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Distinctness of spaces of
Lorentz—Zygmund multipliers

by

KATHRYN E. HARE and PARASAR MOHANTY (Waterloo, ON)

Abstract. We study the spaces of Lorentz—Zygmund multipliers on compact abelian
groups and show that many of these spaces are distinct. This generalizes earlier work on
the non-equality of spaces of Lorentz multipliers.

1. Introduction. Let G be a compact abelian group. The Lorentz—
Zygmund space, denoted by LP4(log L)*(G) for 0 < p,q < oo and A € R, is
the class of measurable functions f on G for which the quasi-norm, || f||,4.4,
given by
1 dt 1/q

(S (tYP(1 —log t)A f*(t))? —) if 0 < ¢ < o0,
(L) [ fllpga = \o !

sup tY/P(1 —log )4 f*(t) if ¢ = oo,

0<t<1
is finite, where f* denotes the decreasing rearrangement of f. This quasi-
norm is equivalent to a norm when 1 < p < o0, 1 < ¢ < o0, A € R or
p=q=1, A>0. For A =0 these spaces are the usual Lorentz spaces, and
for p = ¢ they are known as Zygmund spaces, particular examples of Orlicz
spaces. Of course, if p = ¢ and A = 0, then the Lorentz—Zygmund space
LP9(log L)4 is simply the classical Banach space LP.

For1 <p,r<oo,1<gq,s<ooand A, B € R, welet M(p,q, A;r,s,B)be
the space of all bounded linear operators T from LP(log L)4 to L™*(log L)?
which commute with translations. We call this a space of Lorentz—Zygmund
multipliers. We call the operator norm of T' the multiplier norm of T, and
denote it by [|T'[|r(p,q,45r,5,8) (OF |T|las(p,q,4) if 78, B =p,q, A.)

Lorentz—Zymund multipliers have arisen in a number of recent papers.
For example, in [6] Grafakos and Mastylo derived bilinear interpolation theo-
rems for operators on Lorentz—Zygmund spaces, while in [12] Tao and Wright
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showed that the (usual difficult) end point result of the Marcinkiewicz mul-
tiplier theorem is from L(log L) (the Lorentz—Zygmund space L' (log L)4)
to LY, for A > 1/2+41/q. Bak et al., in [1], showed that measures which are
compactly supported on the flat curves in R? map L? to the smaller Orlicz
space L>?(log L)# for A < 0, and so are examples of Orlicz-improving mea-
sures. The dimension of these Orlicz improving measures was studied in [8].
Lorentz-improving measures were investigated in [7].

The problem of inclusion and non-inclusion of different spaces of multi-
pliers for Lorentz spaces has been extensively studied, see for example [5],
[13], [4] and [9]. Cowling and Fournier [4] improved the result M (p;p) <
M (p;p,00) for 1 < p < 2 of Zafran [13] to general locally compact groups.
In the same paper they showed that M(p,q;p,7) & M(p,q;p,t) for p #
1,2,00and 1 < ¢ < r <t < ¢, and that M(p,s;p,r) € M(p,q;p,r) if
r<g<s<r.

In [9], Hare and Sato studied the Lorentz multiplier spaces M (p, ¢;p, )
and showed that for infinite, compact abelian groups, M (p,q;p,7) <
M(p,t;p,s) if 0 < 1/r —1/q < 1/s — 1/t and M(p,t;p,s) # M(r,v;r,u)
ifl1<p, r<ooandr#p,p.

In this paper we generalize the results of [9] to Lorentz—Zygmund spaces.
Our proofs depend heavily on their techniques. Our main new contribution
is to find an upper bound for the Lorentz—Zygmund multiplier norms of
trigonometric polynomials which depend (logarithmically) on the cardinal-
ity of the support of their Fourier transforms. This allows us to show, for
example, that if 1 < p < oo, then the multiplier spaces M(p, s, A;p,t, B)
and M (p,q,C;p,r,D) are distinct if t < s, B> A,and 1/t—1/s+ B— A<
1/r—1/q+ D —C (where if p = 1, 0o we understand all the second indices to
be p and all third indices to be non-negative if p = 1, non-positive if p = 00).
Explicit constructions of multipliers that are combinations of Fejér kernels
are given to show the distinctness of these spaces.

By combining these multipliers using a Rudin—Shapiro-like construction,
we also show that if » # p,p/, the spaces M (p,t, A;p,s, B) and M(r,v,C;
r,u, D) are distinct for any 1 < s,t,u,v < oo and A, B,C, D (with the same
caveat as above if the first index is 1 or co).

2. Lorentz—Zygmund spaces

2.1. Notation and basic facts. In this section we summarize basic prop-
erties of the Lorentz—Zygmund spaces. For results stated here without proofs
we refer the reader to Bennett and Rudnick [2] where these spaces are studied
extensively.

Forl <p<oo, 1 <g< o0, Ae Rborp=¢qg=1and A > 0,
the Lorentz—Zygmund space LP9(log L)* is a Banach space and its dual is
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identified with L?"¢ (log L)~ when p < 0o, where p and ¢’ are the conjugate
indices to p and ¢ respectively.

Lorentz spaces arise as interpolation spaces of Lorentz spaces. Indeed,
in [11], Merucci showed that by considering the classical K functional of
J. Peetre and the function f(t) = t?(1 + |logt|)~* one can obtain

LP9(log L)* = (LPo2o LPYI ) o g

with 1/p = (1 —0)/po + 6/p1.
As with Lorentz spaces, the first index dominates the inclusion relation:
for any ¢q,s > 0 and A, B € R,

(2.1) LP9(log L) C L™*(log L)®  if 0 <7 < p < c0.

When we vary the second and third indices then, for any 0 < p < oo, if
either

(i)¢g<rand A>B or (ii)g>rand A+1/g>B+1/r,
we have
LP9(log L)A C LP"(log L).
With this inclusion relation one can easily see that if either
(i)s<r<gand B+1/r>C+1/s or (i)r<s<gqgandB?>C,
then
(2.2) M(p,q, A;p,r, B) € M(p,q, A;p, s, 0).

Similarly, if either r < ¢ <vand C > Aorr <v <gand C+1/q > A+1/v,
then

(23) M(p,’l),A,p,’f’,B) QM(p,q,C,p,T,B)
Our interest lies in asking where these containments are strict.
There is a Marcinkiewicz interpolation theorem for these operators (see

[3, p. 253|). Taking A = 0 gives the interpolation theorem for operators on
Lorentz spaces (cf. [10], [3, p. 225]).

THEOREM 2.1. Suppose T is a quasilinear operator and is of weak types
(o, qo) and (p1,q1), with respective weak norms My and M; and 0 < 0 < 1.
Then there is a constant M = M (Mo, M,,0) such that

1T fllpg.r,a < M(Mo, My, 0)]|flgy,r.A
for any r > 1 and
1 1-60 0 1 1-6 0
- = -

po P p 4 Q@ @
Trigonometric polynomials are dense in L(logL)* for A > 0 as these
spaces are homogeneous Banach spaces. Hence using the dominated conver-
gence theorem it follows that the L(log L)4 multiplier norm of a polynomial
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can be approximated by the LP~!(log L)A multiplier norms where p,, | 1.
As a consequence we have the following lemma.

LEMMA 2.2. Let g be a trigonometric polynomial. Then |gllar(1,1,4)
< llgllr-

Throughout this paper by f(z) ~ g(z) we will mean that there exist
constants C1, Cy, independent of z, such that Cig(x) < f(z) < Cag(z).

In our calculations, generic constants which appear may vary from line
to line.

It will be convenient to know the LP4(log L) norm for the characteristic
function, x7, of an interval I. In [8] the case p = ¢ = 2, A < 0 was addressed.
For the general case the proof is similar.

LEMMA 2.3. Let I be an interval of length |I|. For any of the Banach
spaces LP(log L) we have

Ixtllpg.a = 11" log 1] |*

where the equivalence constants C1,Co depend only on p.

2.2. Inequalities relating Lorentz—Zymund norms. It will also be helpful
to derive some inequalities relating Lorentz—Zygmund norms with different
indices. The proofs follow from Hoélder’s inequality and are omitted.

PROPOSITION 2.4. Suppose 1 <b< oo, 1 <p,q< o0 and o € R.

(i) If aq(l =)V < —1 then

1 1/qb’
1 fllpg.a < (m) I £1lp,qb,06-

(i) If 1 <6 < oo, then

o\ (/a8
T (q—é) T,

3. Upper bounds for multiplier norms. Throughout the remainder
of the paper we will restrict our attention to certain Lorentz—Zymund spaces
which are Banach spaces, namely the spaces LP?(log L)* where

l<p<oo,1<qg<o0, A€R, or
p=q=1,A>0, or
p=q=o00, A<O0.

These spaces are all contained in L' and contain L.
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We first derive upper bounds for multiplier norms of trigonometric poly-
nomials (acting by convolution) when the first two indices of the Lorentz—
Zygmund spaces are the same. This uses the following observation which can
be proved by elementary calculus.

y
LEMMA 3.1. sup (t°(1 —logt)Y) = @I—y<y> )
o<t<1 X

PROPOSITION 3.2. Let G be a compact abelian group, 1 < p < oo and
A < B. Suppose P is a trigonometric polynomial on G with || P||y¢.,) < Co
for all 1 < r < oco. Then there is a constant C = C(p,q, A, B,Cyp) such that

1Pl 31(p,g,4:.0.5) < Clog|supp P|)#~4.

Proof. Assume first ¢ < co. Proposition 2.4 shows that if 1 < b < co and
d is chosen such that Bg(1 — )b’ < —1, then

_1 1/qt’
1 P < P .
60 1P fhas = (rrpoa—g) 1P+ e

The definition of the Lorentz—Zygmund norm gives

(3:2) [P * flipgb,Bs
< 1P Sl lg asup(t/ (1 = Tog )P=) sup | P« £ ()]

and according to the elementary lemma, the middle term is bounded by
el/pb’ef(BéfA/b)((B(s _ A/b)pb/)B(SfA/b‘

Without loss of generality we can assume N = log |supp I3| > p. Let
b="by = N/(N —p) (so by = N/p) and choose 6 = J such that for some
fixed ¢ > 0,

Bq(1 = on)by = —(1 + £9).

Then iy — 1 as N — oo and

1 1/qbly 1\ P/aNV 1\?/N
fd —_ < —_
<1+BQ(1—5NWN> <€0> B <€0>

is clearly bounded. Also, since Béy — A/by — B — A,
e—(B(SN—A/bN)((BdN o A/bN)pb/N)BéN—A/bN . NB-4
Together with equations (3.1) and (3.2) this establishes

_ 1/b /
(33) P flpan < ONPAPx f /05 sup [P ()]

The boundedness of the M (r,r) multiplier norms and the Interpolation
Theorem ensure that the M (p, g, A) norm of P is also bounded by the same
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constant. Thus

1/b - 1/b /
(34) P fllpap < OO NEA S sup | P )]/
Moreover, as the M(r,r) norm dominates the supremum of the Fourier co-
efficients of P, the inclusions of the Lorentz—Zygmund spaces with different
first indices yield

IPllp.g—a < C(p,q, A)||Plloc < CoC(p, g, A)|supp P|.

Together with Holder’s inequality and the translation invariance of these
norms, we obtain the bound

’ / 1/1)/
(3.5) sup | P+ FOIN < (I1Pllyy,gr,— all Fllp.g,a) % < ClIFll05%

The desired result follows by combining inequalities (3.3)—(3.5).
For the case ¢ = oo, a duality argument shows
”PHM(p,oo,A;p,oo,B) = ||P||M(p’,1,—B;p’,1,—A) < 0(10g|SuppPDB_A. u
COROLLARY 3.3. Suppose B> A >0 and P is a trigonometric polyno-
mial on G satisfying ||Pll1 < Co. Then

1Pl arci1,4:.0,8) = 1Pl a(00.00,— Biso.oo,—a) < C(log |supp P|)5 =4,
Proof. For p = 1, the proof is similar to the proposition above noting

that the L' boundedness of P gives IPllar(1,1,4) < Co. The case p = oo
follows by duality. =

This proposition is used in the next result where we vary both the second
and third indices.

PROPOSITION 3.4. Let G be a compact abelian group and suppose p < 00,
1<r<qg<ooand B> A. Let P be a trigonometric polynomial on G with
1Pl ar(s,s) < Co for all 1 < s <ooif p#1, and ||P|1 < Co if p=1. Then

HPHM(p,q,A;pJ‘,B) S C(log |Supp P’)I/T_I/Q+B—A

where the constant C depends only on the indices p,q,r, A and the con-
stant Cj.

Proof. First, suppose ¢ < oo. For any 1 < b,0 < oo we have, from
Proposition 2.4 and the definition of the Lorentz—Zygmund norm,

/

1/ré’
pb
3 1P Sl < (%) 1P Slarss

N\ 1/ré" ,1 1/rd
= (@> <Xt’"5/pb(1 — logt)B’"‘S(P * f)*“; %) i

rd’
0
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Suppose we choose b and & such that bg = dr. Then, of course, ¢"%/P
= t9/? and (1 — logt)™? = (1 — logt)®5, hence it easily follows that

(3.7) 1P+ Fllprom < 1P * FI} o iy sup P« FoPa.

As in the previous proposition, we can assume N = log [supp P | > p and
we put b = by = N/(N — p). Take § = oy = ¢by/r and note that the as-
sumption g > r ensures § > 1. For this choice of b and ¢ Proposition 3.2 yields

(3.8) 1P fllpg.50 < ONZN =] £llpg.a
(where C' depends on Cj). The inequalities (3.6)—(3.8), along with Holder’s

inequality, give

N 1/ré’ e N
1Pl < (55) VO DL

N 1/ré’ A
< <_5> NB=A+ AN (p, Co) | Flpa.a-

But
h L1 1,
r r q rN’
so upon simplifying we obtain
1P % fllpr.s < CrCo(p, g, YNV EZA| £ 0 4

where Cy = max((1/r — 1/q + p/r)"/7=1/4tP/7 1) and C) is independent of
r (and B).

Now we will deal with the case ¢ = co. First consider 1 # r < co. Then
by duality we have

”PHM(p,oo,A;p,r,B) = HPHM(p’,T’,—B;p’,l,—A) < C(log ‘SuppPD
where C' = C1(1/r 4 p/)P'+1/7.

The care we have taken with the constants will be helpful in considering
the final case, ¢ = co and r = 1 (¢ = r = oo was done in the previous
corollary). Choose a sequence {s,} which decreases to 1. Then || f|,1,5 =
limy, o || f|lp,s,.,B- (This can be proved in the same way as shown in [7] for
Lorentz spaces.) Thus,

1/r+B—A

| P * f”p,LB = lim [|P * f”nsmB
n—oo

. 1 A BN\B—A+1/s
< lim Ci{ —+p (log [supp PI) "1 £ llp,00,4
n—oo Sn
where (' is independent of s,, and B. Hence
1P % fllp1,5 < C(log supp P[)P =4 flpoc,a- =

REMARK 3.5. This generalizes [9, Prop. 3.1].
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COROLLARY 3.6. Suppose r < q and A < B. If P is any trigonometric
polynomial then

1Pl 31(pg. aprm) < C(log [supp P|)H/r—1/atB-4

where the constant C depends on p,q,r, A, B and the L' norm of P.
Proof. We always have ||P|| s,y < [|P[l1- =

4. Non-equality of multiplier spaces for the circle group. To
show the non-equality of certain Lorentz—Zygmund multiplier spaces we will
exhibit polynomials for which the upper bounds on the multiplier norms
given in Proposition 3.4 are sharp. In this section, we consider the circle
group, and in the next section, groups with elements of finite order and
arbitrary compact abelian groups.

4.1. Multiplier norms of Fejér and Dirichlet kernels

PROPOSITION 4.1. Let 1 < r,q < oo and A, B € R. If P is the Fejér
or de la Vallée Poussin kernel of degree N, then there is a constant C,
independent of N, such that

1Pl 31(p.g, 40,0 8) < C(log N)®
where o = max(1/r —1/qg+ B — A, 1/r — 1/q,B — A,0). The same bound
holds for P the Dirichlet kernel of degree N if p # 1, 0.
Proof. When r < g and A < B we clearly have
| Plla(pg, ) < Clog Nt/ arE=4

from Proposition 3.4. If, instead, » > ¢ and A < B, then the inclusions of
the Lorentz—Zygmund spaces, together with this bound (applied with r = q),
give

| P fllpr < C|IP * fllpgn < C(log N)B_AHpr,q,A'
The other cases are similar. m

One can explicitly calculate the Lorentz—Zygmund norms of these kernels
and this allows us to prove the sharpness of the upper bounds in certain
cases. For this calculation it is convenient to identify the circle group with

(~1/2,1/2].

PROPOSITION 4.2. Let P denote either the Dirichlet kernel of degree N,
the Fejér kernel of degree N, or the de la Vallée Poussin kernel of degree

2N + 1. Then
1Pllpgn = { (log N)*1if P = Dirichlet hernel and p=q =1,
- NP (log N)A  otherwise,
where the equivalence constants depend only on p.
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Proof. We will prove the result for the Dirichlet kernel, dy, as the proof
of the estimates of the other kernels is similar in nature.

It is routine to check that there are positive constants A, B such that for
t€10,1/2],

1
ANX[o,1/(an+2) < ldn(t)] < B<NX[0,1/(N+1/2)] t7 X[1/(N+1/2),1/2]>-

Notice that
L. _ X[0,1/2-1/(N+1/2)]
X[1/(N+1/2),1/2) = z+1/(N+ 1/2)-

As usual, suppose first that ¢ < oo and p # 1. In view of Lemma 2.3 it
suffices to prove that

2 (1 —logt)e4

/= § (t+1/(N +1/2))4

Choose m such that 2" < N +1/2 < 2™+ By dividing the integral into
subintervals of width 27 we see that

1 —log27k)aA e oe
(4.1) J < <Z+ Z ) = §f+1/(gN+)1/2)) (27 k)a/p-1

t9/P=1 gt < CNP (log N4

<CquA q/p a4 Z quqA(Q k+1)q/p
k=m+1

Summing gives the desired result.
Suppose now ¢ = oo (and p # 1). We need to bound

t/P(1 —logt)4 1
LU T8 e o= —
SUP{ t+ an 6[72 GN]},

where ay = 1/(N +1/2). Observe that the function t'/P(t +ax)~" increases
until ¢t = ay/(p — 1) and then decreases. Thus if A > 0 and ¢ € [an,1/2],
then since (1 —logt)4 decreases,

1/p(1 _ A
t/P(1 —logt) <of o
t+an - p—1

—1/p
) (logan)* < CNYP (1og N)A.

Notice that t'/P(1 — logt)# increases for small ¢ and then decreases. Thus
for N sufficiently large and t € [0, an],

t/P(1 —logt)4 <C a]\{p(logaN)A
t+an an

Suppose A < 0 and N is large enough that \/ax > ay/(p—1). As (1-logt)*

< CNYP (log N)A.
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is an increasing function, if ¢ € [0, /ay], then

t1/7(1 — log )4 - Ca]_vl//p/(logw/aN)A if t € [0, /an],
t+an Cay''™ if ¢t € [\/an, 1/4].
In either case, it is a trivial calculation to obtain the desired bound.
Finally, we consider the case p = ¢ = 1, A > 0. The estimates of (4.1)
still give the correct upper bound. To obtain the same order of magnitude

for the lower bound we observe that |Dy(t)| > ¢/t (for a suitable constant c)

provided
tENJ 1/4 + 2k 3/4+ 2k
o 2N +17 2N +1 |

Thus m{|Dyn| > z} > ¢/x for x < N. Hence

[log N] 2—k+1 A [log N

(1 —logt) ky A
IDNlaa=C Y7 | = C Y (log2")
k=0 2—k k=0
> C(log N)A*tL. u
This calculation enables us to verify that the upper bounds already

determined for the common kernels are sharp when » > ¢, A < B. In
particular, note that the following corollary shows that it is not true that
HPNHM(p’q,A;me) ~ (logN)l/T_l/q+B_A when r > ¢ and 1/r — 1/q +
B — A > 0 (although the Lorentz-Zygmund spaces satisfy LP?(log L) C
LP7(log L)B).

COROLLARY 4.3. Suppose r > q and A < B. If Py is the Fejér or
de la Vallée Poussin kernel of degree N (or Dirichlet kernel of degree N if
p# 1,00), then

HPNHM(p,q,A;p,r,B) =~ (log N)BiA’

Proof. Let dy denote the Dirichlet kernel of degree N. Then for any
1 <r <o,

|Px # dNllpr5 = || Pnllpr > C(log N)P~4||dy]|

Together with the earlier work, this completes the proof. =

p’qvA'

Unfortunately, the same easy estimates will not suffice to give the lower
bound for these multipliers when ¢ > r. Instead, we consider the test function
F defined in [9, 3.2]. For convenience we repeat the definition here. For a
large integer X and My = 2\V+1,set z; = 2(j — 1)/ My for j = 1,...,2N,
2 = 3Vk/\/My for k =1,...,N, and let Dy denote the Dirichlet kernel of
degree AV. Define

—~—

Dji(z) = Dn(z—(zj+2) and  Djx(z) = Djx(T)X[—2/My.2/My]+a;+24-
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~——

Notice that if N is sufficiently large then the functions D; ;(x) are disjointly
supported.

Our test function for determining sharp lower bounds on the operator
norms will be given by

N 2k
1 —_ —
(4.2) Fn(z) = My E gfk/pE Dj (z).
k= j=1

PROPOSITION 4.4. There is a constant C (independent of N) such that
|Fnllpg.a < ONYIAMIP.

Proof. In [9] the following estimates for F'y; were calculated:

(1) Fx(0) <2712,

(2) F3(2n3/My) <27"/Pforn=1,...,N,

(3) Fi(y) =0 for y > 2N+3 /M.

From the definition of the Lorentz—Zygmund norm, for ¢ < oo we have

16/My it
|Exlpqa < § PR~ logt)™ —
»q, 0 t
N—12"t/My dt
/Py _ Agq 2
+ Z S tYPEV (1 —logt) "
1 2n+3 /My
=1+ I.
Let 2750 ~ 16/My. As Fy < 2-1/P and ky ~ N, we have
oo 27 k1
n< > | 271 —log )M dt
k=ko 2k
> y ka/p 1A 16 q/p A
—q/po—kq/p.Aq ~ [ 2 q
< c;; 9-1/Po=ka/PpAd ~ (MN> (log My )A9.
=ko

Since My > 2V, property (2) similarly implies that for I, we have

and as (log My)A9 ~ N4 this gives || Fy|lpq.a < C’Nl/q+AM];1/p.
The case ¢ = oo is a routine exercise. m

Now we will calculate the multiplier norm of Ky, the Fejér kernel of
degree A\®V. For this purpose we need the following lemma from [9, 3.5].
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LEMMA 4.5. Let p < co. There is a constant C > 0 such that for any
n=2,...,N, N €N,

m{z : |Fy x Ky(z)| > 27/P} > C2" /My.

REMARK 4.6. This is stated for p > 1 in [9], but remains true when
p=1.

THEOREM 4.7. Let 1 < r < g < o0 and A < B. If Ky is the Fejér
kernel of degree N3, then

HKNHM(pyq,A;me) ~ NBTAR

Proof. Since a duality argument gives the case p = oo, we can assume
p < 0.
To estimate the lower bound we consider the test function Fi of (4.2).
Applying Lemma 4.5 and simplifying gives
N—1a2"t /My dt
1Py« Enlbep > | 7/P(Fw « Ky)™ (#)(1 - logt)*" —
n=1 a2"/My

Br+1
>cX

My

Using the bound of Fiy obtained in the previous proposition we have

”FN * KNHPJ",B > CNB—A—&-l/r—l/q‘
[ EN lp,g.4
The upper bound has already been noted in Proposition 4.1. =

||KN||M(p7q7A;p7T7B) 2

REMARK 4.8. The same arguments show that for any r, g, A, B,

||KN”M(p,q7A;p,7",B) > CNB_AJFI/T_I/(]'

4.2. Comparing multiplier spaces with differing second or third indices.
The previous theorem shows that the norms of many Lorentz—Zygmund mul-
tiplier spaces are not comparable. Indeed, using a similar technique to [9, 3.7]
we can construct examples of operators which belong to certain multiplier
spaces and not to others.

THEOREM 4.9. Let 1 <t<s<oo,1<r,q<oo,B>Aand C,D € R.
Let ¢ > 0. There is an F € L'(T) such that
F e ﬂ M(p,S’Amat,B)
1/t—1/s+B—A=¢
but

¢ U M(p,q,C;p,r, D).
1/r—1/q+D—C>e
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Proof. Let Kb, (x) = Kon(z)ettn® for n = 1,2,... where, as before, Ky
denotes the Fejér kernel of degree A3V and the integers L,, are chosen in such
a way that the K/, have disjoint support. Put

2—37’1

o)
n=1

Then F € LY(T) and

2—611 _ B 1
1N ni (s, apt.B) < COZ — on(1/t=1/s+B=4) _ oy Z L <o
n n
On the other hand, we saw in the previous proof that there were functions
Fyn satisfying

| Fan # Konl[pyp > Co2mM/m=H D= Byl .

If we let fon denote Fon convolved with the Dirichlet kernel of degree

A2"8  then since the functions I?é\n have disjoint support it follows that
|F % fon(x)e’tn®| = |Kon % Fon()|275"/n?. As the Dirichlet kernels are uni-
formly bounded as multipliers on LP(Log L)%, it follows that || fon||pq.c <
CollFonllpqgc- Thus if F '€ M(p,q,C;p,r,D) for 1/r—1/g+D—-C =9 > ¢,
then

2—€TL F n % K n 2—6”
> CO || 2 2 ||P77'7D Z CO Sup nQ 271(5
n

p,q,C;p,r,D) =

00 > || || ar n2||Fonlp.q.c

and this is a contradiction as § > . =

REMARK 4.10. More generally, these arguments can be used to prove
that
M(p,s, A;p,t, B) # M(p,q,C;p,r, D)

if max(1/t—1/s+ B—-A,1/t—1/s,B—A,0)<1/r—1/¢q+ D —C.

4.3. Comparing multiplier spaces with differing first indices. Lorentz—
Zymund multiplier spaces can also be shown to be distinct when the first
indices are different. For this we will adopt the usual technique of construct-
ing multipliers using Rudin—Shapiro type polynomials.

Choose y1, . ..,yn such that the intervals

N 4 4
ZEJ'?JJJ“ \N/3 \N/3
j=1

are disjoint for ¢; = 0,1. Let L(y;) denote translation by y;. Set o9 = o9
= Ky and inductively define Rudin—Shapiro polynomials ¢,+1 and 0,41 by

On+1 = On — L(yn+1)0na Ont1 = On + L(yn+1)an-
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PROPOSITION 4.11. Let 1 <p<2,1<q,r <oo and A, B € R. There
s a constant C, independent of N, such that

HQNHM(p,q,A;p,r,B) < CQN/pNmax(l/r—1/q+B—A,1/r—1/q,B—A,0)_

Proof. Let Vi denote the de la Vallée Poussin kernel of degree 3A%Y. As
on is a trigonometric polynomial of degree A3V, YA/N = 1 on supp oy and
thus ON * VN = ON-

The polynomial gy is a linear combination of 2V translates of Fejér
kernels, with coefficients +1, thus ||ox|1 = 2V. The usual Rudin—-Shapiro
arguments show that [|on || yr(2,2) < 2% /2. Interpolating (or using Lemma 2.2
if p = 1) gives the estimate |on | ar(p,r,B) < C2N/P for p > 1. Thus if r < ¢
and B > A we have

lon * fllprs = llen * Vv # fllpr < C2VPIViy * £l
< CoVPNYr YA g,

The other cases are easy exercises. m

For p = 2 the arguments are more delicate.

PROPOSITION 4.12. For1<r<qg<oo and B> A,

”QN”M(Z,q,A;2,r,B) < CQN/2Nmax(1/r—1/q,l/'r—1/2,1/2—1/q)Nmax(B—A,B,—A).

Proof. First, suppose A < 0 and ¢ > 2. Using the fact that [lon||as(2,2)

< C2N/2 and the known multiplier norm of Vy, similar arguments to those
given above show

lonllar(2,,42,20) = llonllar@22,02,q,—4) < C2NAN1/27 A
By factoring through L?, it follows that if r <2 < g and B > 0 > A, then

lon * fllam2,q,42..8) < llonllar2202.-,8) VN M(2,0,452,.2,0)
< 012N/2N1/T_1/q+B_A.

Taking into account the fact that L?%(log L)A ¢ L*9 if A > 0, one can
easily see that if A and B are both non-negative, then

lon * fll2,rB <C lon * fll2,rB < C9N/2NV/r=1/a+B,
112,44 /112,40
The case when A, B are both non-positive is similar.
If 2 < r < q we note that [[on]lrr(2,q,42,,8) < Cllonllar(2,,4:2,2,3) and
use the previous estimates. The case r < ¢ < 2 is dual. =

REMARK 4.13. There is a similar bound if » > ¢ and/or B < A.

Next we will find the lower bounds for the multiplier norms of oy.
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PROPOSITION 4.14. For 1 < p < 2,

lon I at(pg.aipr.) > C2NPN/r=1/a+B=A,

Proof. Again, we will use the test function Fy introduced in (4.2). The
calculations that show

lon * Fxllprp > C2V/PNYr+B L P

are similar to those given for K Fy in Theorem 4.7 (see [9, 3.11] for details).
The extra factor of 2%V in the computation of m{x : |on * Fi(z)| > 2=/}
gives rise to oN/P, u

These two results show that the Lorentz—Zygmund multiplier spaces with
different first indices, r < p < 2, are distinct.

THEOREM 4.15. Let 1 <p<oo, 1 <s,t<o00 and A,B € R. There ex-
ists '€ M(p, s, A;p, t, B) such that F ¢ M(r,u,C;r,v,D) for any 1 <r <p,
1<u,v<ocand C,D € R.

Proof. By translating oy suitably construct ¢’y whose Fourier coefficients
have disjoint support. Consider

F= Z oy N~1o8Nog=N/p,
N

According to Propositions 4.11 and 4.12,
||FHM(p,s,A;p7t’B) < Z 2N/PNC!N—210g N2_N/p
N

where o depends only on s,¢, A, B. As a < log N for N sufficiently large,
F e M(p,s, A;p,t, B).

Now, take any r < p and fixed w,v, C, D. Similar arguments to those
given in Theorem 4.9, but based on the previous proposition, show

||FHM(7‘,U,C;7’,U,D) > S%p ||QN||M(r,u7C;r,v,D)2_N/pN_ log N

> Cysup oN(1/r—1/p) \y—2log N
N

But 2NV(1/r=1/P) N=2loeN _, 55 a5 N — o0, hence F ¢ M(r,u,C;r,v,D). =

5. Non-equality of multiplier spaces for arbitrary groups

5.1. Groups with finite subgroups. In this section we show the non-
equality of certain Lorentz—Zygmund multiplier spaces when G is a com-
pact, abelian group whose dual contains a (large) finite subgroup X. The
arguments are similar to the circle case; we will sketch the main ideas.
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Let H be the annihilator of X and let Dy = xg/m(H ) where m denotes
the Haar measure on G. As Dy = xx, Dy is a trigonometric polynomial of
L'-norm one.

It is shown in [9, Section 4] that if | X| > 100" then there is a trigono-
metric polynomial Fy, defined on GG, whose Fourier transform is supported
on X and whose rearrangement is given by

271P if u < 2m(H),
F(u) =9 2777 i 3021 2Pm(H) < u < Sp_ 25m(H),
0 if u> ST 26m(H).
Using this test function Fy and our previous work we can estimate the
multiplier norms of Dp.

PROPOSITION 5.1. Let 1 <r <qg<oo and B> A. Then

HDHHMpq,A,p,rB) (log‘X‘)l/T 1/q+B— A

Proof. Since m(H) = |X|~!, Corollary 3.6 gives
1Ds | r1(p.g.2p.r.3) < C(log | X[)M/7—Hat B4,

For the lower bound choose N = [%log\X |] and observe that since
supp Fyv C X, we have Dy« Fy = Fiy. It is straightforward to calculate that
| FNlp.g.a = m(H)YPNAT/4 since F} is a sum of characteristic functions
of intervals. Hence,

| Du * Enllpr,5 > ONVYr-1/a+B-A,
1 EN|lp.q,4

Dy HM(p,qA;pﬂ“,B) -

REMARK 5.2. Similarly, for any ¢,r, A, B,
Co(log |X|)1/T_1/q+B_A < HDHHM(p,q,A;p,r,B) < C(log |X|)|1/T_1/q|+‘B_A‘.

COROLLARY 5.3. Let G be an infinite, compact abelian group and sup-

pose G contains infinitely many elements of finite order. Let 1 <t < s < o0
and B > A. Suppose ¢ > 0. There is an F' € L'(T) such that

Fe ( MsApt,B)
1/t—1/s+B—A=¢
but
F¢ U M(p,q,C;p,?“,D)-
1/r—1/g+D—C>e

Proof. This is similar to the proof of [9, 4.3]; we take F' to be a suitable
weighted sum of translates of functions Dy, , where H,, are the annihilators
of a sequence of finite subgroups X,, whose cardinalities tend to infinity. =

REMARK 5.4. This corollary is the analogue of Theorem 4.9.
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We can also show the non-comparability of norms of multiplier spaces
with different first indices.

PROPOSITION 5.5. Let G be an infinite, compact abelian group, Xy be
a finite subgroup of G with |Xy| ~ 100V, 1 <p <2, 1 < ¢, r < o0, and
A, B € R. There is a trigonometric polynomial on such that

Co2MPNUTHIEEA < on | aspg,aprmy < C2VPNIT=HAHE=AL

Proof. We use the Rudin—Shapiro polynomials gn constructed in [9, 4.5].
Since supp oy € X, similar arguments to those given in Proposition 4.11,
but factoring through Dy, , where Hy is the annihilator of Xy (rather
than Vi), show that

lonllat(pg.aprm) < C2NPNI/T=1/d+B=A]

These functions are known to satisfy (on * Fiv)*(u) = Fi (u2™") (see proof
of [9, 4.5]), thus an easy calculation gives
lon * Exllprs > Cm(Hy) /P2N/PNBHLT
> C2VP NV B A Bl . m

Here is the analogue of Theorem 4.15.

COROLLARY 5.6. Let G be an infinite, compact abelian group and sup-

pose G contains infinitely many elements of finite order. Suppose 1 < s,t,u,v
< o0, and A,B,C,D € R. If r # p,p’ then

M(p, s, A;p,t,B) # M(r,u,C;r,v, D).

5.2. Arbitrary compact abelian groups. To obtain the analogous results
for arbitrary compact abelian groups we use the following lemma, which can
be proved by a change of variables argument.

LEMMA 5.7. Let G and H be compact abelian groups and 7 : G — H a
continuous, onto homomorphism. Let F € L'(H) and define a function F
on G by F=Fon. Then F € LY(G) and for any 1 < p,q,7,5 < co and
A, B eR,

”FHLP"J(logL)A = ||F||vaq(logL)A7 ||F||M(p,q,A;p,r,B) < ||F||M(p,q,A;p,T,B)-
THEOREM 5.8. Suppose that G is an infinite, compact abelian group and
1<t s,r,qg< o0, and A,B,C,D € R.

(i) If t < s, A< B and ¢ > 0, then there is a function F € L*(G) such
that
Fe ﬂ M(p,s, A;p,t, B)
1/t—1/s+B—A=¢
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but

F¢ U M(p,q,C;p,?“,D)-
1/r—1/q+D—C>e

(ii) Suppose that w # p,p’. Then
M(p,S,A;]Lt,B) #M(u%(bc;waraD)'

Proof. (i) If G contains an element of infinite order, then T is a homo-

morphic image of G and we appeal to Theorem 4.9. Otherwise all elements
are of finite order and the result follows from Corollary 5.3.

(ii) is similar. m
Our results, combined with the known inclusions for multiplier spaces
(2.2

COROLLARY 5.9. Suppose G is an infinite, compact abelian group.

), (2.3), imply:

(i) If either (a) s <r <qand B+ 1/r > C+1/s, or (b)) r<s<gq
and B > C, then M(p,q, A;p,7,B) C M(p,q, A;p,s,C).

(i) If either (a) r <g<wvand C > A, or (b)r<v<qand C+1/q>
A+1/v, then M(p,v, A;p,r,B) C M(p,q,C;p,r,B).

REMARK 5.10. To study the non-equality of Lorentz—Zygmund multi-

plier spaces with other indices a version of Zafran’s multilinear interpolation
theorem [14] may be needed.
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