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Abstract. We investigate the relations between the Campanato, Morrey and Hölder
spaces on spaces of homogeneous type and extend the results of Campanato, Mayers,
and Maćıas and Segovia. The results are new even for the R

n case. Let (X, d, µ) be a
space of homogeneous type and (X, δ, µ) its normalized space in the sense of Maćıas
and Segovia. We also study the relations of these function spaces for (X, d, µ) and for
(X, δ, µ). Using these relations, we can show that theorems for the Campanato, Morrey
or Hölder spaces on the normal space are valid for the function spaces on any space of
homogeneous type. As an application we obtain boundedness of some operators related to
partial differential equations, boundedness of fractional differential and integral operators,
and give characterizations of pointwise multipliers.

1. Introduction. The theory of function spaces on spaces of homoge-
neous type has been developed by many authors: Coifman and Weiss [4, 5],
Maćıas and Segovia [14], Han and Sawyer [9], etc. In this paper we inves-
tigate the relations between the Campanato, Morrey and Hölder spaces on
spaces of homogeneous type and extend the results of Campanato [2, 3],
Mayers [15] and Maćıas and Segovia [14]. We also show the relations be-
tween these function spaces for (X, d, µ) and for (X, δ, µ), its normalized
space in the sense of Maćıas and Segovia [14].

Let X = (X, d, µ) be a space of homogeneous type, i.e. X is a topological
space endowed with a quasi-distance d and a nonnegative measure µ such
that

d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y,
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d(x, y) = d(y, x),

(1.1) d(x, y) ≤ K1(d(x, z) + d(z, y)),

the balls (d-balls) B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) < r}, r > 0, form a
basis of neighborhoods of the point x, µ is defined on a σ-algebra of subsets
of X which contains the balls, and

(1.2) 0 < µ(B(x, 2r)) ≤ K2 µ(B(x, r)) <∞,

where Ki ≥ 1 (i = 1, 2) are constants independent of x, y, z ∈ X and r > 0.

We note that every open subset of X is expressible as a countable union
of balls (see [4, p. 70]), and so it is measurable.

Let 1 ≤ p < ∞ and φ : X × R+ → R+. For a ball B = B(x, r), we shall
write φ(B) in place of φ(x, r). For a function f ∈ L1

loc(X) and for a ball
B, let fB = µ(B)−1

T
B f(x) dµ(x). Then the Campanato spaces Lp,φ(X),

Morrey spaces Lp,φ(X) and Hölder spaces Λφ(X) are defined to be the sets
of all f such that ‖f‖Lp,φ

< ∞, ‖f‖Lp,φ
< ∞ and ‖f‖Λφ

< ∞, respectively,
where

‖f‖Lp,φ
= sup

B

1

φ(B)

(
1

µ(B)

\
B

|f(x) − fB|
p dµ(x)

)1/p

,

‖f‖Lp,φ
= sup

B

1

φ(B)

(
1

µ(B)

\
B

|f(x)|p dµ(x)

)1/p

,

‖f‖Λφ
= sup

x,y∈X, x6=y

2|f(x) − f(y)|

φ(x, d(x, y)) + φ(y, d(y, x))
.

For φ(x, r) = rα (α > 0), we shall write Lipα(X) in place of Λrα(X). If
p = 1, then L1,φ(X) = BMOφ(X). If φ ≡ 1, then L1,φ(X) = BMO(X) and

Λφ(X) = L∞(X). If φ(B) = µ(B)−1/p, then Lp,φ(X) = Lp(X).

If X = R
n, d(x, y) = |x − y|, µ is Lebesgue measure and φ(x, r) = rα,

then the following are known (Campanato [2, 3], Mayers [15] and Peetre
[22]):

−n/p ≤ α < 0 ⇒ Lp,φ(R
n)/C = Lp,φ(R

n) (= Lp(Rn) if α = −n/p),

α = 0 ⇒ Lp,φ(R
n) = BMO(Rn) ⊃ Lp,φ(R

n) = Λφ(R
n) = L∞(Rn),

0 < α ≤ 1 ⇒ Lp,φ(R
n) = Λφ(R

n) = Lipα(Rn),

where C is the space of all constant functions (see also Spanne [23], Janson
[10] and Nakai [18]). In this paper we give necessary and sufficient conditions
on φ : X × R+ → R+ for the relations

Lp,φ(X)/C = Lp,φ(X), Lp,φ(X) = Lp,φ(X), Lp,φ(X) = Λφ(X)

to hold.
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If there are constants θ (0 < θ ≤ 1) and K3 ≥ 1 such that

(1.3) |d(x, z) − d(y, z)| ≤ K3 (d(x, z) + d(y, z))1−θd(x, y)θ, x, y, z ∈ X,

then the balls are open sets. Note that (1.1) for some K1 ≥ 1 follows from
(1.3) (Lemarié [11]). Conversely, from (1.1) it follows that there exist θ > 0,
K3 ≥ 1 and a quasi-distance which is equivalent to the original d such that
(1.3) holds (Maćıas and Segovia [14]).

Following Maćıas and Segovia [14], we shall say that a space of homo-
geneous type is normal if there are constants K4 > 0 and K5 > 0 such
that

(1.4) K4r ≤ µ(B(x, r)) ≤ K5r for x ∈ X and µ({x}) < r < µ(X).

For a space (X, d, µ) of homogeneous type such that the balls are open sets,
let

(1.5) δ(x, y)=

{
inf{µ(Bd) : Bd is a d-ball containing x and y} if x 6=y,

0 if x=y.

Maćıas and Segovia [14] showed that (X, δ, µ) is a normal space of homo-
geneous type, that the topologies induced on X by d and δ coincide, and
that

(1.6) Lp,φ(X, d, µ) = Lipα(X, δ, µ) for φ(x, r) = µ(Bd(x, r))α.

In this paper we also study the relations of our function spaces for (X, d, µ)
and (X, δ, µ). Our results include the equality (1.6) as a special case. More-
over, using these relations, we can show that theorems for the Campanato,
Morrey or Hölder spaces on the normal space are valid for the function spaces
on any space of homogeneous type. Conversely, results for these function
spaces on any space of homogeneous type, for example spaces associated to
vector fields (see [17]), adapt to the normal space. As an application we ob-
tain boundedness of some operators related to partial differential equations,
boundedness of fractional differential and integral operators, and character-
izations of pointwise multipliers.

We regard Lp,φ(X) and Lp,φ(X) as spaces of functions modulo null-
functions, and Λφ(X) as a space of functions defined at all x ∈ X. Then
Lp,φ(X)/C, Lp,φ(X) and Λφ(X)/C are Banach spaces with the norms
‖f‖Lp,φ

, ‖f‖Lp,φ
and ‖f‖Λφ

, respectively. For any fixed ball B0 and for any
fixed point x0, ‖f‖Lp,φ

+ |fB0
| and ‖f‖Λφ

+ |f(x0)| are norms on Lp,φ(X)
and Λφ(X), respectively. Thereby Lp,φ(X) and Λφ(X) are Banach spaces. If
1 ∈ Lp,φ(X), then Lp,φ(X)/C is a Banach space with the norm ‖f−fB0

‖Lp,φ
.

We note that for each ball B1 and for each point x1 ∈ X, ‖f‖Lp,φ
+ |fB0

|
∼ ‖f‖Lp,φ

+ |fB1
| and ‖f‖Λφ

+ |f(x0)| ∼ ‖f‖Λφ
+ |f(x1)|. If 1 ∈ Lp,φ(X),

then ‖f − fB0
‖Lp,φ

∼ ‖f − fB1
‖Lp,φ

. If µ(X) < ∞, then ‖f‖Lp,φ
+ |fB0

| ∼
‖f‖Lp,φ

+ ‖f‖Lp . (See (3.3) and (2.7).)
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We state our main results in the next section and prove them in the third
section. We give applications in Section 4.

The letter C shall always denote a constant, not necessarily the same
one.

2. Main results. Let (X, d, µ) be a space of homogeneous type satis-
fying (1.3), x0 a fixed point in X, and B0 = B(x0, 1).

We shall consider the following conditions on φ:

1

A1
≤
φ(a, s)

φ(a, r)
≤ A1, 1/2 ≤ s/r ≤ 2,(2.1)

φ(a, r)

rθ
≤ A2

φ(a, s)

sθ
, 0 < s < r,(2.2)

r\
0

µ(B(a, t))1/p
φ(a, t)

t
dt ≤ A3 µ(B(a, r))1/pφ(a, r), r > 0,(2.3)

1

A4
≤
φ(a, r)

φ(b, r)
≤ A4, d(a, b) ≤ r,(2.4)

where Ai > 0 (i = 1, 2, 3, 4) are independent of r, s > 0, a, b ∈ X.

Let r0 ≥ 0. The following are equivalent (see [21, Lemma 5.2]):

B(x0,K6r) \B(x0, r) 6= ∅, r > r0, for some K6 > 1,(2.5)

µ(B(x0, r)) ≤
1
2µ(B(x0,K

′
6r)), r > r0, for some K ′

6 > 1,(2.6)

where K6 and K ′
6 are independent of r > r0. We shall consider these condi-

tions if µ(X) = ∞.

Our first result is the following.

Theorem 2.1. Let µ(X) = ∞ and X satisfy (2.5) for some r0 ≥ 0. If

1 ≤ p <∞ and φ satisfies (2.1)–(2.4), then the following are equivalent :

(i) There is a constant C > 0 such that

∞\
r

φ(a, t)

t
dt ≤ Cφ(a, r), a ∈ X, r > 0.

(ii) Lp,φ(X)/C = Lp,φ(X) and ‖f‖Lp,φ
∼ ‖f − limr→∞ fB(x0,r)‖Lp,φ

, i.e.

for every f ∈ Lp,φ(X), fB(x0,r) converges as r tends to infinity , and

the mapping f 7→ f − limr→∞ fB(x0,r) is bijective and bicontinuous

from Lp,φ(X)/C to Lp,φ(X).

In this case, limr→∞ fB(a,r) = limr→∞ fB(x0,r) for all a ∈ X.

Remark 2.1. (i)⇒(ii) can be proved without (1.3), (2.1)–(2.5). In the
case that X = R

n, d(x, y) = |x− y| and µ is Lebesgue measure, (i)⇒(ii) has
been proved by Mizuhara [16].
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For φ : X × R+ → R+, we define

Φ∗(a, r) =

max(2,d(x0,a),r)\
1

φ(x0, t)

t
dt, Φ∗∗(a, r) =

max(2,d(x0,a),r)\
r

φ(a, t)

t
dt.

Then we have the following.

Theorem 2.2. If µ(X) = ∞, then assume (2.5) for some r0 ≥ 0. If

1 ≤ p <∞ and φ satisfies (2.1)–(2.4), then the following are equivalent :

(i) There is a constant C > 0 such that

Φ∗(a, r) + Φ∗∗(a, r) ≤ Cφ(a, r), a ∈ X, r > 0.

(ii) Lp,φ(X) = Lp,φ(X) and ‖f‖Lp,φ
+ |fB0

| ∼ ‖f‖Lp,φ
.

(iii) 1 ∈ Lp,φ(X), Lp,φ(X)/C = Lp,φ(X)/C and ‖f‖Lp,φ
∼ ‖f − fB0

‖Lp,φ
.

Remark 2.2. (i)⇒(ii) can be proved without (1.3), (2.2)–(2.5). (ii)⇔(iii)
can be proved without (1.3), (2.1)–(2.5).

Remark 2.3. Let µ(B(a, r)) ∼ rβ (β > 0) and φ(a, r) = r−α max(2,
d(x0, a), r), for 1 − θ < α < min(1, β/p) and 1 ≤ p < ∞. Then φ satisfies
(2.1)–(2.4) and (i).

If µ(X) <∞, then there is a constant R0 > 0 such that

(2.7) X = B(x,R0) for all x ∈ X

(see [21, Lemma 5.1]). For φ, we define

Φ(a, r) =

2R0\
r

φ(a, t)

t
dt, 0 < r ≤ R0.

Then we have the following.

Corollary 2.3. Let µ(X) < ∞. If 1 ≤ p < ∞ and φ satisfies (2.1)–
(2.4), then the following are equivalent :

(i) There is a constant C > 0 such that

Φ(a, r) ≤ Cφ(a, r), a ∈ X, 0 < r ≤ R0.

(ii) Lp,φ(X) = Lp,φ(X) and ‖f‖Lp,φ
+ |fB0

| ∼ ‖f‖Lp,φ
.

(iii) 1 ∈ Lp,φ(X), Lp,φ(X)/C = Lp,φ(X)/C and ‖f‖Lp,φ
∼ ‖f − fB0

‖Lp,φ
.

Remark 2.4. On the assumption that Φ ≥ C > 0, (i)⇒(ii) can be
proved without (1.3), (2.2)–(2.4). (ii)⇔(iii) can be proved without (1.3),
(2.1)–(2.4).

To consider the Hölder spaces Λφ(X), we assume that there is a constant
A5 > 0 such that

(2.8) φ(a, r) ≤ A5φ(b, s) for B(a, r) ⊂ B(b, s).
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Theorem 2.4. If 1 ≤ p <∞ and φ satisfies (2.1)–(2.4) and (2.8), then

the following are equivalent :

(i) There is a constant C > 0 such that

d(x,y)\
0

φ(x, t)

t
dt ≤ Cφ(x, d(x, y)), x, y ∈ X.

(ii) Lp,φ(X) = Λφ(X) and ‖f‖Lp,φ
+ |fB0

| ∼ ‖f‖Λφ
+ |f(x0)|.

(iii) Lp,φ(X)/C = Λφ(X)/C and ‖f‖Lp,φ
∼ ‖f‖Λφ

.

Remark 2.5. (i)⇒(ii) can be proved without (1.3), (2.2)–(2.4). On the

assumption that
T1
0 φ(x0, t)/t dt <∞, (ii)⇔(iii) can be proved without (1.3),

(2.2)–(2.4).

Let δ be defined by (1.5). The relations of the function spaces for (X, d, µ)
and (X, δ, µ) are as follows.

Theorem 2.5. Suppose that ψ : X × R+ → R+ satisfies (2.1). Let

φ(x, r) = ψ(x, µ(Bd(x, r))) and ψ∗(x, r) = ψ(x,max(r, µ({x}))). Then

Lp,φ(X, d, µ) = Lp,ψ(X, δ, µ),

Lp,φ(X, d, µ)/C = Lp,ψ(X, δ, µ)/C,

Lp,φ(X, d, µ) = Lp,ψ∗
(X, δ, µ),

with equivalent norms. If ψ satisfies (2.8) also, then

Λφ(X, d, µ) = Λψ(X, δ, µ),

Λφ(X, d, µ)/C = Λψ(X, δ, µ)/C,

with equivalent norms.

Let ψ(x, r) = rα (α > 0) in this theorem. Then ψ satisfies (2.1), (2.8)
and (i) in Theorem 2.4. From Remark 2.5 it follows that Lp,ψ(X, δ, µ) =
Lipα(X, δ, µ). Therefore we have the following.

Corollary 2.6 (Maćıas and Segovia [14]). Let φ(x, r) = µ(Bd(x, r))α

with α > 0. Then

Lp,φ(X, d, µ) = Lipα(X, δ, µ),

Lp,φ(X, d, µ)/C = Lipα(X, δ, µ)/C,

with equivalent norms.

Let Mp,λ(X) be the set of all f such that ‖f‖Mp,λ
<∞, where

‖f‖Mp,λ
= sup

B(a,r)

(
1

rλ

\
B(a,r)

|f(x)|p dµ(x)

)1/p

.
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Let ψ(x, r) = rα (α < 0) in Theorem 2.5. Then ψ satisfies (2.1) and (i) in
Theorem 2.1 and (i) in Corollary 2.3. If µ({x}) = 0 for all x ∈ X, then
µ(Bδ(x, r)) ∼ r and ψ∗ = ψ. Therefore we have the following.

Corollary 2.7. Let µ({x}) = 0 for all x ∈ X, and let φ(x, r) =
µ(Bd(x, r))α, −1/p ≤ α < 0, λ = 1 + pα. Then

Lp,φ(X, d, µ)/C = Mp,λ(X, δ, µ) if µ(X) = ∞,{
Lp,φ(X, d, µ) = Mp,λ(X, δ, µ)

Lp,φ(X, d, µ)/C = Mp,λ(X, δ, µ)/C
if µ(X) <∞,

with equivalent norms.

3. Proofs. Let 1 ≤ p <∞ and

MOp(f,B) =

(
1

µ(B)

\
B

|f(x) − fB |
p dµ(x)

)1/p

.

First, we state some simple inequalities (see for example [21]):

(3.1)
( \
B

|f(x) − fB|
p dµ(x)

)1/p
≤ 2 inf

c

( \
B

|f(x) − c|p dµ(x)
)1/p

,

(3.2) |F (z1) − F (z2)| ≤ C|z1 − z2| ⇒ MOp(F (f), B) ≤ 2CMOp(f,B),

(3.3) |fB1
− fB2

| ≤
µ(B2)

µ(B1)
MOp(f,B2) for B1 ⊂ B2,

(3.4) |fB(a,r) − fB(a,s)|

≤ 2K2
2 (log 2)−1

2s\
r

MOp(f,B(a, t))

t
dt for 0 < r < s.

If φ satisfies (2.1), then

(3.5)

2s\
r

φ(a, t)

t
dt ≤ (1 +A1)

s\
r

φ(a, t)

t
dt for 0 < 2r ≤ s.

From (3.4) it follows that, if f ∈ Lp,φ(X), then

(3.6) |fB(a,r) − fB(a,s)| ≤ 2K2
2 (log 2)−1

2s\
r

φ(a, t)

t
dt ‖f‖Lp,φ

for 0 < r < s.

3.1. Proof of Theorem 2.1. We state two lemmas.

Lemma 3.1 ([21]). If 1 ≤ p <∞ and φ satisfies (2.1)–(2.4), then

(3.7) fa(x) =

1\
d(a,x)

φ(a, t)

t
dt

is in Lp,φ(X) for all a ∈ X, and there is a constant C > 0, independent

of a, such that ‖fa‖Lp,φ
≤ C.
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Lemma 3.2. If
T∞
1 φ(x0, t)/t dt < ∞, then for every f ∈ Lp,φ(X) there

exists a constant σ(f) such that σ(f) = limr→0 fB(a,r) for all a ∈ X.

Proof. Let f ∈ Lp,φ(X). As r and s tend to infinity with r < s, the
right-hand side of (3.6), with a = x0, tends to zero. Thus

|fB(x0,r) − fB(x0,s)| → 0 as r, s→ ∞ with r < s.

Hence fB(x0,r) converges as r tends to infinity. Let σ(f) = limr→∞ fB(x0,r). If
d(x0, a) ≤ r, then B(a, r) ⊂ B(x0, 2K1r) and µ(B(a, r)) ∼ µ(B(x0, 2K1r)).
From (3.3) it follows that

(3.8) |fB(a,r) − σ(f)| ≤ |fB(a,r) − fB(x0,2K1r)| + |fB(x0,2K1r) − σ(f)|

≤
µ(B(x0, 2K1r))

µ(B(a, r))
‖f‖Lp,φ

φ(x0, 2K1r) + |fB(x0,2K1r) − σ(f)|

→ 0 as r → ∞.

Proof of Theorem 2.1. (i)⇒(ii): Let f ∈ Lp,φ(X). Letting s → ∞ in
(3.6) and using Lemma 3.2, we have

|fB(a,r) − σ(f)| ≤ C0

∞\
r

φ(a, t)

t
dt ‖f‖Lp,φ

, a ∈ X, r > 0,

where C0 = 2K2
2 (log 2)−1. Hence, by (i), we have

(
1

µ(B(a, r))

\
B(a,r)

|f(x) − σ(f)|p dµ(x)

)1/p

≤

(
1

µ(B(a, r))

\
B(a,r)

|f(x) − fB(a,r)|
p dµ(x)

)1/p

+ |fB(a,r) − σ(f)|

≤ (1 + C0C)φ(a, r)‖f‖Lp,φ
, a ∈ X, r > 0.

This shows that f − σ(f) is in Lp,φ(X) and that

‖f − σ(f)‖Lp,φ
≤ (1 + C0C)‖f‖Lp,φ

.

From (3.1) it follows that

‖f‖Lp,φ
≤ 2‖f − σ(f)‖Lp,φ

.

Conversely, let f ∈ Lp,φ(X). Then f is in Lp,φ(X) and σ(f) = 0, since
|fB(x0,r)| ≤ φ(x0, r)‖f‖Lp,φ

→ 0 as r → ∞. Therefore we have (ii).
(ii)⇒(i): For f ∈ Lp,φ(X), let σ(f) = limr→∞ fB(x0,r). First we show

that φ(x0, t) → 0 (t → ∞). Then, by (3.8), we have σ(f) = limr→∞ fB(a,r)

for all a ∈ X. Let

g(x) =

max(1,d(x0,x))\
1

φ(x0, t)

t
dt = max(0,−fx0

(x)),
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where fx0
is defined by (3.7). By Lemma 3.1 and (3.2), g is in Lp,φ(X). From

(2.6) it follows that there is a constant C > 0 such that

µ(B(x0,K
′
6r)) ≤ 2µ(B(x0,K

′
6r) \B(x0, r)), r > r0.

Since gB(x0,r) is increasing with respect to r, we have

σ(g) ≥ gB(x0,K′

6
r) ≥

1

µ(B(x0,K ′
6r))

\
B(x0,K′

6
r)\B(x0,r)

g(x) dµ(x)

≥
1

2

r\
1

φ(x0, t)

t
dt for all r > r0.

Hence φ(x0, t) → 0 (t→ ∞). Now, for each ball B(a, r), let

h(x) =

max(r,d(a,x))\
r

φ(a, t)

t
dt = max

(
0,−

(
fa(x) +

r\
1

φ(a, t)

t
dt

))
,

where fa is defined by (3.7). By Lemma 3.1 and (3.2), h is in Lp,φ(X) and
there is a constant C > 0, independent of B(a, r), such that ‖h‖Lp,φ

≤ C.
From (2.6) it follows that there are constants ra ≥ 0 and Ka > 1 such that

µ(B(a,Kas)) ≤ 2µ(B(a,Kas) \B(a, s)), s > ra.

Since hB(a,s) is increasing with respect to s, we have

σ(h) ≥ hB(a,Kas) ≥
1

µ(B(a,Kas))

\
B(a,Kas)\B(a,s)

h(x) dµ(x)(3.9)

≥
1

2

s\
r

φ(a, t)

t
dt for all s > max(r, ra).

Since h(x) = 0 on B(a, r), we have

σ(h) =
1

µ(B(a, r))

\
B(a,r)

|h(x) − σ(h)| dµ(x)(3.10)

≤ ‖h− σ(h)‖Lp,φ
φ(a, r) ∼ ‖h‖Lp,φ

φ(a, r) ≤ Cφ(a, r).

By (3.9) and (3.10), we have (i).

3.2. Proof of Theorem 2.2. We need the following lemmas.

Lemma 3.3 ([19]). If 1 ≤ p <∞ and φ satisfies (2.1), then

Lp,φ(X) ⊂ Lp,Φ∗+Φ∗∗(X) and ‖f‖Lp,Φ∗+Φ∗∗
≤ C(‖f‖Lp,φ

+ |fB0
|).

Lemma 3.4 ([21]). If 1 ≤ p < ∞ and φ satisfies (2.1)–(2.4), then, for

any ball B(a, r), there is a function f ∈ Lp,φ(X) such that

‖f‖Lp,φ
+ |fB0

| ≤ C1 and fB(a,r) ≥ C2(Φ
∗(a, r) + Φ∗∗(a, r)),

where C1 > 0 and C2 > 0 are independent of f and B(a, r).
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Proof of Theorem 2.2. (i)⇒(ii): In general Lp,φ(X) ⊃ Lp,φ(X) and

‖f‖Lp,φ
+ |fB0

| ≤ (2 + φ(B0))‖f‖Lp,φ
.

From (i) and Lemma 3.3 it follows that

Lp,φ(X) ⊂ Lp,φ(X) and ‖f‖Lp,φ
≤ C(‖f‖Lp,φ

+ |fB0
|).

(ii)⇒(i): For any ball B(a, r), let f be as in Lemma 3.4. Since

|fB(a,r)| ≤ φ(a, r)‖f‖Lp,φ
∼ φ(a, r)(‖f‖Lp,φ

+ |fB0
|),

we have (i).

(ii)⇒(iii): Since Lp,φ(X)=Lp,φ(X), all constant functions are in Lp,φ(X).
Putting f − fB0

instead of f in (ii), we obtain (iii).

(iii)⇒(ii): Since 1 ∈ Lp,φ(X), it turns out that supB 1/φ(B) < ∞ and
that ‖fB0

‖Lp,φ
= (supB 1/φ(B))|fB0

|. Hence,

‖f‖Lp,φ
≤ ‖f − fB0

‖Lp,φ
+ ‖fB0

‖Lp,φ
∼ ‖f‖Lp,φ

+ |fB0
|.

3.3. Proof of Corollary 2.3. From (2.4) it follows that infa∈X φ(a,R0)>0
and that Φ ≥ C > 0. Hence, if φ satisfies (2.1), then Φ is comparable to
Φ∗ + Φ∗∗. Therefore this corollary follows from Theorem 2.2.

3.4. Proof of Theorem 2.4. We need some lemmas.

Lemma 3.5. If
T1
0 φ(x, t)/t dt < ∞, then for every f ∈ Lp,φ(X), fB(x,r)

converges as r tends to zero.

Proof. As r and s tend to zero with 0 < r < s, the right-hand side of
(3.6) tends to zero.

Lemma 3.6. Suppose that φ satisfies (2.1). Let

X∗ =

{
x ∈ X :

1\
0

φ(x, t)

t
dt <∞

}
.

For f ∈ Lp,φ(X) and for x ∈ X∗, let g(x) = limr→0 fB(x,r). Then

(3.11) |g(x) − g(y)|

≤ C

d(x,y)\
0

φ(x, t) + φ(y, t)

t
dt ‖f‖Lp,φ

for all x, y ∈ X∗,

where the constant C > 0 is independent of f .

Proof. Let f ∈ Lp,φ(X), x, y ∈ X∗ and 2r < d(x, y) = s. By (3.6) and
(3.3), we have
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|fB(x,r) − fB(y,r)|

≤ |fB(x,r) − fB(x,s)| + |fB(x,s) − fB(y,2K1s)| + |fB(y,2K1s) − fB(y,r)|

≤

(
C0

2s\
r

φ(x, t)

t
dt+

µ(B(y, 2K1s))

µ(B(x, s))
φ(y, 2K1s) + C0

4K1s\
r

φ(y, t)

t
dt

)

×‖f‖Lp,φ
,

where C0 = 2K2
2 (log 2)−1. Since µ(B(y, 2K1s)) ∼ µ(B(x, s)) and

φ(y, 2K1s) ∼
4K1s\
2K1s

φ(y, t)

t
dt,

using (3.5), we deduce that

|fB(x,r) − fB(y,r)| ≤ C

d(x,y)\
r

φ(x, t) + φ(y, t)

t
dt ‖f‖Lp,φ

.

Letting r → 0, we obtain (3.11).

Lemma 3.7. Suppose that φ satisfies (2.1). Let

X∗∗ =

{
x ∈ X :

d(x,y)\
0

φ(x, t) + φ(y, t)

t
dt→ 0 as y → x

}
.

Then for every f ∈ Lp,φ(X), the function g(x) = limr→0 fB(x,r) is equal to

f(x) for a.e. x ∈ X∗∗.

Proof. As in the proof of Theorem 4 in [14], using (3.11) instead of [14,
(3.7)], we find that for every x ∈ X∗∗ and ε > 0 there exists a ball B(x, r(x))
such that 0 < r(x) < 1 and\

B(x,r(x))

|f(y) − g(y)|p dµ(y) ≤ εµ(B(x, r(x))),

which shows that f(x) = g(x) for a.e. x ∈ X∗∗.

Proof of Theorem 2.4. (i)⇒(ii): Let f ∈ Lp,φ(X). We regard Lp,φ(X) as
a set of functions modulo null-functions. By Lemma 3.7, we may assume
that f(x) = limr→0 fB(x,r) for all x ∈ X. By Lemma 3.6, we have

|f(x) − f(y)| ≤ C

d(x,y)\
0

φ(x, t) + φ(y, t)

t
dt ‖f‖Lp,φ

≤ C ′(φ(x, d(x, y)) + φ(y, d(x, y)))‖f‖Lp,φ
, x, y ∈ X.

Hence f ∈ Λφ(X) and ‖f‖Λφ
≤ 2C ′‖f‖Lp,φ

.
Conversely, let f ∈ Λφ(X). If x, y ∈ B = B(z, r), then

B(x, d(x, y)), B(y, d(x, y)) ⊂ B(z, 4K2
1r).
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By (2.8), we have

φ(x, d(x, y)), φ(y, d(x, y)) ≤ A5φ(z, 4K2
1r).

Hence,

|f(x) − f(y)| ≤ Cφ(B)‖f‖Λφ
.

It follows that
(

1

µ(B)

\
B

|f(x) − fB|
p dµ(x)

)1/p

≤

(
1

µ(B)

\
B

(
1

µ(B)

\
B

|f(x) − f(y)| dµ(y)

)p

dµ(x)

)1/p

≤ Cφ(B)‖f‖Λφ
.

Hence f ∈ Lp,φ(X) and ‖f‖Lp,φ
≤ C‖f‖Λφ

.

(ii)⇒(i): Let fa be defined by (3.7). By Lemma 3.1 and (ii), fa is in
Λφ(X) and there is a constant C > 0, independent of a ∈ X, such that
‖fa‖Λφ

≤ C. Since Λφ(X) ⊂ L∞
loc(X), we have

fa(a) =

1\
0

φ(a, t)

t
dt <∞ for every a ∈ X.

Hence,

d(x,y)\
0

φ(x, t)

t
dt = |fx(x) − fx(y)|

≤ 1
2(φ(x, d(x, y)) + φ(y, d(x, y)))‖fx‖Λφ

≤ 1
2(1 +A4)Cφ(x, d(x, y)).

(ii)⇔(iii): Let f ∈ Λφ(X). By (2.1) and (2.8), we have

|fB0
− f(x0)| ≤

1

µ(B0)

\
B0

|f(x) − f(x0)| dµ(x) ≤ Cφ(B0)‖f‖Λφ
.

Let f ∈ Lp,φ(X). By (3.6), we have

|fB0
− f(x0)| = lim

r→0
|fB(x0,1) − fB(x0,r)| ≤ C

2\
0

φ(x0, t)

t
dt ‖f‖Lp,φ

.

3.5. Proof of Theorem 2.5

Lemma 3.8. Let (X, di, µ) (i = 1, 2) be spaces of homogeneous type. Sup-

pose that ψ : X ×R+ → R+ satisfies (2.1). Let φi(x, r) = ψ(x, µ(Bdi(x, r)))
(i = 1, 2). If for every d1-ball B1 there is a d2-ball B2 such that

(3.12) B1 ⊂ B2 and µ(B2) ≤ Cµ(B1)
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for some constant C > 0 independent of B1 and B2, then

Lp,φ1
(X, d1, µ) ⊃ Lp,φ2

(X, d2, µ),

Lp,φ1
(X, d1, µ)/C ⊃ Lp,φ2

(X, d2, µ)/C,

Lp,φ1
(X, d1, µ) ⊃ Lp,φ2

(X, d2, µ),

and the embeddings are continuous. If ψ also satisfies (2.8), then

Λφ1
(X, d1, µ) ⊃ Λφ2

(X, d2, µ),

Λφ1
(X, d1, µ)/C ⊃ Λφ2

(X, d2, µ)/C,

and the embeddings are continuous.

Proof. First we show ‖f‖Lp,φ1
(X,d1,µ) ≤ C‖f‖Lp,φ2

(X,d2,µ). From (3.12) it

follows that µ(B1) ∼ µ(B2) and φ1(B1) ∼ φ2(B2). Hence, by (3.1) we have

1

φ1(B1)

(
1

µ(B1)

\
B1

|f(x) − fB1
|p dµ(x)

)1/p

≤
2

φ1(B1)

(
1

µ(B1)

\
B1

|f(x) − fB2
|p dµ(x)

)1/p

≤ C
1

φ2(B2)

(
1

µ(B2)

\
B2

|f(x) − fB2
|p dµ(x)

)1/p

.

In the same way, we have ‖f‖Lp,φ1
(X,d1,µ) ≤ C‖f‖Lp,φ2

(X,d2,µ).

Let B1 = Bd1(x0, 1) in (3.12). Then by (3.3) we have

|fBd1(x0,1)| ≤ C|fB2
| ≤ C ′(|fBd2(x0,1)| + ‖f‖Lp,φ2

(X,d2,µ)).

Next we show

(3.13) φ2(x, d2(x, y)) ≤ Cφ1(x, d1(x, y)), x, y ∈ X,

which implies that ‖f‖Λφ1
(X,d1,µ) ≤ C‖f‖Λφ2

(X,d2,µ). For Bd1(x, 2d1(x, y)),

there is Bd2(x, r) such that

Bd1(x, 2d1(x, y)) ⊂ Bd2(x, r) and µ(Bd2(x, r)) ≤ Cµ(Bd1(x, 2d1(x, y))).

Since y ∈ Bd1(x, 2d1(x, y)) ⊂ Bd2(x, r), it turns out that d2(x, y) < r.
Hence,

µ(Bd2(x, d2(x, y))) ≤ µ(Bd2(x, r)) ≤ Cµ(Bd1(x, 2d1(x, y)))

≤ C ′µ(Bd1(x, d1(x, y))).

Using (2.1) and (2.8) for ψ, we obtain (3.13).

By the definition of δ, we have

(3.14)
Bd(x, r) ⊂ Bδ(x, µ(Bd(x, r))),

µ(Bδ(x, µ(Bd(x, r)))) ≤ K5µ(Bd(x, r)).
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Conversely, we have the following.

Lemma 3.9. For any δ-ball Bδ(x, r), there is a constant r̃ > 0 such that

Bδ(x, r) ⊂ Bd(x, r̃) and µ(Bd(x, r̃)) ≤ Cµ(Bδ(x, r))

for some constant C > 0 independent of x, r and r̃.

Proof. Case 1: µ({x}) < r < µ(X). Choose a constant M > 0 such
that

µ(Bd(z, (2K1)
2s)) ≤Mµ(Bd(z, s)), z ∈ X, s > 0.

If y ∈ Bδ(x, r), then δ(x, y) < r. By the definition of δ, there is a d-ball
Bd(z, s) such that x, y ∈ Bd(z, s) and µ(Bd(z, s)) < r. Since Bd(z, s) ⊂
Bd(x, 2K1s) ⊂ Bd(z, (2K1)

2s) and µ(Bd(x, 2K1s)) ≤ Mµ(Bd(z, s)) < Mr,
we have

Bδ(x, r) ⊂
⋃

{Bd(x, t) : µ(Bd(x, t)) < Mr}.

Let

r̃ =

{
sup{0 < t ≤ R0 : µ(Bd(x, t)) < Mr} if µ(X) <∞,

sup{t > 0 : µ(Bd(x, t)) < Mr} if µ(X) = ∞,

where R0 is the constant in (2.7). Then Bδ(x, r) ⊂ Bd(x, r̃) and

µ(Bd(x, r̃)) ≤ K2µ(Bd(x, r̃/2)) ≤ K2Mr ≤ (K2M/K4)µ(Bδ(x, r)).

Case 2: µ({x}) > 0 and 0 < r ≤ µ({x}). By [14, Theorem 1], we have

Bδ(x, r) = {x} = Bd(x, rx) for some rx > 0.

Case 3: µ(X) <∞ and µ(X) ≤ r. We have

Bδ(x, r) ⊂ X = Bd(x,R0) = Bδ(x, 2r).

Proof of Theorem 2.5. Since ψ∗(x, r) ∼ ψ(x, µ(Bδ(x, r))), using Lemma
3.8, (3.14) and Lemma 3.9, we obtain

Lp,φ(X, d, µ) = Lp,ψ∗
(X, δ, µ),

Lp,φ(X, d, µ)/C = Lp,ψ∗
(X, δ, µ)/C,

Lp,φ(X, d, µ) = Lp,ψ∗
(X, δ, µ),

Λφ(X, d, µ) = Λψ∗
(X, δ, µ),

Λφ(X, d, µ)/C = Λψ∗
(X, δ, µ)/C,

with equivalent norms. If µ({x}) > 0 and 0 < r < µ({x}), then {x} =
Bδ(x, r) and

MOp(f,B
δ(x, r)) = 0.

Hence,

Lp,ψ∗
(X, δ, µ) = Lp,ψ(X, δ, µ),

Lp,ψ∗
(X, δ, µ)/C = Lp,ψ(X, δ, µ)/C,

with equivalent norms. If x 6= y, then µ({x}), µ({y}) ≤ δ(x, y), and then

ψ∗(x, δ(x, y)) = ψ(x, δ(x, y)), ψ∗(y, δ(x, y)) = ψ(y, δ(x, y)).
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Hence,

Λψ∗
(X, δ, µ) = Λψ(X, δ, µ),

Λψ∗
(X, δ, µ)/C = Λψ(X, δ, µ)/C,

with equivalent norms. We have completed the proof.

4. Applications. We now state some applications of the main results.
By using Theorem 2.5, we can show that theorems for the Campanato,

Morrey or Hölder spaces on the normal space are valid for the function
spaces on any space of homogeneous type with the relation φ(x, r) = ψ(x,
µ(B(x, r))). Conversely, results for these function spaces on any space of
homogeneous type also adapt to the normal space.

It was proved by Maćıas and Segovia [14] that the set of points of X
which have positive measure is countable, and that for every such point
there exists a constant r > 0 such that B(x, r) = {x}. We define

rx =

{
0 if µ({x}) = 0,

sup{r > 0 : B(x, r) = {x}} if µ({x}) > 0.

Similarly, we set (see (2.7))

Rx =

{
∞ if µ(X) = ∞,

inf{r > 0 : B(x, r) = X} if µ(X) <∞.

If (X, d, µ) has the property that there exists a constant K ′′
6 > 1 such that

(4.1) µ(Bd(x, r)) ≤ 1
2µ(Bd(x,K ′′

6 r)) for all x ∈ X, rx < r < K ′′
6 r < Rx,

then, for every φ : X ×R+ → R+ with (2.1), there exists ψ : X ×R+ → R+

with (2.1) such that φ(x, r) ∼ ψ(x, µ(Bd(x, r))) for x ∈ X and rx < r < Rx.
Actually, for x ∈ X, there exists a continuous, increasing and bijective
function bx : R+ → R+ such that bx(r) ∼ µ(Bd(x, r)) and b−1

x (r) satisfies
(2.1). Let ψ(x, r) = φ(x, b−1

x (r))). Then φ(x, r) ∼ ψ(x, µ(Bd(x, r))).
If there exist constants C > 0 and β > 0 such that

φ(x, t)

µ(Bd(x, t))β
≤ C

φ(x, r)

µ(Bd(x, r))β
, x ∈ X, rx < r < t < Rx,

then (2.3) implies (4.1) (see [21, Lemma 5.4]).

4.1. Boundedness of operators. Let Md
α (0 < α ≤ 1) be the fractional

maximal operator with respect to a quasi-distance d, i.e.,

Md
αf(x) = sup

Bd∋x

1

µ(Bd)α

\
Bd

|f(y)| dµ(y),

where the supremum is taken over all d-balls Bd containing x. If α = 1,
then Md

α is the Hardy–Littlewood maximal operator. Then, by (3.14) and
Lemma 3.9, we have the following:
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Proposition 4.1. Let (X, d, µ) be a space of homogeneous type satisfy-

ing (1.3) and δ defined by (1.5). Let 0 < α ≤ 1. Then there exists a constant

C > 0 such that , for all f ∈ L1
loc(X) and for all x ∈ X,

C−1Md
αf(x) ≤M δ

αf(x) ≤ CMd
αf(x).

Let (X, δ, µ) be a normal space of homogeneous type, µ a Borel measure
or its completion and µ({x}) = 0 for all x ∈ X.

Arai and Mizuhara [1, Theorem 3.1] gave a sufficient condition for an
operator to be bounded on Morrey spaces on (X, δ, µ). They used the Muck-
enhoupt A1-weights defined by using the Hardy–Littlewood maximal opera-
tor. By Proposition 4.1 and Theorem 2.5, we can extend their result to any
space of homogeneous type. Moreover, by using Theorem 2.2 or Corollary
2.3, we have results for the Campanato spaces. Arai and Mizuhara proved
the boundedness of several operators on the Morrey spaces as corollaries
of [1, Theorem 3.1]: Lusin area integral for harmonic functions on R

n+1
+ ,

Hardy–Littlewood maximal function, maximal Calderón–Zygmund singular
integral operators, Cauchy–Szegő projection on the Heisenberg group and
the Kohn Laplacian �b.

Lu [12, 13] proved embedding theorems on Campanato–Morrey spaces
for vector fields. He considered spaces of homogeneous type associated to
vector fields of homogeneous degree Q. His proofs rely on the fractional
maximal functions. We can get his results also on the normal space.

4.2. Fractional differentiation and integration. Following Maćıas and
Segovia [14], we shall say that a space of homogeneous type is of order
θ if the condition (1.3) holds.

Gatto, Segovia and Vági [7] investigated fractional differentiation and
integration of functions in Lipschitz spaces on normal spaces of homogeneous
type.

Let (X, δ, µ) be a normal space of order θ and µ({x}) = 0 for all x ∈ X. It
was proved in [7] that, for each α, −∞ < α < 1, there exists a quasi-distance
δα equivalent to δ such that (X, δα, µ) is a normal space of order θ and δα
has the cancellation property for 0 < α < θ, i.e.,\

X

(
1

δα(x, y)1−α
−

1

δα(x′, y)1−α

)
dµ(y) = 0 for any x, x′ ∈ X.

For 0 < α < θ, the fractional derivative of order α of f in Lipβ(X, δ, µ)∩
L∞(X,µ), α < β < θ, is defined by

Dαf(x) =
\
X

f(y) − f(x)

δ−α(x, y)α+1
dµ(y).
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For 0 < α < 1, the fractional integral of order α of f in Lipβ(X, δ, µ) ∩

L1(X,µ) is defined by

(4.2) Iαf(x) =
\
X

f(y)

δα(x, y)1−α
dµ(y).

The definitions of Dα and Iα can be extended to Lipβ for β as above.
This requires the following modification:

D̃αf(x) =
\
X

(
f(y) − f(x)

δ−α(x, y)α+1
−
f(y) − f(x0)

δ−α(x0, y)α+1

)
dµ(y),

and

(4.3) Ĩαf(x) =
\
X

f(y)

(
1

δα(x, y)1−α
−

1

δα(x0, y)1−α

)
dµ(y),

where x0 is a fixed but arbitrary point of X.
It was proved in [7] that, for 0 < α < β ≤ θ, D̃α is bounded from

Lipα+β/C to Lipβ/C and Ĩα is bounded from Lipβ−α/C to Lipβ/C. The op-

erator Ĩα is well defined because of the cancellation property.
It follows from the results in [8] that Ĩα, 0 < α < 1, is bounded from

Lp(X,µ) to BMO(X, δ, µ)/C when α=1/p, from Lp(X,µ) to Lipβ(X, δ, µ)/C
when 0 < α − 1/p = β < θ, and from BMO(X, δ, µ)/C to Lipα(X, δ, µ)/C
when 0 < α < θ.

These results of [7] and [8] can be extended to any space of homogeneous
type (X, d, µ). Let δ be defined by (1.5) and δα as above. By Theorem 2.5
we have the relations BMO(X, δ, µ) = BMO(X, d, µ) and Lipβ(X, δ, µ) =

Λφβ
(X, d, µ) with φβ(x, r) = µ(Bd(x, r))β. Therefore D̃α is bounded from

Λφα+β
(X, d, µ)/C to Λφβ

(X, d, µ)/C, and Ĩα is bounded between Lp(X,µ),
BMO(X, d, µ)/C, Λφβ

(X, d, µ)/C and Λφα+β
(X, d, µ)/C for suitable p, α, β.

In the definitions (4.2) and (4.3), we can replace δα(x, y) by µ(Bd(x,
d(x, y))) for the boundedness from Lp(X,µ) to BMO(X, d, µ)/C or to
Λφβ

(X, d, µ)/C, since δα(x, y) ∼ δ(x, y) ∼ µ(Bd(x, d(x, y))) and the cancella-
tion property is not needed. See also Genebashvili, Gogatishvili, Kokilashvili
and Krbec [6].

4.3. Pointwise multipliers. Let E and F be spaces of real- or complex-
valued functions defined on a set X. A function g defined on X is called a
pointwise multiplier from E to F if the pointwise product fg belongs to F for
each f ∈ E. We denote by PWM(E,F ) the set of all pointwise multipliers
from E to F .

The author studied pointwise multipliers on Morrey spaces in [20]. Com-
bining the results in [20], Theorem 2.5, Corollary 2.3 and Theorem 2.1 we
deduce the following:
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Theorem 4.2. Let (X, d, µ) be a space of homogeneous type and µ({x})
= 0 for all x ∈ X. If 1 ≤ p2 ≤ p1 < ∞, 1/p1 + 1/p3 = 1/p2, 0 < α1 ≤
α2 ≤ 1, 0 < p2α2 ≤ p1α1 ≤ 1, α3 = α2 − α1 and φi(x, r) = µ(Bd(x, r))−αi

(i = 1, 2, 3), then

PWM(Lp1,φ1
(X),Lp2,φ2

(X)) =

{
Lp3,φ3

(X), p1 6= p2,

L∞(X), p1 = p2,
if µ(X) <∞,

PWM(Lp1,φ1
(X),Lp2,φ2

(X))

=

{
Lp3,φ3

(X) ∩ Lp2,φ2
(X), p1 6= p2,

L∞(X) ∩ Lp2,φ2
(X), p1 = p2,

if µ(X) = ∞.

Moreover , the operator norm of g ∈ PWM(Lp1,φ1
(X),Lp2,φ2

(X)) is compa-

rable to the norm in the function space of the right-hand side.

The author studied pointwise multipliers on BMOφ in [19]. Combining
[19, Examples 2.6 and 2.9] and Theorem 2.4 we deduce the following:

Theorem 4.3. Let (X, d, µ) be a space of homogeneous type with (1.3),
and µ a Borel measure or its completion with the following property :

(4.4)
µ(Bd(x, t))

µ(Bd(x, r))
≤ C

(
t

r

)c

, x ∈ X, 0 < t < r,

for some C, c > 0. If 0 < β ≤ α ≤ θ, then

PWM(Lipα(X),Lipβ(X)) = Lipβ(X), µ(X) <∞,

PWM(Lipα(X),Lipβ(X)) = BMOφ(X) ∩ Lrβ−α(X), µ(X) = ∞,

where

φ(x, r) =
rβ

(2 + d(x0, x) + r)α
.

Moreover , the operator norm of g ∈ PWM(Lipα(X),Lipβ(X)) is comparable

to the norm in the function space of the right-hand side.

Remark 4.1. For example, the Muckenhoupt Ap-weights on R
n satisfy

(4.4).

Acknowledgments. The author would like to thank the referee for his
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paces homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971.
[5] —, —, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc.

83 (1977), 569–645.
[6] I. Genebashvili, A. Gogatishvili, V. Kokilashvili and M. Krbec, Weight Theory for

Integral Transforms on Spaces of Homogeneous Type, Longman, Harlow, 1998.
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