Optimal L^{p}-properties of Green's functions for non-divergence elliptic equations in two dimensions

by
Gioconda Moscariello and Carlo Sbordone (Napoli)

Abstract

A sharp integrability result for non-negative adjoint solutions to planar non-divergence elliptic equations is proved. A uniform estimate is also given for the Green's function.

1. Introduction. Given $K \geq 1$ and a smooth domain $\Omega \subset \mathbb{R}^{2}$, denote by $\mathcal{E}(K)$ the class of symmetric 2×2 matrix-valued functions $A=A(x)$ defined on Ω which satisfy the ellipticity bounds

$$
\begin{equation*}
\frac{|\xi|^{2}}{\sqrt{K}} \leq\langle A(x) \xi, \xi\rangle \leq \sqrt{K}|\xi|^{2} \tag{1.1}
\end{equation*}
$$

for a.e. $x \in \Omega$ and for all $\xi \in \mathbb{R}^{2}$. For $w \in W_{\text {loc }}^{2,2}(\Omega)$, set

$$
\mathcal{M}[w]=\operatorname{Tr}\left(A(x) D^{2} w\right)
$$

and for $v \in L_{\mathrm{loc}}^{2}(\Omega)$,

$$
\mathcal{N}[v]=\sum_{i j} \frac{\partial^{2}}{\partial y_{i} \partial y_{j}}\left(a_{i j}(y) v(y)\right), \quad A=\left[a_{i j}\right] .
$$

This operator is nothing other than the formal adjoint of \mathcal{M}.
In this paper, following the ideas of [FS], we study the interior regularity of non-negative solutions $v \in L_{\text {loc }}^{2}(\Omega)$ of the adjoint equation $\mathcal{N}[v]=0$ (i.e. $v \in L_{\text {loc }}^{2}(\Omega), v \geq 0$, and $\int_{\Omega} v \mathcal{M}[\varphi] d x=0$ for any $\varphi \in W^{2,2}(\Omega)$ with compact support). It is known [B] that such "adjoint solutions" need not be locally bounded, even if the $a_{i j}$ are continuous. Here we determine the best integrability exponent of v, in terms of the ellipticity constant K.

Namely, we prove that for $2 \leq p<2 K /(K-1)$ the reverse Hölder inequality

$$
\left(f_{B} v(y)^{p} d y\right)^{1 / p} \leq c(K, p) \oint_{B} v(y) d y
$$

holds for all balls $B=B(a, r) \subset B(a, 2 r) \subset \Omega$.

The same estimate holds for $v(y)=G(x, y)$ where $G(x, y)$ is the Green's function of \mathcal{M} in Ω, with the constant $c=c(K, p)$ independent of x.

The aforesaid results are optimal.
The main tool for our proof is a generalization of the Aleksandrov-Bakelman-Pucci inequality (see [P], [FM]) recently obtained by Astala-Iwaniec-Martin [AIM].

2. The L^{q}-version of the Aleksandrov-Bakelman-Pucci inequal-

 ity. Our discussion here is focused on the second order elliptic equation$$
\mathcal{M}[w]=\operatorname{Tr}\left(A D^{2} w\right)=a_{11}(x) \frac{\partial^{2} w}{\partial x_{1}^{2}}+2 a_{12}(x) \frac{\partial^{2} w}{\partial x_{1} \partial x_{2}}+a_{22}(x) \frac{\partial^{2} w}{\partial x_{2}^{2}}=h
$$

with given $h \in L^{q}(B), q>1$, defined on the ball $B=B(0, r)$. If $q=2$ the Dirichlet problem

$$
\begin{cases}\mathcal{M}[w]=h & \text { in } B, \tag{2.1}\\ u=0 & \text { on } \partial B\end{cases}
$$

admits a unique solution $w \in W^{2,2}(B) \cap W_{0}^{1,2}(B)$ (see [C]).
Let us formulate the second order equations in terms of the complex derivatives

$$
\frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}\right), \quad \frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x_{1}}-i \frac{\partial}{\partial x_{2}}\right) .
$$

Upon a few elementary algebraic computations, we arrive at the formula

$$
\operatorname{Tr}\left(A D^{2} w\right)=\left(w_{z \bar{z}}-\mu w_{z z}-\bar{\mu} \bar{w}_{z z}\right) \operatorname{Tr} A
$$

where

$$
\begin{equation*}
\mu=\mu(z)=\frac{a_{22}-a_{11}-2 i a_{12}}{2\left(a_{11}+a_{22}\right)} . \tag{2.2}
\end{equation*}
$$

The ellipticity bounds at (1.1) imply

$$
\begin{equation*}
|\mu(z)|+|\bar{\mu}(z)| \leq \frac{K-1}{K+1}<1 \tag{2.3}
\end{equation*}
$$

for a.e. $z \in B$.
Using the complex gradient

$$
f(z)=w_{z}=\frac{1}{2}\left(w_{x_{1}}-i w_{x_{2}}\right)
$$

we are reduced to the Beltrami equation

$$
f_{\bar{z}}-\mu(z) f_{z}-\overline{\mu(z)} \bar{f}_{z}=\frac{h(z)}{\operatorname{Tr} A}
$$

in B. Optimal L^{q}-properties for its solutions have recently been established [AIS], [PV]. Precisely, given H defined on B, we set $H=0$ for $z \in \mathbb{R}^{2} \backslash B$ and
$\mu(z)=0$ for $z \in \mathbb{R}^{2} \backslash B$. Then the equation extends to the entire space \mathbb{R}^{2},

$$
F_{\bar{z}}-\mu(z) F_{z}-\overline{\mu(z)} \bar{F}_{z}=H
$$

It has a unique solution F such that

$$
\left\|F_{\bar{z}}\right\|_{L^{q}\left(\mathbb{R}^{2}\right)} \leq c(q, K)\|H\|_{L^{q}\left(\mathbb{R}^{2}\right)}
$$

for $2 K /(K+1)<q<2 K /(K-1)$. With the aid of this estimate the following result has been established in [AIM].

Theorem 2.1. Suppose $2 K /(K+1)<q \leq 2$, and $w \in W_{\text {loc }}^{2, q}\left(B_{r}\right)$ satisfies

$$
\begin{cases}\mathcal{M}[w]=h & \text { a.e. in } B_{r}=B(0, r) \\ w=0 & \text { on } \partial B_{r}\end{cases}
$$

Then

$$
\begin{equation*}
\|w\|_{L^{\infty}\left(B_{r}\right)} \leq c(K, q) r^{2-2 / q}\|h\|_{L^{q}\left(B_{r}\right)} \tag{2.4}
\end{equation*}
$$

The estimate no longer holds if $q \leq 2 K /(K+1)$.
3. A reverse Hölder inequality for non-negative adjoint solutions. In this section the letter c will denote a constant depending on K and p. It may vary at each occurrence.

We are now ready to prove the following
Theorem 3.1. Assume $A=\left[a_{i j}\right]$ satisfies (1.1). Let $v \in L^{2}(\Omega), v \geq 0$ in Ω, satisfy the adjoint equation

$$
\mathcal{N}[v]=\sum_{i, j} \frac{\partial^{2}}{\partial y_{i} \partial y_{j}}\left(a_{i j}(y) v(y)\right)=0
$$

Then, for all balls $B_{r} \subset B_{2 r} \subset \Omega$, we have

$$
\begin{equation*}
\left(\int_{B_{r}} v(y)^{p} d y\right)^{1 / p} \leq c(K, p) \int_{B_{r}} v(y) d y \tag{3.1}
\end{equation*}
$$

where $2 \leq p<2 K /(K-1)$.
Proof. We closely follow the arguments in [FS]. Note that here we dispense with the smoothness assumption on the coefficients. For $n=2$ this assumption is redundant.

We make use of the dual expression of the L^{p}-norm,

$$
\begin{equation*}
\left(\int_{B_{r}} v^{p}\right)^{1 / p}=\sup \left\{\int_{B_{r}} v h: h \geq 0, h \in C_{0}^{1}\left(B_{r}\right),\|h\|_{L^{q}\left(\mathbb{R}^{2}\right)} \leq 1\right\} \tag{3.2}
\end{equation*}
$$

Fix $h \in C_{0}^{1}\left(B_{r}\right),\|h\|_{L^{q}} \leq 1, h \geq 0$. Applying (2.1) we solve the Dirichlet problem

$$
\begin{cases}\mathcal{M}[w]=h & \text { in } B_{2 r} \\ w=0 & \text { on } \partial B_{2 r}\end{cases}
$$

Next, for $w \in W^{2,2}\left(B_{2 r}\right)$ fix $\varphi_{r} \in C_{0}^{1}\left(B_{3 r / 2}\right)$ such that $\varphi_{r}=1$ on B_{r} and $\left|\partial^{\alpha} \varphi_{r} / \partial x^{\alpha}\right| \leq C_{\alpha} / r^{|\alpha|}$.

Then we have

$$
\begin{align*}
\int_{B_{r}} v h & \leq \int_{B_{2 r}} v \mathcal{M}[w] \varphi_{r}=-\int_{B_{2 r}} v w \mathcal{M}\left[\varphi_{r}\right]-2 \int_{B_{2 r}} v\left\langle A \nabla w, \nabla \varphi_{r}\right\rangle \tag{3.3}\\
& \leq \frac{c}{r^{2}}\|w\|_{L^{\infty}\left(B_{2 r}\right)} \int_{B_{3 r / 2}} v+\frac{c \sqrt{K}}{r} \int_{B_{3 r / 2}} v|\nabla w|
\end{align*}
$$

By (2.4), $\|w\|_{L^{\infty}\left(B_{2 r}\right)} \leq c(K, q) r^{2 / p}$, hence (3.3) implies

$$
\begin{equation*}
\int_{B_{r}} v h \leq \frac{c}{r^{2}} r^{2 / p} \int_{B_{3 r / 2}} v+\frac{c}{r}\left(\int_{B_{3 r / 2}} v\right)^{1 / 2}\left(\int_{B_{2 r}} v|\nabla w|^{2}\right)^{1 / 2} \tag{3.4}
\end{equation*}
$$

We now estimate the last integral in the right hand side, by using the Caccioppoli inequality. By (1.1) we have

$$
\int_{B_{2 r}} v|\nabla w|^{2} \leq \sqrt{K} \int_{B_{2 r}} v\langle A \nabla w, \nabla w\rangle=\sqrt{K} \int_{B_{2 r}} v\left[\mathcal{M}\left[w^{2}\right]-2 w h\right]
$$

Since $w^{2}=0$ on $\partial B_{2 r}$, and $\nabla\left(w^{2}\right)=0$ on $\partial B_{2 r}$, we deduce

$$
\int_{B_{2 r}} v \mathcal{M}\left[w^{2}\right]=0 \quad \text { whenever } \quad \mathcal{N}[v]=0
$$

Using again (2.4) yields

$$
\begin{align*}
\int_{B_{2 r}} v|\nabla w|^{2} & \leq 2 \sqrt{K} \int_{B_{2 r}} v|w| h \leq 2 \sqrt{K}\|w\|_{L^{\infty}\left(B_{2 r}\right)} \int_{B_{r}} v h \tag{3.5}\\
& \leq 2 \sqrt{K} c r^{2 / p} \int_{B_{r}} v h
\end{align*}
$$

By (3.4) and (3.5) it follows that

$$
\int_{B_{r}} v h \leq \frac{c}{r^{2(1-1 / p)}} \int_{B_{3 r / 2}} v+\frac{c}{r^{1-1 / p}}\left(\int_{B_{3 r / 2}} v\right)^{1 / 2}\left(\int_{B_{r}} v h\right)^{1 / 2}
$$

By the elementary inequality $\sqrt{a} \sqrt{b} \leq a / 2+b / 2$, we arrive at

$$
\int_{B_{r}} v h \leq \frac{c}{r^{2(1-1 / p)}} \int_{B_{3 r / 2}} v+\frac{c}{r^{2(1-1 / p)}} \int_{B_{3 r / 2}} v+\frac{1}{2} \int_{B_{r}} v h
$$

Rearranging yields

$$
\begin{equation*}
\int_{B_{r}} v h \leq \frac{c}{r^{2(1-1 / p)}} \int_{B_{3 r / 2}} v \tag{3.6}
\end{equation*}
$$

Since h is arbitrary, by (3.2), (3.6) we obtain

$$
\left(f_{B_{r}} v^{p}\right)^{1 / p} \leq c f_{B_{3 r / 2}} v
$$

An application of the following lemma (Lemma 2.0 in [FS]) concludes the proof.

Lemma 3.1. There exists a constant c, depending only on K, such that for all non-negative weak solutions v of $\mathcal{N}[v]=0$ and for all balls B_{r} with $B_{2 r} \subset \Omega$ we have

$$
\int_{B_{r}} v(y) d y \leq c \int_{B_{r / 2}} v(y) d y
$$

4. A reverse Hölder inequality for the Green's function. Recall that the Green's function for \mathcal{M} on a smooth domain Ω is non-negative and $G_{\Omega}(x, \cdot) \in L^{1}(\Omega)$ for every $x \in \Omega$. We have the identity

$$
\varphi(x)=-\int_{\Omega} G_{\Omega}(x, y) \mathcal{M} \varphi(y) d y
$$

for any $\varphi \in C^{2}(\bar{\Omega})$ such that $\varphi=0$ on $\partial \Omega$.
Theorem 4.1. For every $2 \leq p<2 K /(K-1)$ and for all balls $B_{r} \subset$ $B_{4 r} \subset \Omega$, we have

$$
\begin{equation*}
\left[f_{B_{r}} G_{\Omega}(x, y)^{p} d y\right]^{1 / p} \leq c(K, p) \int_{B_{r}} G_{\Omega}(x, y) d y \tag{4.1}
\end{equation*}
$$

for $x \in \Omega$.
Let us first recall some well known properties of Green's functions. The Aleksandrov-Bakelman-Pucci theorem for $n=2$ reads

Theorem 4.2. Let $w \in W^{2,2}(\Omega)$ satisfy

$$
\begin{cases}\mathcal{M}[w]=h & \text { with given } h \in L^{2}(\Omega) \tag{4.2}\\ w=0 & \text { on } \partial \Omega\end{cases}
$$

Then

$$
\|w\|_{L^{\infty}(\Omega)} \leq c(K) d(\Omega)\|h\|_{L^{2}(\Omega)}
$$

with $d(\Omega)=\operatorname{diam}(\Omega)$.
The solution is unique. In what follows we write it as $w=w_{h}$ to indicate the dependence on $h \in L^{2}(\Omega)$. The following result is a well known consequence of Theorem 4.2.

Corollary 4.1. There exists a unique function $G(x, \cdot) \in L^{2}(\Omega)$ such that $G(x, y) \geq 0$ in $\Omega \times \Omega$,

$$
w_{h}(x)=-\int_{\Omega} G(x, y) h(y) d y
$$

and

$$
\begin{equation*}
\sup _{x \in \Omega}\|G(x, \cdot)\|_{L^{2}(\Omega)} \leq c(K) d(\Omega) \tag{4.3}
\end{equation*}
$$

We need another preliminary fact:
Lemma 4.1 ([K, Lemma 3.3]). Let $G_{r}(x, y)$ denote the Green's function for \mathcal{M} in $B_{3 r}$. Then there exist two positive constants $c_{1}(K), c_{2}(K)$ such that

$$
c_{1} \leq \int_{B_{r}} G_{r}(x, y) d y \leq c_{2} \quad \text { for } x \in B_{2 r}
$$

Proof of Theorem 4.1. If $x \notin B_{2 r}$ then $G(x, \cdot)$ is an adjoint solution of \mathcal{M} in $B_{2 r}$ and then the estimate follows from Theorem 3.1.

Assume now that $x \in B_{2 r}$. Let $G_{r}(x, y)$ be the Green's function for \mathcal{M} in $B_{3 r}$. By the maximum principle we know that $G(x, y) \geq G_{r}(x, y)$ and thus the function $v(y)=G(x, y)-G_{r}(x, y)$ is a non-negative solution to $\mathcal{N}[v]=0$ in $B_{2 r}$. Hence, using Theorem 3.1, we have

$$
\begin{align*}
\int_{B_{r}} G(x, y)^{p} d y & \leq c \int_{B_{r}}\left[G(x, y)-G_{r}(x, y)\right]^{p} d y+c \int_{B_{r}} G_{r}(x, y)^{p} d y \tag{4.4}\\
& \leq c\left\{\int_{B_{r}}\left[G(x, y)-G_{r}(x, y)\right] d y\right\}^{p}+c \int_{B_{r}} G_{r}(x, y)^{p} d y
\end{align*}
$$

To estimate the last term we invoke the inequality

$$
\begin{equation*}
\left[\int_{B_{r}} G_{r}(x, y)^{p} d y\right]^{1 / p} \leq c(K, p) r^{2 / p} \tag{4.5}
\end{equation*}
$$

which comes from Theorem 3.1 in the following way. First observe that the solution w to the Dirichlet problem

$$
\begin{cases}\mathcal{M}[w]=h & \text { in } B_{3 r} \\ w=0 & \text { on } \partial B_{3 r}\end{cases}
$$

for $h \in L^{q}(1 / q+1 / p=1)$ can be represented as

$$
w(x)=-\int_{B_{3 r}} G_{r}(x, y) h(y) d y
$$

Then (4.5) follows by duality arguments:

$$
\left[\int_{B_{3 r}} G_{r}(x, y)^{p} d y\right]^{1 / p}=\sup _{\|h\|_{L^{q}\left(B_{3 r}\right)} \leq 1}|w(x)| \leq c(K, q) r^{2-2 / q}=c(K, p) r^{2 / p}
$$

In view of Lemma 4.1 inequality (4.5) implies

$$
\left[f_{B_{r}} G_{r}(x, y)^{p} d y\right]^{1 / p} \leq c(K, p) \int_{B_{r}} G_{r}(x, y) d y
$$

which, together with (4.4), concludes the proof.
The following result parallels Corollary 2.4 in [FS] and can be proved in the same way.

Corollary 4.2. Let $G(x, y)$ denote the Green's function corresponding to \mathcal{M} on Ω. Then for every $2 \leq p<2 K /(K-1)$ there exists a constant $A_{p}=A_{p}(K, d), d=\operatorname{diam}(\Omega)$, such that

$$
\sup _{x \in \Omega} \int_{\Omega} G(x, y)^{p} d y \leq A_{p}
$$

The optimality of the exponent p in Theorem 3.1 and in Theorem 4.1 follows again by duality arguments. Assume that inequality (4.1) holds for $p_{0}=2 K /(K-1)$.

As in [AIM, Sect. 7], for $x \in B=B(0,1)$ let

$$
\begin{equation*}
\mathcal{M}=\operatorname{Tr}\left(A(x) D^{2}\right) \tag{4.6}
\end{equation*}
$$

$$
\begin{gather*}
A(x)=\left(\sqrt{K}-\frac{1}{\sqrt{K}}\right) \frac{x \otimes x}{|x|^{2}}+\frac{I}{\sqrt{K}}, \quad x \otimes x=\left[\begin{array}{cc}
x_{1}^{2} & x_{1} x_{2} \\
x_{2} x_{1} & x_{2}^{2}
\end{array}\right] \tag{4.7}\\
w_{N}(x)=\varphi_{N}(|x|) \quad \text { for } N>1 \tag{4.8}
\end{gather*}
$$

where

$$
\begin{align*}
& \varphi_{N}(r) \tag{4.9}\\
& = \begin{cases}(\log r) r^{1-1 / K}+\left(\log N-\frac{K}{K-1}\right)\left(r^{1-1 / K}-1\right) & \text { if } 1 / N \leq r \\
-\log N+\frac{K}{K-1}\left(1-N^{-1+1 / K}\right) & \text { if } 0 \leq r<1 / N\end{cases}
\end{align*}
$$

and define

$$
h_{N}(x)=\left(\sqrt{K}-\frac{1}{\sqrt{K}}\right)|x|^{-1-1 / K} \chi_{1 / N<|x|<1}(x)
$$

It is easy to check that $w_{N}(x)$ is the solution to the Dirichlet problem

$$
\begin{cases}\mathcal{M}\left[w_{N}\right]=h_{N} & \text { in } B \\ w_{N}=0 & \text { on } \partial B\end{cases}
$$

and therefore $w_{N}(x)$ can be represented as

$$
\begin{equation*}
w_{N}(x)=-\int_{B} G(x, y) h_{N}(y) d y, \quad x \in B \tag{4.10}
\end{equation*}
$$

for G the Green's function of \mathcal{M} with respect to B. An elementary calculation reveals that

$$
\begin{equation*}
\left\|h_{N}\right\|_{L^{q_{0}}(B)}=\left(\sqrt{K}-\frac{1}{\sqrt{K}}\right)(2 \pi \log N)^{(2 K+1) / 2 K} \tag{4.11}
\end{equation*}
$$

where

$$
q_{0}=\frac{2 K}{K+1}=\frac{p_{0}}{p_{0}-1}
$$

and

$$
\begin{equation*}
\left\|w_{N}\right\|_{L^{\infty}(B)} \geq c(K)(\log N)^{1+(K+1) / 2 K} \tag{4.12}
\end{equation*}
$$

By (4.11) and (4.12) it follows that

$$
\begin{equation*}
\frac{\left\|w_{N}\right\|_{L^{\infty}}}{\left\|h_{N}\right\|_{L^{q_{0}}}} \rightarrow \infty \quad \text { as } N \rightarrow \infty \tag{4.13}
\end{equation*}
$$

An application of Hölder's inequality and Corollary 4.2 yield the estimates

$$
\left|w_{N}(x)\right| \leq\|G(x, \cdot)\|_{L^{p_{0}}(B)} \cdot\left\|h_{N}\right\|_{L^{q_{0}}(B)} \leq A_{p_{0}}(K)\left\|h_{N}\right\|_{L^{q_{0}}(B)}
$$

which are not consistent with (4.13).
Acknowledgments. The research of both authors has been supported by MIUR-PRIN 02 and GNAMPA-INdAM.

References

[AIM] K. Astala, T. Iwaniec and G. Martin, Pucci's conjecture and the Aleksandrov inequality for elliptic PDEs in the plane, to appear.
[AIS] K. Astala, T. Iwaniec and E. Saksman, Beltrami operators in the plane, Duke Math. J. 107 (2001), 27-56.
[B] P. Bauman, Equivalence of Green's functions for diffusion operators in $\mathbb{R}^{n}: a$ counterexample, Proc. Amer. Math. Soc. 91 (1984), 64-68.
[C] S. Campanato, Un risultato relativo ad equazioni ellittiche del secondo ordine di tipo non variazionale, Ann. Scuola Norm. Sup. Pisa (3) 21 (1967), 701-707.
[FS] E. B. Fabes and D. W. Stroock, The L^{p}-integrability of Green's functions and fundamental solutions for elliptic and parabolic equations, Duke Math. J. 51 (1984), 997-1016.
[FM] M. Franciosi and G. Moscariello, A note on the maximum principle for second order nonvariational linear elliptic equations, Ricerche Mat. 35 (1986), 279-290.
$[\mathrm{K}] \quad \mathrm{C}$. Kenig, Potential theory of non-divergence form elliptic equations, in: Dirichlet Forms (Varenna, 1992), Lecture Notes in Math. 1563, Springer, 1993, 89-128.
[PV] S. Petermichl and A. Volberg, Heating of the Ahlfors-Beurling operator; weakly quasiregular maps on the plane are quasiregular, Duke Math. J. 112 (2002), 281305.
[P] C. Pucci, Limitazioni per soluzioni di equazioni ellittiche, Ann. Mat. Pura Appl. (4) 74 (1966), 15-30.

Dipartimento di Matematica "R. Caccioppoli"
Università di Napoli "Federico II"
Via Cintia, 80126 Napoli, Italy
E-mail: gmoscari@unina.it
sbordone@unina.it

Received August 2, 2004
Revised version February 8, 2005

