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L1 representation of Riesz spaces

by

Bahri Turan (Ankara)

Abstract. Let E be a Riesz space. By defining the spaces L1E and L
∞
E of E, we

prove that the center Z(L1E) of L
1
E is L

∞
E and show that the injectivity of the Arens

homomorphism m : Z(E)′′ → Z(E∼) is equivalent to the equality L1E = Z(E)
′. Finally,

we also give some representation of an order continuous Banach lattice E with a weak
unit and of the order dual E∼ of E in L1E which are different from the representations
appearing in the literature.

1. Introduction. An ordered vector space E is called a Riesz space (or
a vector lattice) if sup{x, y} = x ∨ y (or inf{x, y} = x ∧ y) exists in E for
all x, y ∈ E. Sets of the form [x, y] = {z ∈ E : x ≤ z ≤ y} are called order
intervals or simply intervals. A subset A of E is said to be order bounded if
A is included in some order interval.

A linear map T , between E and L, is said to be order bounded when-
ever T maps order bounded sets into order bounded sets. Order bounded
linear maps between E and L will be denoted by Lb(E,L). We denote by
Lb(E) the order bounded operators from E into itself and by E

∼ the order
bounded functionals on E. Furthermore, E∼n will denote the order continu-
ous members of E∼. The space E∼ is called the order dual of E. The norm
dual of a Banach lattice E coincides with its order dual [3, p. 176].

A mapping π ∈ Lb(E) is called an orthomorphism if x ⊥ y (i.e. |x| ∧ |y|
= 0) implies πx ⊥ y. The set of orthomorphisms of E will be denoted
by Orth(E). The principal order ideal generated by the identity operator
I in Orth(E) is called the ideal center of E and is denoted by Z(E) (i.e.
Z(E) = {π ∈ Lb(E) : |π| ≤ λI for some λ ∈ R+}).

If E is a uniformly complete Riesz space, then Z(E) becomes a Ba-
nach lattice with respect to the I-uniform norm ‖π‖ = inf{λ : |π| ≤ λI,
λ ∈ R+}. In particular, if E is a Banach lattice, the Z(E) is a Banach lat-
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tice. Moreover, every operator norm coincides with the I-uniform norm on
Z(E). The space Z(E) is an abstract AM-space and Z(E)′ is an abstract
AL-space. Moreover, Z(E)′ has order continuous norm.

Let A be a Riesz algebra (lattice ordered algebra), i.e., A is a Riesz space
which is simultaneously an associative algebra with the additional property
that a, b ∈ A+ implies that ab ∈ A+. An f -algebra A is a Riesz algebra
which satisfies the extra requirement that a ⊥ b implies ac ⊥ b = ca ⊥ b
for all c ∈ A+. Every Archimedean f -algebra is commutative. Orth(E) and
Z(E) are f -algebras under pointwise order and composition of operators.

Throughout, E∼ will be assumed to separate the points of E. This as-
sumption implies that E is Archimedean.

Let us also recall that (A∼)∼n , the order continuous part of the order
bidual A∼∼, of an f -algebra A can be made an f -algebra, extending the
product in A, whenever A has separating order dual. This is done as follows:

A×A∼ → A∼,(1)

(a, f) 7→ f · a : f · a(b) = f(a · b) for b ∈ A,

(A∼)∼n ×A
∼ → A∼,(2)

(F, f) 7→ F · f : F · f(a) = F (f · a) for a ∈ A,

(A∼)∼n × (A
∼)∼n → (A

∼)∼n ,(3)

(F,G) 7→ F ·G : F ·G(f) = F (G · f) for f ∈ A∼.

Then (A∼)∼n is an f -algebra with the multiplication defined in step (3)
(see [7]).

If (A∼)∼n is an f -algebra with identity then the mapping v : (A
∼)∼n →

Orth(A∼) defined as F 7→ vF where vF (f) = F · f for each f ∈ A
∼ is an

algebra isomorphism and a Riesz isomorphism [7].

Given the bilinear map Z(E)×E → E defined by (π, x) 7→ πx, consider
its Arens extensions

E × E∼ → Z(E)′,(4)

(x, f) 7→ µx,f : µx,f (π) = f(πx) for π ∈ Z(E),

Z(E)′′ × E∼ → E∼,(5)

(F, f) 7→ F • f : F • f(x) = F (µx,f ) for x ∈ E.

The maps defined in (4) and (5) are bipositive. (5) makes it possible to define
a linear map m : Z(E)′′ → Z(E∼) where m(F )(f) = F • f ; it is called the
Arens homomorphism. If E is a Riesz space with topologically full center
then the bilinear map E×E∼ → Z(E)′ is a bilattice homomorphism and m
is a unital algebra homomorphism and an order continuous surjective Riesz
homomorphism [4, 5].
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In all undefined terminology we will adhere to [3, 8, 9, 10, 12].

2. L1 and L∞ spaces. We define the L1 and L∞ spaces of a Riesz
space E. Let A be an algebra and E be an A-module, and let A∗, E∗ be
their algebraic duals. Then a bilinear map can be defined by

⊗ : E × E∗ → A∗,

(x, f) 7→ x⊗ f : x⊗ f(a) = f(a · x) for a ∈ A.

In general the image of this bilinear map may not be a linear space. For this
reason, the linear space generated by the image of ⊗ has been taken as the
A-tensor product of E and E∗. But the image of the bilinear map given in
step (4) is a linear space as can be seen from the following lemma.

Lemma 1. Let E be a Riesz space and B = {µx,f : x ∈ E, f ∈ E
∼}.

Then B is an order ideal in Z(E)′.

Proof. Let f, g ∈ E∼, x, y ∈ E and µ = µx,f + µy,g. Then

0 ≤ µ+ ≤ |µx,f + µy,g| ≤ µ|x|,|f | + µ|y|,|g| ≤ µ|x|+|y|,|f |+|g|.

Similarly, 0 ≤ µ− ≤ µ|x|+|y|,|f |+|g|. Set h = |f | + |g| and z = |x| + |y|;
then 0 ≤ µ+ ≤ µz,h and 0 ≤ µ

− ≤ µz,h. Since 0 ≤ µ
+ ≤ µz,h and Z(E)

′

is Dedekind complete there exists π ∈ Z(Z(E)′) with π(µz,h) = µ
+ [3,

Theorem 8.15]. By the algebra and Riesz isomorphism v which is defined
earlier, one has the equality Z(E)′′ = Z(Z(E)′). It implies that vH = π for
some H ∈ Z(E)′′. For any two elements π1, π2 in Z(E) we obtain

µx,f · π1(π2) = µx,f (π1 · π2) = f(π2π1x) = µπ1x,f (π2).

On the other hand, for this H one can easily calculate that H ·µx,f = µx,H•f
and so

π(µz,h) = vH(µz,h) = H · µz,h = µz,H•h = µ
+.

Following the same argument, we see that µ− = µz,S•h for S ∈ Z(E)
′′. By

using these equalities, we have

µ = µ+ − µ− = µz,H•h − µz,S•h = µz,(H−S)•h,

which implies that the sum of two elements in B is again an element of B.
As a consequence B is a subspace of Z(E)′. Using the same technique one
can easily see that B is also an order ideal in Z(E)′.

Let E be a Riesz space. Then Z(E)′ = Z(E)∼ is a Banach lattice with
respect to operator norm. Since B is an order ideal in Z(E)′, it is well known
that the σ(Z(E)′, Z(E)′′) closure of B coincides with the norm closure of B.
As Z(E)′ has order continuous norm, the closure of B is a band in Z(E)′

[12, Corollary 106.3]. The L1 and L∞ spaces of a C(K)-module E were
defined and studied in [2]. Now we will give similar definitions for a Riesz
space E.
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Definition 1. Let E be a Riesz space.

(a) The σ(Z(E)′, Z(E)′′)-closure of B is called the L1 space of E and is
denoted by L1E .

(b) The order dual of L1E is called the L
∞ space of E and is denoted

by L∞E .

It follows from this definition that L1E is an abstract AL space and hence
L∞E is an abstract AM space. Moreover, L

1
E has order continuous norm.

It is well known that if (X,Σ, µ) is a σ-finite measure space and E =
Lp(µ) with 0 < p <∞ then Z(E) = L∞(µ). We now prove a similar result
for L1E .

Theorem 1. If E is a Riesz space then Z(L1E) = L
∞
E .

Proof. We wish to define a map u : L∞E = (L
1
E)
′ → Z(L1E) by uF (µ) =

F ∗ µ for each F ∈ L∞E , µ ∈ L
1
E where F ∗ µ(π) = F (µ · π), µ · π(s) = µ(πs)

for all π, s ∈ Z(E). We shall show that u is a Riesz isomorphism.

Let µ = µx,f ∈ B for some x ∈ E, f ∈ E
∼ and π ∈ Z(E). We obtain

µx,f · π(s) = µx,f (πs) = f(πsx) = f(sπx) = µπx,f (s)

for each s ∈ Z(E). Take a positive element µ in L1E . There exists a net
{µα} ⊆ B such that 0 ≤ µα ↑ µ. Since µα ·π ↑ µ ·π for each π ∈ Z(E)+ and
L1E is a band, it follows that µ ·π ∈ L

1
E . It is easy to see that uF is a positive

operator for F positive in L∞E , and F ∗ (λµ1+µ2) = λF ∗µ1+F ∗µ2 for all
λ ∈ R, µ1, µ2 ∈ L

1
E . This implies that uF ∈ Lb(L

1
E) for each F ∈ L

∞
E . Now

let F ∈ L∞E and P be the band projection of L
1
E . Note that F ◦ P ∈ Z(E)

′′

and vF◦P ∈ Z(Z(E)
′). Since L1E is a band and vF◦P |L1E = uF , we see that

uF ∈ Z(L
1
E). Thus the image of L

∞
E under u is included in Z(L

1
E). It is

routine to check that u is a positive operator.

If uF = 0 for some F ∈ L
∞
E , then

uF (µx,f )(I) = F ∗ µx,f (I) = F (µx,f · I) = F (µx,f ) = 0

for each µx,f ∈ B. By this fact and the order continuity of F , F (µ) = 0 for
each µ ∈ L1E . Hence u is a one-to-one operator.

On the other hand, since v : Z(E)′′ → Z(Z(E)′) is surjective there
exists G ∈ Z(E)′′ such that vG = P , the band projection considered above.
Set H = G|L1

E
. For each µ ∈ L1E , we have uH(µ) = H ∗ µ = P (µ) = µ,

which shows that uH = I. Now let s ∈ Z(L
1
E) and s̃ be adjoint to s. Then

s̃(H) ∈ L∞E . Observe that

s̃(H) ∗ µ(π) = s̃(H)(µ · π) = H(s(µ · π)) = H(s(µ).π) = H ∗ s(µ)(π)

for all µ ∈ L1E and π ∈ Z(E). Hence us̃(H)(µ) = s̃(H)∗µ = s(µ). This shows
that u is surjective.
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Clearly, u−1 is a positive operator. Applying Theorem 7.3 of [3] we see
that u is a Riesz isomorphism.

In the following theorem we characterize the injectivity of the Arens
homomorphism in the case of L1E = Z(E)

′.

Theorem 2. Let E be a Riesz space. Then the Arens homomorphism
m : Z(E)′′ → Z(E∼) is injective if and only if L1E = Z(E)

′.

Proof. Assume that L1E = Z(E)
′ and m(F ) = 0. Then 0 = m(F )(f)(x)

= F (µx,f ) for each x ∈ E, f ∈ E
∼. The order continuity of F implies that

F (µ) = 0 for each µ ∈ L1E = Z(E)
′. This shows that m is injective.

Conversely, suppose that m is injective. Let R : Z(E)′ → (L1E)
d be the

band projection. Since Z(E)′′ = Z(Z(E)′), there exists G ∈ Z(E)′′ such
that vG = R. For all x ∈ E, f ∈ E

∼ we have

vG(µx,f ) = G · µx,f = R(µx,f ) = 0

so

G · µx,f (I) = G(µx,f · I) = G(µx,f ) = m(G)(f)(x) = 0.

It follows that G = 0, as m is injective. Hence R = 0. Since Z(E)′ =
L1E ⊕ (L

1
E)
d and R = 0 one sees that Z(E)′ = L1E , which completes the

proof.

We now give two examples related to the characterization of L1E .

Example 1.

(a) Let E = l1, the absolutely summable sequences. Then E∼ = l∞ (the
bounded sequences) and Z(E) = Z(E∼) = l∞. On the other hand,
Z(E)′′ = (l∞)′′ and m is the band projection of (l∞)′′ onto l∞. Then
m is not one-to-one. Therefore L1E 6= Z(E)

′.

(b) Let K be a compact Hausdorff space and E = C(K). Then Z(E) =
C(K) and Z(E∼) = C(K)′′. Also m is the identity map of C(K)′′.
Hence L1E = Z(E)

′.

These examples show that, in general, L1E 6= Z(E)
′. We are now in a

position to characterize L1E in Z(E)
′. First we introduce the weak operator

topology on Z(E), denoted by wo, corresponding to the dual pair 〈E,E∼〉.
A net {πα} converges to π with respect to the wo-topology if and only if
f(παx) → f(πx) for each x ∈ E and f ∈ E

∼. We are now ready to state
the following theorem.

Theorem 3. Let E be a Banach lattice and (Z(E),wo)′ be the set of
continuous functionals on (Z(E),wo). Then (Z(E),wo)′ = B.



66 B. Turan

Proof. Clearly, B is a subset of (Z(E),wo)′. Conversely, let µ be a func-
tional on Z(E) which is continuous in the wo-topology. By Theorem 4 in [6]
there exist x1, . . . , xn ∈ E and f1, . . . , fn ∈ E

′ such that µ =
∑n
i=1 µxi,fi .

This completes the proof.

From the above theorem and Lemma 1 one can deduce the following
corollary.

Corollary 1. Let E be a Banach lattice. Then (Z(E),wo)′ is an order
ideal in Z(E)′ and the closure of (Z(E),wo)′ is equal to L1E.

If E is an order continuous Banach lattice which has a weak unit, then
there exists an AL space S such that E is an order dense Riesz subspace
of S. In this case E∼ is also an order dense ideal in S [1, Theorem 2.1; 10,
Theorem 2.7.8; 8, Theorem 1.b.14]. Now we shall give different representa-
tion theorems for order continuous Banach lattices with a weak unit. This
representation clearly exhibits the relation between E, E′ and Z(E)′.

Theorem 4. Let E be an order continuous Banach lattice which has a
weak unit. Then E∼ is order isomorphic to an order dense ideal in L1E.

Proof. Let e > 0 be a weak unit. Define a map Φe : E
∼ → L1E such

that Φe(f) = µe,f for each f ∈ E
∼. It is easy to see that Φe is a positive

operator. Let Φe(f) = 0. Then Φe(f)(π) = µe,f (π) = f(πe) = 0 for each
π ∈ Z(E). If x ∈ Ie (where Ie is the principal ideal generated by e), then
there exists π ∈ Z(E) such that πe = x by Lemma 2.7 in [11]. This implies
that f(πe) = f(x) = 0. Take an arbitrary positive element in Be = E (where
Be is the principal band generated by e). Since Ie is order dense in Be,
there exists an upward directed net {xα} in Ie such that 0 ≤ xα ↑ x. The
order continuity of f implies that f(x) = 0. This shows that Φe is injective.
Now let f ∈ E∼ and µe,f ≥ 0 in L

1
E . Using the above technique for each

0 ≤ x ∈ Be = E we see that f(x) ≥ 0. Thus Φ
−1
e : Φe(E

∼)→ E∼ is positive.
Applying Theorem 7.3 of [3] one can deduce that Φe : E

∼ → Φe(E
∼) is a

Riesz isomorphism. The order ideality of Φe(E
∼) in L1E follows from the

technique used in Lemma 1.

Finally, we claim that Φe(E
∼) is order dense in L1E . To see this, let D

be the band generated by Φe(E
∼) in L1E . If we show B ⊆ D, then the proof

will be completed. For 0 ≤ x ∈ E and 0 ≤ f ∈ E∼ take an element µx,f
in B. If x ∈ Ie, then there exists π ∈ Z(E) such that πe = x. For s ∈ Z(E)
the equality

µx,f (s) = µπe,f (s) = f(πse) = π̃(f)(se) = µe,π̃(f)(s)

shows that µx,f belongs to D. If we take an arbitrary 0 ≤ x ∈ Be = E, then
there exists an upward directed net {xα} in Ie such that 0 ≤ xα ↑ x. Since f
is order continuous and positive, we have f(πxα) ↑ f(πx) for each positive
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π in Z(E) and so µxα,f (π) ↑ µx,f (π). As µxα,f ∈ D and D is a band in L
1
E

we see that µx,f ∈ D. It is routine to check that µx,f ∈ D for all x and f .

Theorem 5. Let E be an order continuous Banach lattice which has a
weak unit. Then E is order isomorphic to an order dense Riesz subspace

of L1E.

Proof. By Proposition 1.b.15 in [8] there exists 0 < h ∈ E∼ such that
h(|x|) = 0 implies that x = 0. Define Φh : E → L

1
E by Φh(x) = µx,h. Clearly,

Φh is a positive operator and since E has an order continuous norm, E is
Dedekind complete. By Lemma 1 in [5], Φh is a Riesz homomorphism and
hence Φh(E

∼) is a Riesz subspace of L1E . To show the injectivity of Φh
let Φh(x) = 0. Then we have Φh(x)(π) = µx,h(π) = h(πx) = 0 for each
π ∈ Z(E). As |x| ∈ Ix, there exists π ∈ Z(E) such that πx = |x| and it
follows that h(|x|) = h(πx) = 0. By the properties of h we deduce that Φh
is injective.

Let D be the band generated by Φh(E) in L
1
E . It is sufficient to show

that B ⊆ D. To do this for 0 ≤ x ∈ E and 0 ≤ f ∈ E∼ take an element µx,f
in B. If f ∈ Ih, then there exists s ∈ Z(E

∼) such that s(h) = f . On the
other hand, Proposition 2 in [5] shows the equality Z(E) = Z(E∼). Thus,
there exists π ∈ Z(E) such that π̃ = s. For each t ∈ Z(E) we have

µx,f (t) = µx,sh(t) = µx,π̃h(t) = π̃(h)(tx) = h(πtx) = µπx,h(t),

which shows that µx,f ∈ D. If we take f ∈ Bh, then there exists an upward
directed net {fα} in Ih such that 0 ≤ fα ↑ f . By a simple observation we
find that µx,fα ↑ µx,f . As D is a band and µx,fα ∈ D, we have µx,f ∈ D.
By Theorem 2.4.9 in [10], h is a weak unit of E∼, and hence µx,f ∈ D for
each 0 ≤ f ∈ E∼. It is routine to calculate that µx,f belongs to D for all f
and x. The proof of the theorem is now complete.

Corollary 2. Under the hypothesis of Theorem 5 we have

Z(E) = Z(E∼) = Z(L1E) = L
∞
E .

Proof. The equalities Z(E∼) = Z(E) and Z(L1E) = L
∞
E hold by Propo-

sition 2 in [5] and Theorem 1. Now we show Z(E∼) = Z(L1E). Since E
∼ is an

order ideal in L1E , for all π ∈ Z(L
1
E) we have π(E

∼) ⊆ E∼. Thus it makes
sense to consider π|E∼ for all π ∈ Z(L

1
E), and one has π|E∼ ∈ Z(E

∼).
Define r : Z(L1E) → Z(E

∼) by r(π) = π|E∼ . It is clear that r is a pos-
itive operator. If π1, π2 ∈ Z(L

1
E) and π1|E∼ = π2|E∼ , then by Corol-

lary 140.6(ii) in [12], π1 = π2. Hence r is injective. Dedekind completeness
of L1E ensures that each operator 0 ≤ π ∈ Z(E

∼) has a unique extension
π̂(µ) = sup{π(f) : 0 ≤ f ≤ µ, f ∈ E∼} in the ideal center of the band
generated by E∼ in L1E . Thus r is surjective and r

−1 is positive. This shows
that r is a Riesz isomorphism.
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