STUDIA MATHEMATICA 169 (2) (2005)

Optimal L^p-properties of Green's functions for non-divergence elliptic equations in two dimensions

by

GIOCONDA MOSCARIELLO and CARLO SBORDONE (Napoli)

Abstract. A sharp integrability result for non-negative adjoint solutions to planar non-divergence elliptic equations is proved. A uniform estimate is also given for the Green's function.

1. Introduction. Given $K \geq 1$ and a smooth domain $\Omega \subset \mathbb{R}^2$, denote by $\mathcal{E}(K)$ the class of symmetric 2×2 matrix-valued functions A = A(x) defined on Ω which satisfy the ellipticity bounds

(1.1)
$$\frac{|\xi|^2}{\sqrt{K}} \le \langle A(x)\xi,\xi\rangle \le \sqrt{K}\,|\xi|^2$$

for a.e. $x \in \Omega$ and for all $\xi \in \mathbb{R}^2$. For $w \in W^{2,2}_{\text{loc}}(\Omega)$, set

$$\mathcal{M}[w] = \operatorname{Tr}(A(x)D^2w)$$

and for $v \in L^2_{\text{loc}}(\Omega)$,

$$\mathcal{N}[v] = \sum_{ij} \frac{\partial^2}{\partial y_i \partial y_j} (a_{ij}(y)v(y)), \quad A = [a_{ij}].$$

This operator is nothing other than the formal adjoint of \mathcal{M} .

In this paper, following the ideas of [FS], we study the interior regularity of non-negative solutions $v \in L^2_{loc}(\Omega)$ of the adjoint equation $\mathcal{N}[v] = 0$ (i.e. $v \in L^2_{loc}(\Omega)$, $v \ge 0$, and $\int_{\Omega} v \mathcal{M}[\varphi] dx = 0$ for any $\varphi \in W^{2,2}(\Omega)$ with compact support). It is known [B] that such "adjoint solutions" need not be locally bounded, even if the a_{ij} are continuous. Here we determine the best integrability exponent of v, in terms of the ellipticity constant K.

Namely, we prove that for $2 \le p < 2K/(K-1)$ the reverse Hölder inequality

$$\left(\int_{B} v(y)^{p} \, dy\right)^{1/p} \le c(K, p) \int_{B} v(y) \, dy$$

holds for all balls $B = B(a, r) \subset B(a, 2r) \subset \Omega$.

²⁰⁰⁰ Mathematics Subject Classification: 35J15, 35J70.

The same estimate holds for v(y) = G(x, y) where G(x, y) is the Green's function of \mathcal{M} in Ω , with the constant c = c(K, p) independent of x.

The aforesaid results are optimal.

The main tool for our proof is a generalization of the Aleksandrov– Bakelman–Pucci inequality (see [P], [FM]) recently obtained by Astala– Iwaniec–Martin [AIM].

2. The L^q -version of the Aleksandrov–Bakelman–Pucci inequality. Our discussion here is focused on the second order elliptic equation

$$\mathcal{M}[w] = \operatorname{Tr}(AD^2w) = a_{11}(x)\frac{\partial^2 w}{\partial x_1^2} + 2a_{12}(x)\frac{\partial^2 w}{\partial x_1 \partial x_2} + a_{22}(x)\frac{\partial^2 w}{\partial x_2^2} = h$$

with given $h \in L^q(B)$, q > 1, defined on the ball B = B(0, r). If q = 2 the Dirichlet problem

(2.1)
$$\begin{cases} \mathcal{M}[w] = h & \text{in } B, \\ u = 0 & \text{on } \partial B \end{cases}$$

admits a unique solution $w \in W^{2,2}(B) \cap W_0^{1,2}(B)$ (see [C]).

Let us formulate the second order equations in terms of the complex derivatives

$$\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x_1} + i \frac{\partial}{\partial x_2} \right), \quad \frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x_1} - i \frac{\partial}{\partial x_2} \right).$$

Upon a few elementary algebraic computations, we arrive at the formula

$$\operatorname{Tr}(AD^2w) = (w_{z\overline{z}} - \mu w_{zz} - \overline{\mu}\,\overline{w}_{zz})\operatorname{Tr} A$$

where

(2.2)
$$\mu = \mu(z) = \frac{a_{22} - a_{11} - 2ia_{12}}{2(a_{11} + a_{22})}$$

The ellipticity bounds at (1.1) imply

(2.3)
$$|\mu(z)| + |\overline{\mu}(z)| \le \frac{K-1}{K+1} < 1$$

for a.e. $z \in B$.

Using the complex gradient

$$f(z) = w_z = \frac{1}{2} \left(w_{x_1} - i w_{x_2} \right)$$

we are reduced to the Beltrami equation

$$f_{\overline{z}} - \mu(z)f_z - \overline{\mu(z)}\,\overline{f}_z = \frac{h(z)}{\operatorname{Tr} A}$$

in *B*. Optimal L^q -properties for its solutions have recently been established [AIS], [PV]. Precisely, given *H* defined on *B*, we set H = 0 for $z \in \mathbb{R}^2 \setminus B$ and

 $\mu(z) = 0$ for $z \in \mathbb{R}^2 \setminus B$. Then the equation extends to the entire space \mathbb{R}^2 , $F_{\overline{z}} - \mu(z)F_z - \overline{\mu(z)} \ \overline{F}_z = H.$

It has a unique solution F such that

 $||F_{\bar{z}}||_{L^q(\mathbb{R}^2)} \le c(q, K) ||H||_{L^q(\mathbb{R}^2)}$

for 2K/(K+1) < q < 2K/(K-1). With the aid of this estimate the following result has been established in [AIM].

THEOREM 2.1. Suppose $2K/(K+1) < q \leq 2$, and $w \in W^{2,q}_{loc}(B_r)$ satisfies

$$\begin{cases} \mathcal{M}[w] = h & a.e. \text{ in } B_r = B(0,r), \\ w = 0 & on \ \partial B_r. \end{cases}$$

Then

(2.4)
$$\|w\|_{L^{\infty}(B_r)} \le c(K,q)r^{2-2/q}\|h\|_{L^q(B_r)}$$

The estimate no longer holds if $q \leq 2K/(K+1)$.

3. A reverse Hölder inequality for non-negative adjoint solutions. In this section the letter c will denote a constant depending on K and p. It may vary at each occurrence.

We are now ready to prove the following

THEOREM 3.1. Assume $A = [a_{ij}]$ satisfies (1.1). Let $v \in L^2(\Omega), v \ge 0$ in Ω , satisfy the adjoint equation

$$\mathcal{N}[v] = \sum_{i,j} \frac{\partial^2}{\partial y_i \partial y_j} (a_{ij}(y)v(y)) = 0.$$

Then, for all balls $B_r \subset B_{2r} \subset \Omega$, we have

(3.1)
$$\left(\int_{B_r} v(y)^p \, dy\right)^{1/p} \le c(K,p) \int_{B_r} v(y) \, dy,$$

where $2 \le p < 2K/(K-1)$.

Proof. We closely follow the arguments in [FS]. Note that here we dispense with the smoothness assumption on the coefficients. For n = 2 this assumption is redundant.

We make use of the dual expression of the L^p -norm,

(3.2)
$$\left(\int_{B_r} v^p\right)^{1/p} = \sup\left\{\int_{B_r} vh : h \ge 0, h \in C_0^1(B_r), \|h\|_{L^q(\mathbb{R}^2)} \le 1\right\}.$$

Fix $h \in C_0^1(B_r)$, $||h||_{L^q} \leq 1$, $h \geq 0$. Applying (2.1) we solve the Dirichlet problem

$$\begin{cases} \mathcal{M}[w] = h & \text{in } B_{2r}, \\ w = 0 & \text{on } \partial B_{2r}. \end{cases}$$

Next, for $w \in W^{2,2}(B_{2r})$ fix $\varphi_r \in C_0^1(B_{3r/2})$ such that $\varphi_r = 1$ on B_r and $|\partial^{\alpha}\varphi_r/\partial x^{\alpha}| \leq C_{\alpha}/r^{|\alpha|}$.

Then we have

$$(3.3) \quad \int_{B_r} vh \leq \int_{B_{2r}} v\mathcal{M}[w]\varphi_r = -\int_{B_{2r}} vw\mathcal{M}[\varphi_r] - 2\int_{B_{2r}} v\langle A\nabla w, \nabla \varphi_r \rangle$$
$$\leq \frac{c}{r^2} \|w\|_{L^{\infty}(B_{2r})} \int_{B_{3r/2}} v + \frac{c\sqrt{K}}{r} \int_{B_{3r/2}} v|\nabla w|.$$

By (2.4), $||w||_{L^{\infty}(B_{2r})} \leq c(K,q)r^{2/p}$, hence (3.3) implies

(3.4)
$$\int_{B_r} vh \leq \frac{c}{r^2} r^{2/p} \int_{B_{3r/2}} v + \frac{c}{r} \Big(\int_{B_{3r/2}} v \Big)^{1/2} \Big(\int_{B_{2r}} v |\nabla w|^2 \Big)^{1/2}.$$

We now estimate the last integral in the right hand side, by using the Caccioppoli inequality. By (1.1) we have

$$\int_{B_{2r}} v |\nabla w|^2 \le \sqrt{K} \int_{B_{2r}} v \langle A \nabla w, \nabla w \rangle = \sqrt{K} \int_{B_{2r}} v [\mathcal{M}[w^2] - 2wh].$$

Since $w^2 = 0$ on ∂B_{2r} , and $\nabla(w^2) = 0$ on ∂B_{2r} , we deduce

$$\int_{B_{2r}} v\mathcal{M}[w^2] = 0 \quad \text{whenever} \quad \mathcal{N}[v] = 0.$$

Using again (2.4) yields

(3.5)
$$\int_{B_{2r}} v |\nabla w|^2 \leq 2\sqrt{K} \int_{B_{2r}} v |w| h \leq 2\sqrt{K} ||w||_{L^{\infty}(B_{2r})} \int_{B_r} v h$$
$$\leq 2\sqrt{K} cr^{2/p} \int_{B_r} v h.$$

By (3.4) and (3.5) it follows that

$$\int_{B_r} vh \le \frac{c}{r^{2(1-1/p)}} \int_{B_{3r/2}} v + \frac{c}{r^{1-1/p}} \Big(\int_{B_{3r/2}} v\Big)^{1/2} \Big(\int_{B_r} vh\Big)^{1/2}.$$

By the elementary inequality $\sqrt{a}\sqrt{b} \leq a/2 + b/2$, we arrive at

$$\int_{B_r} vh \le \frac{c}{r^{2(1-1/p)}} \int_{B_{3r/2}} v + \frac{c}{r^{2(1-1/p)}} \int_{B_{3r/2}} v + \frac{1}{2} \int_{B_r} vh.$$

Rearranging yields

(3.6)
$$\int_{B_r} vh \le \frac{c}{r^{2(1-1/p)}} \int_{B_{3r/2}} v$$

136

Since h is arbitrary, by (3.2), (3.6) we obtain

$$\left(\oint_{B_r} v^p \right)^{1/p} \le c \oint_{B_{3r/2}} v.$$

An application of the following lemma (Lemma 2.0 in [FS]) concludes the proof.

LEMMA 3.1. There exists a constant c, depending only on K, such that for all non-negative weak solutions v of $\mathcal{N}[v] = 0$ and for all balls B_r with $B_{2r} \subset \Omega$ we have

$$\int_{B_r} v(y) \, dy \le c \int_{B_{r/2}} v(y) \, dy. \bullet$$

4. A reverse Hölder inequality for the Green's function. Recall that the Green's function for \mathcal{M} on a smooth domain Ω is non-negative and $G_{\Omega}(x, \cdot) \in L^{1}(\Omega)$ for every $x \in \Omega$. We have the identity

$$\varphi(x) = -\int_{\Omega} G_{\Omega}(x, y) \mathcal{M}\varphi(y) \, dy$$

for any $\varphi \in C^2(\overline{\Omega})$ such that $\varphi = 0$ on $\partial \Omega$.

THEOREM 4.1. For every $2 \leq p < 2K/(K-1)$ and for all balls $B_r \subset B_{4r} \subset \Omega$, we have

(4.1)
$$\left[\int_{B_r} G_{\Omega}(x,y)^p \, dy\right]^{1/p} \le c(K,p) \int_{B_r} G_{\Omega}(x,y) \, dy$$

for $x \in \Omega$.

Let us first recall some well known properties of Green's functions. The Aleksandrov–Bakelman–Pucci theorem for n = 2 reads

THEOREM 4.2. Let $w \in W^{2,2}(\Omega)$ satisfy

(4.2)
$$\begin{cases} \mathcal{M}[w] = h & \text{with given } h \in L^2(\Omega), \\ w = 0 & \text{on } \partial\Omega. \end{cases}$$

Then

$$\|w\|_{L^{\infty}(\Omega)} \le c(K)d(\Omega)\|h\|_{L^{2}(\Omega)}$$

with $d(\Omega) = \operatorname{diam}(\Omega)$.

The solution is unique. In what follows we write it as $w = w_h$ to indicate the dependence on $h \in L^2(\Omega)$. The following result is a well known consequence of Theorem 4.2.

COROLLARY 4.1. There exists a unique function $G(x, \cdot) \in L^2(\Omega)$ such that $G(x, y) \geq 0$ in $\Omega \times \Omega$,

$$w_h(x) = -\int_{\Omega} G(x, y)h(y) \, dy$$

and

(4.3)
$$\sup_{x \in \Omega} \|G(x, \cdot)\|_{L^2(\Omega)} \le c(K)d(\Omega).$$

We need another preliminary fact:

LEMMA 4.1 ([K, Lemma 3.3]). Let $G_r(x, y)$ denote the Green's function for \mathcal{M} in B_{3r} . Then there exist two positive constants $c_1(K)$, $c_2(K)$ such that

$$c_1 \leq \int_{B_r} G_r(x, y) \, dy \leq c_2 \quad \text{for } x \in B_{2r}.$$

Proof of Theorem 4.1. If $x \notin B_{2r}$ then $G(x, \cdot)$ is an adjoint solution of \mathcal{M} in B_{2r} and then the estimate follows from Theorem 3.1.

Assume now that $x \in B_{2r}$. Let $G_r(x, y)$ be the Green's function for \mathcal{M} in B_{3r} . By the maximum principle we know that $G(x, y) \geq G_r(x, y)$ and thus the function $v(y) = G(x, y) - G_r(x, y)$ is a non-negative solution to $\mathcal{N}[v] = 0$ in B_{2r} . Hence, using Theorem 3.1, we have

(4.4)
$$\int_{B_r} G(x,y)^p \, dy \le c \int_{B_r} [G(x,y) - G_r(x,y)]^p \, dy + c \int_{B_r} G_r(x,y)^p \, dy$$
$$\le c \bigg\{ \int_{B_r} [G(x,y) - G_r(x,y)] \, dy \bigg\}^p + c \int_{B_r} G_r(x,y)^p \, dy.$$

To estimate the last term we invoke the inequality

(4.5)
$$\left[\int_{B_r} G_r(x,y)^p \, dy\right]^{1/p} \le c(K,p)r^{2/p},$$

which comes from Theorem 3.1 in the following way. First observe that the solution w to the Dirichlet problem

$$\begin{cases} \mathcal{M}[w] = h & \text{in } B_{3r}, \\ w = 0 & \text{on } \partial B_{3r}, \end{cases}$$

for $h \in L^q$ (1/q + 1/p = 1) can be represented as

$$w(x) = -\int_{B_{3r}} G_r(x, y)h(y) \, dy.$$

Then (4.5) follows by duality arguments:

$$\left[\int_{B_{3r}} G_r(x,y)^p \, dy\right]^{1/p} = \sup_{\|h\|_{L^q(B_{3r})} \le 1} |w(x)| \le c(K,q)r^{2-2/q} = c(K,p)r^{2/p}.$$

138

In view of Lemma 4.1 inequality (4.5) implies

$$\left[\int_{B_r} G_r(x,y)^p \, dy\right]^{1/p} \le c(K,p) \int_{B_r} G_r(x,y) \, dy,$$

which, together with (4.4), concludes the proof.

The following result parallels Corollary 2.4 in [FS] and can be proved in the same way.

COROLLARY 4.2. Let G(x, y) denote the Green's function corresponding to \mathcal{M} on Ω . Then for every $2 \leq p < 2K/(K-1)$ there exists a constant $A_p = A_p(K, d), d = \operatorname{diam}(\Omega)$, such that

$$\sup_{x \in \Omega} \int_{\Omega} G(x, y)^p \, dy \le A_p.$$

The optimality of the exponent p in Theorem 3.1 and in Theorem 4.1 follows again by duality arguments. Assume that inequality (4.1) holds for $p_0 = 2K/(K-1)$.

As in [AIM, Sect. 7], for $x \in B = B(0, 1)$ let

(4.6)
$$\mathcal{M} = \operatorname{Tr}(A(x)D^2),$$

where

(4.9)
$$\varphi_N(r)$$

= $\begin{cases} (\log r)r^{1-1/K} + \left(\log N - \frac{K}{K-1}\right)(r^{1-1/K} - 1) & \text{if } 1/N \le r, \\ -\log N + \frac{K}{K-1}(1 - N^{-1+1/K}) & \text{if } 0 \le r < 1/N, \end{cases}$

and define

$$h_N(x) = \left(\sqrt{K} - \frac{1}{\sqrt{K}}\right) |x|^{-1 - 1/K} \chi_{1/N < |x| < 1}(x).$$

It is easy to check that $w_N(x)$ is the solution to the Dirichlet problem

$$\begin{cases} \mathcal{M}[w_N] = h_N & \text{in } B, \\ w_N = 0 & \text{on } \partial B, \end{cases}$$

and therefore $w_N(x)$ can be represented as

(4.10)
$$w_N(x) = -\int_B G(x, y) h_N(y) \, dy, \quad x \in B,$$

for G the Green's function of \mathcal{M} with respect to B. An elementary calculation reveals that

(4.11)
$$||h_N||_{L^{q_0}(B)} = \left(\sqrt{K} - \frac{1}{\sqrt{K}}\right) (2\pi \log N)^{(2K+1)/2K}$$

where

$$q_0 = \frac{2K}{K+1} = \frac{p_0}{p_0 - 1}$$

and

(4.12)
$$\|w_N\|_{L^{\infty}(B)} \ge c(K)(\log N)^{1+(K+1)/2K}.$$

By (4.11) and (4.12) it follows that

(4.13)
$$\frac{\|w_N\|_{L^{\infty}}}{\|h_N\|_{L^{q_0}}} \to \infty \quad \text{as } N \to \infty$$

An application of Hölder's inequality and Corollary 4.2 yield the estimates

$$|w_N(x)| \le ||G(x, \cdot)||_{L^{p_0}(B)} \cdot ||h_N||_{L^{q_0}(B)} \le A_{p_0}(K) ||h_N||_{L^{q_0}(B)}$$

which are not consistent with (4.13).

Acknowledgments. The research of both authors has been supported by MIUR-PRIN 02 and GNAMPA-INdAM.

References

- [AIM] K. Astala, T. Iwaniec and G. Martin, Pucci's conjecture and the Aleksandrov inequality for elliptic PDEs in the plane, to appear.
- [AIS] K. Astala, T. Iwaniec and E. Saksman, Beltrami operators in the plane, Duke Math. J. 107 (2001), 27–56.
- [B] P. Bauman, Equivalence of Green's functions for diffusion operators in \mathbb{R}^n : a counterexample, Proc. Amer. Math. Soc. 91 (1984), 64–68.
- [C] S. Campanato, Un risultato relativo ad equazioni ellittiche del secondo ordine di tipo non variazionale, Ann. Scuola Norm. Sup. Pisa (3) 21 (1967), 701–707.
- [FS] E. B. Fabes and D. W. Stroock, The L^p-integrability of Green's functions and fundamental solutions for elliptic and parabolic equations, Duke Math. J. 51 (1984), 997–1016.
- [FM] M. Franciosi and G. Moscariello, A note on the maximum principle for second order nonvariational linear elliptic equations, Ricerche Mat. 35 (1986), 279–290.
- [K] C. Kenig, Potential theory of non-divergence form elliptic equations, in: Dirichlet Forms (Varenna, 1992), Lecture Notes in Math. 1563, Springer, 1993, 89–128.

140

- [PV] S. Petermichl and A. Volberg, Heating of the Ahlfors-Beurling operator; weakly quasiregular maps on the plane are quasiregular, Duke Math. J. 112 (2002), 281– 305.
- [P] C. Pucci, Limitazioni per soluzioni di equazioni ellittiche, Ann. Mat. Pura Appl. (4) 74 (1966), 15–30.

Dipartimento di Matematica "R. Caccioppoli" Università di Napoli "Federico II" Via Cintia, 80126 Napoli, Italy E-mail: gmoscari@unina.it sbordone@unina.it

> Received August 2, 2004 Revised version February 8, 2005 (5470)