) and using Lemma 3.2, we have

¢(a,t)
t

[e.9]

B — o (A < Co \ == dt||flc,,, a€X r>0,

r

where Cp = 2K3(log2)~!. Hence, by (i), we have

1 pd 1/10
(m B(Eﬂ (@) — o) u(l’))

1 I/P

< (- RICR (@) + e ~ o)
<1+ CoCO)(a,r)flle, s a€X,r>0.

This shows that f — o(f) is in L, 4(X) and that

If =Nz, <A+ CoO)fle,.,
From (3.1) it follows that

1fllz,e <20 = (L,

Conversely, let f € L, 4(X). Then f is in £, 4(X) and o(f) = 0, since
| fB(zo,m) | < é(w0,7)| fllL,., — 0 as 7 — oo. Therefore we have (ii).

(ii)=(): For f € L,4(X), let o(f) = limy o0 fB(ao,r)- First we show
that ¢(wo,t) — 0 (t — 00). Then, by (3.8), we have o(f) = lim,—oo fB(a,r)
for all @ € X. Let

max(1,d(zo,z)) ¢(x0,t)

o) = § T max(0,~fuy o),
1
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where f;, is defined by (3.7). By Lemma 3.1 and (3.2), g isin £, 4(X). From
(2.6) it follows that there is a constant C' > 0 such that

wu(B(xo, Kir)) < 2u(B(zo, Kgr) \ B(zo, 7)), > r0.

Since gp(zy,r) 18 increasing with respect to r, we have

1
0(9) > 9B@okir) > —rr—r T | g(x) du(x)
’ B K
p(B(xo, Kgr)) Blzo, KL\ Blzor)
1 '
> = S ¢(z0,t) dt for all r > rg.
2 | t

Hence ¢(xo,t) — 0 (t — o0). Now, for each ball B(a,r), let

max(r,d(a,z)) .
h(x) = ) dt:max<o,_(fa($) R0 dt))
1

where f, is defined by (3.7). By Lemma 3.1 and (3.2), h is in £, 4(X) and
there is a constant C' > 0, independent of B(a,r), such that [|hl|c, , < C.
From (2.6) it follows that there are constants r, > 0 and K, > 1 such that

w(B(a, Ky8)) < 2u(B(a, Kgs) \ B(a,s)), s> r,.

Since hp(q,s) 18 increasing with respect to s, we have

r

1
. h) > h > h(x)d
(3 9) U( ) = I'B(a,Kqs) = ,LL(B(CL,KQS)) S (.T) lu’(x)
B(a,Kas)\B(a,s)
1 S
> —S $(a, 1) dt for all s > max(r,r,).

2 : t

Since h(z) =0 on B(a,r), we have

(3.10) o(h) = V [h(@) = o (k)] du(x)

wBla,r)) po
< b= a(W)llz, ,6la,r) ~ [hllz, ,é(ar) < Cola,r).
By (3.9) and (3.10), we have (i). m
3.2. Proof of Theorem 2.2. We need the following lemmas.
LEMMA 3.3 ([19]). If1 <p < oo and ¢ satisfies (2.1), then

Lpp(X) C Lpgrao(X) and | fllL, geyger < CUfllz,s +1FBD)-

LEMMA 3.4 ([21]). If 1 < p < oo and ¢ satisfies (2.1)—(2.4), then, for
any ball B(a,r), there is a function f € Ly, 4(X) such that

1fllz, s+ 1fBsl <C1 o and fpay) = C2(®*(a,r) + 27 (a, 1)),
where C1 > 0 and Cy > 0 are independent of f and B(a,r).
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Proof of Theorem 2.2. (i)=(ii): In general £, 4(X) D L, 4(X) and

1flle,.s + B0l < (24 ¢(Bo))ll Iz, -
From (i) and Lemma 3.3 it follows that

Lpp(X) C Lpo(X) and || fl|z,, < CUIflle,, +1/5])-

(ii)=(i): For any ball B(a,r), let f be as in Lemma 3.4. Since
[fBam| < &la, ) fllL, s ~ (a1 fll, o + 150 ));

we have (i).

(ii)=-(iii): Since Ly (X ) =Ly 4(X), all constant functions are in Ly, 4(X).
Putting f — fp, instead of f in (ii), we obtain (iii).

(iii)=(ii): Since 1 € L, 4(X), it turns out that supg 1/¢(B) < oo and
that || 5,1, = (sups 1/6(B))|f,|. Hence,

1y < I = FBollzyo + 1fBollLy e ~ 1fllz, o + [fBol- @

3.3. Proof of Corollary 2.3. From (2.4) it follows that inf,c x ¢(a, Ry) >0
and that & > C > 0. Hence, if ¢ satisfies (2.1), then @ is comparable to
@* 4+ @**. Therefore this corollary follows from Theorem 2.2.

3.4. Proof of Theorem 2.4. We need some lemmas.

LEMMA 3.5. If S(l) ¢(z,t)/tdt < oo, then for every f € Ly 4(X), fB@r)
converges as r tends to zero.

Proof. As r and s tend to zero with 0 < r < s, the right-hand side of
(3.6) tends to zero. m

LEMMA 3.6. Suppose that ¢ satisfies (2.1). Let

1
X*:{xeX:SMdt<oo}.
0
For f € L, 4(X) and for x € X*, let g(z) = lim,—o fp(zr)- Then
(3.11)  [g(z) - g(v)l
d(z,y)

<C |
0

¢(z,t) + ¢y, t)
t

At fl,, for allz.ye X",

where the constant C' > 0 is independent of f.

Proof. Let f € L,4(X), x,y € X* and 2r < d(z,y) = s. By (3.6) and
(3.3), we have
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|fB(x,r) - fB(y,r)|
< |fB(x,7") - fB(:E,s)| + |fB(:c,s) - fB(y,2K1s)’ + |fB(y,2K13) - fB(y,r)|

2s AK1s
¢(z, t) 1(B(y, 2K1s)) oy, t)
< 2K
< (Co S T By W 2s) + Gl S - dt
X[ £l
where Cy = 2K3(log2)~!. Since u(B(y,2K1s)) ~ u(B(z,s)) and
4K1s
, b
oy 2kis) ~ | 20l
2K1s
using (3.5), we deduce that
d(z,y)
oz, t) + ¢y, t
faen ~ Fognl <€ | 2EDTOD gy

.

Letting r» — 0, we obtain (3.11). =
LEMMA 3.7. Suppose that ¢ satisfies (2.1). Let

d(z,y)

8, 1) + 6(0,)
5 :

X**:{xeX: dt—>0asy—>;1;}.

0

Then for every f € Ly 4(X), the function g(z) = lim,—o fp(z is equal to
f(x) for a.e. x € X**,

Proof. As in the proof of Theorem 4 in [14], using (3.11) instead of [14,

(3.7)], we find that for every z € X** and £ > 0 there exists a ball B(z, r(z))

such that 0 < r(z) < 1 and

Vo 1F) — 9P du(y) < ep(B(x,r(x))),
B(z,r(z))
which shows that f(z) = g(z) for a.e. z € X**. u
Proof of Theorem 2.4. (i)=-(ii): Let f € L, 4(X). We regard L, 4(X) as
a set of functions modulo null-functions. By Lemma 3.7, we may assume
that f(x) = lim, ¢ fp(s,) for all x € X. By Lemma 3.6, we have

d(z,y)
fa) - fwl <o | BN g,
0

< '@z, d(@,y)) + oy, dz, y))Ifllc, o 7y €X.

Hence f € A4(X) and ||f||A¢ < QC’HngM.
Conversely, let f € Ay(X). If z,y € B = B(z,7), then

B(z,d(x,y)), B(y,d(z,y)) C B(z, 4K127°).
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By (2.8), we have
¢z, d(z,y)), ¢y, d(z,y)) < Asd(z,4K77).

Hence,
|f(x) = f(y)| < Co(B)| flla,-
It follows that

1 , 1/p
Qmﬂgﬂm—mrwmﬁ

g(gg( 176 |@<O%mmfm

< Co(B)|[fla,-

Hence f € £, 4(X) and || f|z,, < C| flla,-
(ii)=(i): Let f, be defined by (3.7). By Lemma 3.1 and (ii), f, is in
Ag(X) and there is a constant C' > 0, independent of a € X, such that

[ falla, < C. Since Ay(X) C LS (X), we have
fala) = § @dt < oo forevery a € X.

Hence, 0

0 4 - i

0
< 1@, d(x, 1)) + 6w, Az, y) [ Fella, < (1 + A)Colx, d(x,y)).
(i)« (iii): Let f € A4(X). By (2.1) and (2.8), we have
L £(2) = Fo)l dulz) < Co(Bo)||f 1a,.

Bo

’fBO_f(-:UO)’ < (BO)

Let f € £, 4(X). By (3.6), we have
S¢(m07 )

0

5o = f(@o)l = 1 [ f(x0,1) = [B(om)| < C dt|fllc,, =

3.5. Proof of Theorem 2.5

LEMMA 3.8. Let (X,d;, 1) (i = 1,2) be spaces of homogeneous type. Sup-
pose that ¢ : X x Ry — R, satisfies (2.1). Let ¢;(z,r) = ¥(x, u(B%(x,r)))
(i =1,2). If for every dy-ball By there is a da-ball By such that

(3.12) By C By and p(Bz) < Cu(Br)
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for some constant C > 0 independent of B1 and Bs, then

£p7¢1 (X7 d17 N) > ‘CP7¢2 (X7 d27 /’L)7

‘CP7¢1 (Xa dl’ :u)/c > ‘Cp,¢2 (X’ d2a M)/C,

Lp7¢1 (X’ dla M) > Lp,¢2 (Xv da, M)a

and the embeddings are continuous. If 1 also satisfies (2.8), then
Ay (X, dy, ) D Ag,y (X, da, ),
A¢1 (X7 d17 ,U,)/C D) A¢2 (Xa d27 ,u’)/c7

and the embeddings are continuous.

Proof. First we show || fllz, , (x.ai,u) < Cllf iz, 4, (X,do)- From (3.12) it
follows that u(B1) ~ p(Bs2) and ¢1(B1) ~ ¢2(Ba2). Hence, by (3.1) we have

1 1 ) 1/

1

< ? ( ! §|f<x>—fBQ|Pdu<x>)l/p

A

1 1 ) 1/p
<oty Gty ) 1) = Jmlr )

In the same way, we have | fl|z, , (x.di.u) < CIfIlL, 4 (X.do)-
Let By = B%(z¢,1) in (3.12). Then by (3.3) we have
| fatr @,y < ClfBsl < C/(1f paa (o) + 11|, g (X doi))-

Next we show
(313) ¢2($7d2($7y)) < Cqbl(x?dl(x?y))v T,y € X7
which implies that |[f]l4, (x.dim < CllfIla,, (X For B (x,2d:(x,y)),
there is B%(z,r) such that
BY(z,2d1(z,y)) € B®2(z,r) and pu(B®(z,r)) < Cu(BY (x,2di(x,y))).

Since y € B%(x,2dy(x,y)) C B®(x,r), it turns out that da(z,y) < 7.
Hence,

W(BE(z,d2(x,y))) < w(B (2, 7)) < Cu(B™ (2, 2d1(x, 1))
< C'u(BM (2, d(z,y))).
Using (2.1) and (2.8) for ¢, we obtain (3.13). =
By the definition of §, we have
B'(x,r) C B’ (z, u(B"(z,7))),

3.14
10 w(B° (z, p(B%(x,7)))) < Ksu(B(z,7)).
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Conversely, we have the following.
LEMMA 3.9. For any 6-ball B (x,7), there is a constant 7 > 0 such that
B(z,r) C B¥x,7) and pu(BY(z,7)) < Cu(B(z,7))
for some constant C > 0 independent of x, r and 7.

Proof. Case 1: pu({z}) < r < p(X). Choose a constant M > 0 such

that
u(B%(z, (2K1)%s)) < Mu(B%(z,5)), z€X,s>0.

If y € B%(z,r), then 6(z,y) < r. By the definition of §, there is a d-ball
BY(z,s) such that z,y € B%z,s) and u(B%(z,s)) < r. Since BY(z,s) C
B(x,2K15) C BY(z, (2K1)%s) and u(B%(x,2K1s)) < Mu(B%(z,s)) < Mr,

we have
B(z,r) C U{Bd(x,t) : w(BY(z,t)) < Mr}.

Let
¢ .- {Sup{O <1< Ro:u(Bx, b)) < Mr} if u(X) < oo,

sup{t > 0: u(B%(z,t)) < Mr} if (X)) = o0,
where Ry is the constant in (2.7). Then B(x,r) C B%(x,7) and
(B (@, 7)) < Kop(B(x,7/2)) < KaMr < (KsM/Ka)u(B(z,7)).
CASE 2: p({z}) >0 and 0 < r < pu({z}). By [14, Theorem 1], we have
B(z,r) = {z} = B4(x,r,) for some r, > 0.
CASE 3: u(X) < oo and p(X) <r. We have
B’(z,r) € X = BY(x, Ry) = B%(x,2r). =
Proof of Theorem 2.5. Since 1 (x, ) ~ 9 (x, u(B(x,r))), using Lemma
3.8, (3.14) and Lemma 3.9, we obtain
Lpo(X,d,p) = Lpyp, (X, 06, 1),
L06(X,d,12)/C = Ly, (X.6.)/C.
Lpo(X,d, i) = Ly y, (X, 6, 1),
Ag(X,d, p) = Ay, (X, 0, 1),
Ao(X,d, 1) /C = Ay, (X, 6,)/C,
with equivalent norms. If u({z}) > 0 and 0 < r < p({z}), then {z} =

B%(z,r) and
MO, (f, B(x,r)) = 0.

Hence,
Ly (X0, 1) = Ly (X, 0, 1),
Lpw.(X,0,1)/C = Lpy(X,6,1)/C,
with equivalent norms. If z # y, then u({z}), n({y}) < d(x,y), and then

1/1*(%7 5($,y)) = w(l” 5(:1:73/))7 %(%5(%9)) = 1/1(% 5(:1:7 y))
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Hence,
A¢*(Xv O, 1) = Aw(X, O, 1),
AT/J* (X7 9, :U’)/C = Aw(X, 9, :U’)/Ca

with equivalent norms. We have completed the proof. m

4. Applications. We now state some applications of the main results.

By using Theorem 2.5, we can show that theorems for the Campanato,
Morrey or Holder spaces on the normal space are valid for the function
spaces on any space of homogeneous type with the relation ¢(x,r) = ¢(z,
wu(B(x,r))). Conversely, results for these function spaces on any space of
homogeneous type also adapt to the normal space.

It was proved by Macias and Segovia [14] that the set of points of X
which have positive measure is countable, and that for every such point
there exists a constant r > 0 such that B(z,r) = {z}. We define

{ 0 if u({x}) =0,
Ty = .
sup{r > 0: B(x,r) = {z}} if u({z}) > 0.
Similarly, we set (see (2.7))
{ 00 if (X)) = oo,
R, =1 . .
inf{r >0: B(x,r) =X} if u(X) < oc.
If (X,d, 1) has the property that there exists a constant K > 1 such that
(4.1) (B =,r)) < Iu(BYz, K{r)) forallz e X, r, <r < K{r < Ry,

then, for every ¢ : X x Ry — R4 with (2.1), there exists ¢ : X x Ry — R4
with (2.1) such that ¢(z,r) ~ 9 (z, u(B%(z,7))) for x € X and 7, <7 < R,.
Actually, for x € X, there exists a continuous, increasing and bijective
function b, : Ry — R, such that b, (r) ~ u(B%(z,r)) and b;!(r) satisfies
(2.1). Let ¢(z,7) = ¢(a, b (r))). Then ¢(z,r) ~ ¢(z, u(B(z,1))).
If there exist constants C' > 0 and 3 > 0 such that
Bet) o dlw)

p(B4 )7 = u(B(x,7))P’

then (2.3) implies (4.1) (see [21, Lemma 5.4]).

4.1. Boundedness of operators. Let M2 (0 < a < 1) be the fractional
maximal operator with respect to a quasi-distance d, i.e.,
1
Mg f(x) = sup ——a= | [/ (1) du(y),
“ Bi>g M(Bd)a Bgd

where the supremum is taken over all d-balls B? containing z. If o = 1,
then M is the Hardy-Littlewood maximal operator. Then, by (3.14) and
Lemma 3.9, we have the following:

reX,r, <r<t<R,,
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PROPOSITION 4.1. Let (X, d, u) be a space of homogeneous type satisfy-
ing (1.3) and § defined by (1.5). Let 0 < o < 1. Then there exists a constant
C > 0 such that, for all f € L (X) and for all x € X,

loc
CTIMGf(x) < M f(x) < CM{f ().

Let (X, 4, ) be a normal space of homogeneous type, i a Borel measure
or its completion and p({z}) =0 for all z € X.

Arai and Mizuhara [1, Theorem 3.1] gave a sufficient condition for an
operator to be bounded on Morrey spaces on (X, J, ). They used the Muck-
enhoupt A;-weights defined by using the Hardy—Littlewood maximal opera-
tor. By Proposition 4.1 and Theorem 2.5, we can extend their result to any
space of homogeneous type. Moreover, by using Theorem 2.2 or Corollary
2.3, we have results for the Campanato spaces. Arai and Mizuhara proved
the boundedness of several operators on the Morrey spaces as corollaries
of [1, Theorem 3.1]: Lusin area integral for harmonic functions on R’
Hardy-Littlewood maximal function, maximal Calderén—Zygmund singular
integral operators, Cauchy—Szegé projection on the Heisenberg group and
the Kohn Laplacian .

Lu [12, 13] proved embedding theorems on Campanato—Morrey spaces
for vector fields. He considered spaces of homogeneous type associated to
vector fields of homogeneous degree (). His proofs rely on the fractional
maximal functions. We can get his results also on the normal space.

4.2. Fractional differentiation and integration. Following Macias and
Segovia [14], we shall say that a space of homogeneous type is of order
6 if the condition (1.3) holds.

Gatto, Segovia and Végi [7] investigated fractional differentiation and
integration of functions in Lipschitz spaces on normal spaces of homogeneous
type.

Let (X, 6, 1) be a normal space of order § and p({z}) =0forallz € X. It
was proved in [7] that, for each a, —00 < a < 1, there exists a quasi-distance
0o equivalent to d such that (X, dq, 1) is a normal space of order 6 and d,
has the cancellation property for 0 < a < 0, i.e.,

1 1 B /
)S( <5a(:c,y)1a - 5a(x’,y)1a> du(y) =0 for any z,z" € X.

For 0 < a < 0, the fractional derivative of order a of f in Lipg(X, d, p1) N
L>(X,u), a < <0, is defined by

fly) — f(z)

Dof(x) = | 5 ()t

X

dp(y).
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For 0 < a < 1, the fractional integral of order a of f in Lipg(X,d, ) N
LY (X, i) is defined by

(4.2 Inf() = § =

3 dalz, )=

dp(y).

The definitions of D, and I, can be extended to Lipgz for 3 as above.
This requires the following modification:

Dost) = | (it = g ) 440
and

~ 1 1
@3 Iuf@) - )S(f(y)( e s ) )

where xg is a fixed but arbitrary point of X. B
It was proved in [7] that, for 0 < a < § < 6, D, is bounded from
Lip,3/C to Lipg/C and I, is bounded from Lipg_,/C to Lipgz/C. The op-

erator I, is well defined because of the cancellation property.

It follows from the results in [8] that I,, 0 < a < 1, is bounded from
LP(X, p) to BMO(X, 6, u)/C when a=1/p, from LP(X, i) to Lipg(X,d, u)/C
when 0 < a—1/p = < 0, and from BMO(X,d, u)/C to Lip,(X,d,u)/C
when 0 < a < 6.

These results of [7] and [8] can be extended to any space of homogeneous
type (X,d, u). Let § be defined by (1.5) and é, as above. By Theorem 2.5
we have the relations BMO(X, d, ) = BMO(X,d, ) and Lipg(X,d,u) =
Ay, (X, d, p) with ¢g(x,7) = w(B%(x,7))?. Therefore D, is bounded from
Ao, 5(X,d, 1) /C to Ay (X, d, p1)/C, and I, is bounded between LP(X, ),
BMO(X,d, 1) /C, Agy(X,d, p1)/C and Ay, ,(X,d, n)/C for suitable p, o, 5.

In the definitions (4.2) and (4.3), we can replace d4(x,y) by w(B%(zx,
d(z,y))) for the boundedness from LP(X,u) to BMO(X,d,u)/C or to
Ay (X, d, p)/C, since 0o (z,y) ~ 0(x,y) ~ w(B¥(x,d(z,))) and the cancella-
tion property is not needed. See also Genebashvili, Gogatishvili, Kokilashvili
and Krbec [6].

4.3. Pointwise multipliers. Let E and F be spaces of real- or complex-
valued functions defined on a set X. A function ¢ defined on X is called a
pointwise multiplier from E to F if the pointwise product fg belongs to F' for
each f € E. We denote by PWM(E, F') the set of all pointwise multipliers
from E to F.

The author studied pointwise multipliers on Morrey spaces in [20]. Com-
bining the results in [20], Theorem 2.5, Corollary 2.3 and Theorem 2.1 we
deduce the following;:
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THEOREM 4.2. Let (X, d, u) be a space of homogeneous type and u({x})
—0foralle € X. [f1<py<p1 < o0, 1pi+1/pg=1/ps, 0 < ay <
as < 1,0 < prag < prag <1, a3 = as — oy and ¢;(x,r) = p(B(x,r)) "
(1=1,2,3), then

‘Cpg,(z)g(X)? P1 %p27

PWM(‘CPL% (X)v[’pm@ (X)) = {LOO(X) 1= po if n(X) < oo,
PWM(‘CPLM (X)7 [’PQ,¢>2 (X))
_ £p37¢3(X) N Ly, 6 (X), p1# p2, . B
- 00 if u(X) = oc.
L (X)mLp2,¢2(X)7 P1 = P2,

Moreover, the operator norm of g € PWM(Lp, ¢, (X), Ly, (X)) is compa-
rable to the norm in the function space of the right-hand side.

The author studied pointwise multipliers on BMOy in [19]. Combining
[19, Examples 2.6 and 2.9] and Theorem 2.4 we deduce the following:

THEOREM 4.3. Let (X,d, u) be a space of homogeneous type with (1.3),
and p a Borel measure or its completion with the following property:

p(B(x,t))
u(B(z,r))
for some C,c> 0. I[f0 < 8 < a<80, then
PWM(Lip,(X), Lips (X)) = Lips(X), u(X) <
PWM(Lip, (X), Lipg(X)) = BMOG(X) N Lys-a(X),  u(X) =

where

t C
(4.4) gC(—), reX, 0<t<r,
T

B
o) = (24 d(zg, z) + 7)™

Moreover, the operator norm of g € PWM(Lip, (X), Lipg(X)) is comparable
to the morm in the function space of the right-hand side.

REMARK 4.1. For example, the Muckenhoupt A,-weights on R" satisfy
(4.4).
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