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L' representation of Riesz spaces
by

BAHRI TURAN (Ankara)

Abstract. Let E be a Riesz space. By defining the spaces LY, and LY of E, we
prove that the center Z(Lk) of L} is L and show that the injectivity of the Arens
homomorphism m : Z(E)" — Z(E~) is equivalent to the equality Lk, = Z(E)'. Finally,
we also give some representation of an order continuous Banach lattice £ with a weak
unit and of the order dual E~ of E in L} which are different from the representations
appearing in the literature.

1. Introduction. An ordered vector space E is called a Riesz space (or
a vector lattice) if sup{x,y} = = Vy (or inf{z,y} = = A y) exists in E for
all z,y € E. Sets of the form [z,y] = {z € E : x < z < y} are called order
intervals or simply intervals. A subset A of E is said to be order bounded if
A is included in some order interval.

A linear map T, between E and L, is said to be order bounded when-
ever T maps order bounded sets into order bounded sets. Order bounded
linear maps between E and L will be denoted by Ly, (E, L). We denote by
Ly (FE) the order bounded operators from E into itself and by E~ the order
bounded functionals on E. Furthermore, £ will denote the order continu-
ous members of E~. The space E™ is called the order dual of E. The norm
dual of a Banach lattice E coincides with its order dual [3, p. 176].

A mapping 7 € Ly (F) is called an orthomorphism if x L y (i.e. |z| A |y|
= 0) implies 7 L y. The set of orthomorphisms of F will be denoted
by Orth(E). The principal order ideal generated by the identity operator
I in Orth(E) is called the ideal center of E and is denoted by Z(E) (i.e.
Z(E)={m € Ly(E) : |r| < AI for some A € R} }).

If F is a uniformly complete Riesz space, then Z(E) becomes a Ba-
nach lattice with respect to the I-uniform norm ||7| = inf{\ : |7| < AI,
A € Ry }. In particular, if F is a Banach lattice, the Z(E) is a Banach lat-
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tice. Moreover, every operator norm coincides with the I-uniform norm on
Z(FE). The space Z(F) is an abstract AM-space and Z(E)’ is an abstract
AL-space. Moreover, Z(E)’ has order continuous norm.

Let A be a Riesz algebra (lattice ordered algebra), i.e., A is a Riesz space
which is simultaneously an associative algebra with the additional property
that a,b € A, implies that ab € A,. An f-algebra A is a Riesz algebra
which satisfies the extra requirement that ¢ L b implies ac L b = ca L b
for all ¢ € A, . Every Archimedean f-algebra is commutative. Orth(E) and
Z(F) are f-algebras under pointwise order and composition of operators.

Throughout, £~ will be assumed to separate the points of E. This as-
sumption implies that F is Archimedean.

Let us also recall that (A™)y, the order continuous part of the order
bidual A~™, of an f-algebra A can be made an f-algebra, extending the
product in A, whenever A has separating order dual. This is done as follows:

(1) Ax A~ = A~
(a, f)— f-a: f-ad)= f(a-b) forbe A,
(2) (A™)Y x A~ — A~

(F,fym F-f: F-f(a)=F(f-a) foracA,
3)  (A7)L x (A7) = (A7)y,
(FFG)— F-G: F-G(f)=F(G-f) for feA™.

Then (A™)y is an f-algebra with the multiplication defined in step (3)
(see [7]).

If (A™)y is an f-algebra with identity then the mapping v : (A™)y —
Orth(A™) defined as F' — vp where vp(f) = F - f for each f € A™ is an
algebra isomorphism and a Riesz isomorphism [7].

Given the bilinear map Z(E) x E — E defined by (7, z) — 7z, consider
its Arens extensions

(4) Ex E~ — Z(E),

(xaf)’_’,uw,f: ,ua:,f(ﬂ—):f(ﬂw) for m € Z(E),
(5)  Z(E)' x E~ — E~,

(F,f)y— Fef: Feof(zx)=F(ugys) forxzekE.

The maps defined in (4) and (5) are bipositive. (5) makes it possible to define
a linear map m : Z(E)” — Z(E~) where m(F)(f) = F o f; it is called the
Arens homomorphism. If FE is a Riesz space with topologically full center
then the bilinear map F x E~ — Z(F)’ is a bilattice homomorphism and m
is a unital algebra homomorphism and an order continuous surjective Riesz
homomorphism [4, 5].
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In all undefined terminology we will adhere to [3, 8, 9, 10, 12].

2. L' and L™ spaces. We define the L' and L™ spaces of a Riesz
space FE. Let A be an algebra and E be an A-module, and let A*, E* be
their algebraic duals. Then a bilinear map can be defined by

®:FEx E"— A",
(z,f)—zxz®f: z® f(a)=f(a-z) forac A
In general the image of this bilinear map may not be a linear space. For this
reason, the linear space generated by the image of ® has been taken as the

A-tensor product of £ and E*. But the image of the bilinear map given in
step (4) is a linear space as can be seen from the following lemma.

LEMMA 1. Let E be a Riesz space and B = {uy 5 :x € E, f € E~}.
Then B is an order ideal in Z(E)'.

Proof. Let f,g € E~, z,y € E and pt = pig, + fty,g- Then

0 < ™ < | + byl < fial 151+ Myl lg) S Plal+lyl £ +g]
Similarly, 0 < p= < g4yl fl4lgl- S€t h = |f] + |g] and z = |z| + |y|;
then 0 < put < p,p and 0 < p= < p, . Since 0 < pt < p,p and Z(E)
is Dedekind complete there exists 7 € Z(Z(E)') with 7(puzn) = pt [3,
Theorem 8.15]. By the algebra and Riesz isomorphism v which is defined
earlier, one has the equality Z(E)” = Z(Z(FE)’). It implies that vy = 7 for
some H € Z(FE)". For any two elements 71,72 in Z(E) we obtain

M, f - m(me) = Na:,f(m “ma) = f(mmaz) = ,Uma:,f(ﬂ'Q)-
On the other hand, for this H one can easily calculate that H -, r = [tz ef

and so

T(pen) = vu(pan) = H  fon = po men = 1

Following the same argument, we see that u~ = p, sen, for S € Z(E)”. By
using these equalities, we have

=" — T = fhz Heh — [hz,Seh = Mz (H—S)eh
which implies that the sum of two elements in B is again an element of B.
As a consequence B is a subspace of Z(FE)’. Using the same technique one
can easily see that B is also an order ideal in Z(E)’.

Let E be a Riesz space. Then Z(E) = Z(E)~ is a Banach lattice with
respect to operator norm. Since B is an order ideal in Z(E)’, it is well known
that the o(Z(E)', Z(E)") closure of B coincides with the norm closure of B.
As Z(E)' has order continuous norm, the closure of B is a band in Z(E)’
[12, Corollary 106.3]. The L' and L* spaces of a C(K)-module E were
defined and studied in [2]. Now we will give similar definitions for a Riesz
space F.
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DErINITION 1. Let E be a Riesz space.

(a) The o(Z(E)', Z(E)")-closure of B is called the L! space of E and is
denoted by L.

(b) The order dual of L} is called the L> space of E and is denoted
by L%.

It follows from this definition that L1, is an abstract AL space and hence
L% is an abstract AM space. Moreover, L}, has order continuous norm.

It is well known that if (X, X, u) is a o-finite measure space and F =
LP(p) with 0 < p < oo then Z(FE) = L*>(u). We now prove a similar result
for L.

THEOREM 1. If E is a Riesz space then Z(LL) = L.

Proof. We wish to define a map u : L = (LL) — Z(L}) by up(u
Fxp for each F € L, p € L, where F s pu(m) = F(p-7), p-m(s) = p(
for all m,s € Z(F). We shall show that u is a Riesz isomorphism.

Let g = pg ¢ € B for some z € E, f € E~ and m € Z(E). We obtain

) =
7S$)

U f - 7‘—(8) = :U'm,f(ﬂs) - f(ﬂ'S.iL‘) = f(Sﬂ'.%') = Uﬂr,f(s)
for each s € Z(FE). Take a positive element y in L. There exists a net
{pa} C B such that 0 < p, T p. Since pig -7 T -7 for each 7 € Z(E) 4 and
LY is a band, it follows that -7 € L. It is easy to see that up is a positive
operator for F' positive in L, and F'* (Ap1 + po) = AF % p1q + F % po for all
A € R, p1, o € L. This implies that up € Ly,(L}) for each F € LS. Now
let F € LY and P be the band projection of L. Note that FF o P € Z(E)"
and vpop € Z(Z(E)'). Since L}, is a band and Upop|r1, = up, We see that
up € Z(LY). Thus the image of LY under u is included in Z(LL). It is
routine to check that u is a positive operator.
If up = 0 for some F' € L%, then

wr(pa, ) (1) = F 5 g, g (1) = Fpap - 1) = F(pa,f) = 0

for each p, r € B. By this fact and the order continuity of F', F'(11) = 0 for
each p € L},. Hence u is a one-to-one operator.

On the other hand, since v : Z(E)” — Z(Z(E)') is surjective there
exists G € Z(E)" such that vg = P, the band projection considered above.
Set H = G\L};. For each p € Lk, we have ug(pu) = H x p = P(u) = p,
which shows that uy = I. Now let s € Z(LL) and s be adjoint to s. Then
S(H) € LY. Observe that

S(H)* p(m) =5(H)(p-m) = H(s(p-m)) = H(s(p).m) = H * s(pu)(m)

for all p € Ly and 7 € Z(E). Hence ug(sry (1) = S(H)* p = s(p). This shows
that u is surjective.
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Clearly, u~! is a positive operator. Applying Theorem 7.3 of [3] we see
that u is a Riesz isomorphism.

In the following theorem we characterize the injectivity of the Arens
homomorphism in the case of L}, = Z(E)'.

THEOREM 2. Let E be a Riesz space. Then the Arens homomorphism
m: Z(E)'" — Z(E~) is injective if and only if L}, = Z(E)'.

Proof. Assume that LY, = Z(E)" and m(F) = 0. Then 0 = m(F)(f)(x)
= F(ps,f) for each z € E, f € E~. The order continuity of F' implies that
F(u) =0 for each u € LY, = Z(E)'. This shows that m is injective.

Conversely, suppose that m is injective. Let R : Z(E) — (L})? be the
band projection. Since Z(E)" = Z(Z(E)'), there exists G € Z(FE)" such
that vg = R. For all x € E| f € E~ we have

va(fa,f) = G - pa,y = R(pte,f) =0
SO

G - o p(I) = Gty - 1) = Glptag) = m(G)(f) () = 0.

It follows that G = 0, as m is injective. Hence R = 0. Since Z(E) =
Lt @ (LL)Y and R = 0 one sees that Z(E) = L%, which completes the
proof.

We now give two examples related to the characterization of L.

ExaMPLE 1.

(a) Let E = I', the absolutely summable sequences. Then E~ = [* (the
bounded sequences) and Z(E) = Z(E~) = [*°. On the other hand,
Z(E)" = (1°°)"” and m is the band projection of (I°°)” onto [*°. Then
m is not one-to-one. Therefore L, # Z(E)'.

(b) Let K be a compact Hausdorff space and F = C(K). Then Z(FE) =
C(K) and Z(E~) = C(K)". Also m is the identity map of C'(K)".
Hence L}, = Z(E)'.

These examples show that, in general, L}, # Z(FE)’. We are now in a
position to characterize Lk in Z(E)'. First we introduce the weak operator
topology on Z(F), denoted by wo, corresponding to the dual pair (E, E~).
A net {m,} converges to m with respect to the wo-topology if and only if
f(max) — f(mz) for each x € E and f € E~. We are now ready to state
the following theorem.

THEOREM 3. Let E be a Banach lattice and (Z(E),wo)" be the set of
continuous functionals on (Z(E),wo). Then (Z(E),wo)" = B.
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Proof. Clearly, B is a subset of (Z(E),wo)’. Conversely, let 4 be a func-
tional on Z(F) which is continuous in the wo-topology. By Theorem 4 in [6]
there exist 1,...,2, € E and f1,..., f, € E' such that p = > | fa, 7,
This completes the proof.

From the above theorem and Lemma 1 one can deduce the following
corollary.

COROLLARY 1. Let E be a Banach lattice. Then (Z(E),wo)’ is an order
ideal in Z(E)" and the closure of (Z(E),wo)' is equal to L%,.

If F is an order continuous Banach lattice which has a weak unit, then
there exists an AL space S such that F is an order dense Riesz subspace
of S. In this case E™ is also an order dense ideal in S [1, Theorem 2.1; 10,
Theorem 2.7.8; 8, Theorem 1.b.14]. Now we shall give different representa-
tion theorems for order continuous Banach lattices with a weak unit. This
representation clearly exhibits the relation between E, E' and Z(E)'.

THEOREM 4. Let E be an order continuous Banach lattice which has a
weak unit. Then E™ is order isomorphic to an order dense ideal in Lk;.

Proof. Let e > 0 be a weak unit. Define a map &, : E~ — L, such
that @.(f) = pe 5 for each f € E™~. It is easy to see that @, is a positive
operator. Let @.(f) = 0. Then @.(f)(7w) = pe,¢(7) = f(we) = 0 for each
m € Z(E). If x € I, (where I, is the principal ideal generated by e), then
there exists 7 € Z(FE) such that me = x by Lemma 2.7 in [11]. This implies
that f(me) = f(xz) = 0. Take an arbitrary positive element in B, = E (where
B, is the principal band generated by e). Since I. is order dense in B,
there exists an upward directed net {z,} in I, such that 0 < z, T x. The
order continuity of f implies that f(x) = 0. This shows that &, is injective.
Now let f € E~ and p. s > 0 in L};. Using the above technique for each
0 < x € B, = E we see that f(z) > 0. Thus &, : &.(E~) — E” is positive.
Applying Theorem 7.3 of [3] one can deduce that @, : E~ — & (E™) is a
Riesz isomorphism. The order ideality of ®.(E~) in L}, follows from the
technique used in Lemma 1.

Finally, we claim that @.(E"~) is order dense in LL. To see this, let D
be the band generated by @.(E~) in LL. If we show B C D, then the proof
will be completed. For 0 <z € F and 0 < f € E~ take an element fi, ¢
in B. If x € I., then there exists m € Z(FE) such that me = z. For s € Z(FE)
the equality

fa,f(8) = pme,f(s) = f(mse) = T(f)(s€) = pez(r)(s)
shows that ji, ¢ belongs to D. If we take an arbitrary 0 <z € B, = E, then

there exists an upward directed net {z,} in I, such that 0 < z,, T x. Since f
is order continuous and positive, we have f(wz,) | f(mwz) for each positive
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7 in Z(E) and so pig, f(7) T pra, £ (7). AS piy,, f € D and D is a band in L}
we see that p, ¢ € D. It is routine to check that p, f € D for all z and f.

THEOREM 5. Let E be an order continuous Banach lattice which has a
weak unit. Then E is order isomorphic to an order dense Riesz subspace

of LL.

Proof. By Proposition 1.b.15 in [8] there exists 0 < h € E™ such that
h(|z|) = 0 implies that z = 0. Define @, : E — L%, by &}, (z) = p 5. Clearly,
®;, is a positive operator and since E has an order continuous norm, F is
Dedekind complete. By Lemma 1 in [5], ¢, is a Riesz homomorphism and
hence @,(E™) is a Riesz subspace of L. To show the injectivity of &y,
let &p(xz) = 0. Then we have &y (x)(7) = pgn(m) = h(mx) = 0 for each
m € Z(E). As |z| € I,, there exists 7 € Z(F) such that 7z = |z| and it
follows that h(|x|) = h(wz) = 0. By the properties of h we deduce that @,
is injective.

Let D be the band generated by @, (F) in LL. It is sufficient to show
that B C D. To do this for 0 <z € Fand 0 < f € E~ take an element /i, ¢
in B. If f € I, then there exists s € Z(E™) such that s(h) = f. On the
other hand, Proposition 2 in [5] shows the equality Z(E) = Z(E~). Thus,
there exists m € Z(F) such that 7 = s. For each t € Z(F) we have

:U'm,f(t) = Mz,sh(t) = Mw,%h(t) = W(h)(t;{}) - h‘(ﬂ—tx) - sz,h(t)a
which shows that p, f € D. If we take f € By, then there exists an upward
directed net {f,} in Ij, such that 0 < f, 7 f. By a simple observation we
find that gz r, T pie,r- As D is a band and g 5, € D, we have p, 5 € D.
By Theorem 2.4.9 in [10], h is a weak unit of E~, and hence p, 5 € D for
each 0 < f € E7. It is routine to calculate that p, s belongs to D for all f
and x. The proof of the theorem is now complete.

COROLLARY 2. Under the hypothesis of Theorem 5 we have
Z(E)=Z(E~) = Z(L}) = LY.

Proof. The equalities Z(E~) = Z(E) and Z(L%) = LY hold by Propo-
sition 2 in [5] and Theorem 1. Now we show Z(E~) = Z(L}). Since E™ is an
order ideal in L, for all 7 € Z(LL,) we have m(E~) C E~. Thus it makes
sense to consider 7|g~ for all m# € Z(L}), and one has 7|~ € Z(E™).
Define r : Z(LY) — Z(E~) by r(mw) = m|g~. It is clear that r is a pos-
itive operator. If my,m € Z(LL) and m|g~ = ma|g~, then by Corol-
lary 140.6(ii) in [12], m; = 72. Hence 7 is injective. Dedekind completeness
of L ensures that each operator 0 < m € Z(E™) has a unique extension
() =sup{n(f) : 0 < f < p, f € E~} in the ideal center of the band
generated by E~ in LL. Thus r is surjective and r~! is positive. This shows
that r is a Riesz isomorphism.
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