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Ergodic transforms associated to general averages

by

H. Aimar (Santa Fe), A. L. Bernardis (Santa Fe),
and F. J. Mart́ın-Reyes (Málaga)

Abstract. Jones and Rosenblatt started the study of an ergodic transform which is
analogous to the martingale transform. In this paper we present a unified treatment of
the ergodic transforms associated to positive groups induced by nonsingular flows and to
general means which include the usual averages, Cesàro-α averages and Abel means. We
prove the boundedness in Lp, 1 < p < ∞, of the maximal ergodic transforms assuming
that the semigroup is Cesàro bounded in Lp. For p = 1 we find that the maximal ergodic
transforms are of weak type (1, 1). Convergence results are also proved. We give some
general examples of Cesàro bounded semigroups.

1. Introduction and main results. Let (X,F , ν) be a complete σ-
finite measure space. By a flow Γ = {τt : t ∈ R} we mean a group of
measurable transformations τt : X → X such that τ0 is the identity, τt+s =
τt ◦ τs (t, s ∈ R) and the map (x, t) 7→ τtx from X × R into X is F̃-F-
measurable, where F̃ is the completion of the product σ-algebra F⊗L where
L is the Lebesgue σ-algebra, and the completion is taken with respect to
the product measure of ν on F and the Lebesgue measure m. The flow is
said to be measure preserving if ν(τtE) = ν(E) for all t ∈ R and all E ∈ F
(we also say that the flow preserves the measure ν). The flow is said to be
nonsingular if ν(τtE) = 0 for all t ∈ R and all E ∈ F with ν(E) = 0. It
is clear that measure preserving implies nonsingular. In this paper we are
mainly interested in nonsingular flows which are not necessarily measure
preserving.

From now on we fix a nonsingular flow Γ = {τt : t ∈ R}. For each t ∈ R
we consider the measures νt defined by νt(E) = ν(τt(E)). These measures
have the same sets of measure zero since the flow is nonsingular. If Jt is
the Radon–Nikodym derivative of νt with respect to ν then

	
X f(x) dν(x) =	

X f(τtx)Jt(x) dν(x) for all nonnegative measurable functions f and for all
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integrable functions f . Moreover, Jt+s(x) = Js(τtx)Jt(x) a.e. x. It follows
that the operators Stf(x) = Jt(x)f(τtx) are positive isometries in L1(ν) and
limt→0 S

t = I in the strong operator topology [15], where I is the identity
operator. Consequently, by [6, Lemma III.11.16] (see also [23]) there exists
a function (x, t) 7→ Jt(x), measurable with respect to the product σ-algebra,
such that, for almost every t, Jt(x) = Jt(x) a.e. x. Consequently,

(1.1)
�

X

f(x) dν(x) =
�

X

f(τtx)Jt(x) dν(x)

for almost every t. Furthermore, Jt+s(x) = Js(τtx)Jt(x) a.e. (x, s, t) ∈ X ×
R × R, where in X × R × R we consider the completion of the product
measure.

In this paper we are interested in a class of groups G = {T t : t ∈ R} of
positive operators which contains the groups St considered previously. We
introduce this class in the next definition.

Definition 1.1. Let (X,F , ν) be a complete σ-finite measure space.
Let Γ = {τt : t ∈ R} be a nonsingular flow on X. Let g(x, t) = gt(x) be a
positive function defined on X ×R that is F ⊗L-measurable and such that
gt+s(x) = gs(τtx)gt(x) a.e. (x, s, t) ∈ X×R×R. A group G = {T t : t ∈ R} of
positive operators induced by Γ and g is a family of linear operators acting
on measurable functions such that T t+sf = T t(T sf), T 0f = f , and, for
almost every t,

(1.2) T tf(x) = gt(x)f(τtx) a.e. x.

The semigroup {T t : t > 0} will be denoted by G+.

Throughout the paper we work only with this kind of groups. For such
a group, it follows from (1.1) that if 0 < p <∞ and Ht(x) = (gt(x))−pJt(x)
then for almost every t,

(1.3)
�

X

|f(x)|p dν(x) =
�

X

|T tf(x)|pHt(x) dν(x).

One of the classical problems in Ergodic Theory is to study the conver-
gence of the averages

A+
ε f(x) =

1
ε

ε�

0

T tf(x) dt

as ε → 0+ and as ε → ∞. (In principle these averages are well defined for
f ≥ 0.) There are other kinds of averages like the Cesàro-α averages

C+
ε f(x) =

1
ε1+α

ε�

0

(ε− t)αT tf(x) dt, α ≥ 0,
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or Abel means

R+
ε f(x) =

1
ε

∞�

0

e−t/εT tf(x) dt,

which have also been studied in this ergodic setting ([2], [5], [8], [9], [17], [22],
[23]). All these averages are particular cases of the “convolution” averages
defined by

A+
ε,ϕf(x) =

∞�

0

ϕε(t)T tf(x) dt,

where ϕε(t) = (1/ε)ϕ(t/ε) and ϕ is a nonnegative integrable decreasing
function defined on (0,∞) (the trivial case ϕ(t) = 0 will not be consid-
ered). If ϕ is the characteristic function χ(0,1) of the interval (0, 1) then the
ϕ-averages A+

ε,ϕf are the usual ergodic averages; in this case, as we have
already done, we simply write A+

ε f (this convention will also be used for
other operators).

In order to prove the almost everywhere convergence of the averages
A+
ε,ϕf , the standard approach is to consider the maximal operator

M+
ϕf(x) = sup

ε>0
|A+

ε,ϕf(x)|

and, for f ∈ Lp(ν), 1 < p <∞, to prove a dominated ergodic estimate, i.e.,	
X |M

+
ϕf |p dν ≤ C

	
X |f |

p dν with a constant C independent of f . It is clear
that for such an inequality to hold the averages A+

ε,ϕ must be uniformly
bounded operators in Lp(ν). This remark gives rise to the next definition.

Definition 1.2. Let G be a group as in Definition 1.1. Let ϕ be a
nonnegative integrable decreasing function on (0,∞). Let 1 ≤ p < ∞. We
say that the semigroup G+ = {T t : t > 0} is ϕ-bounded in Lp(ν) if there
exists C > 0 such that for all nonnegative functions f ∈ Lp(ν),

(1.4) sup
ε>0

�

X

|A+
ε,ϕf |p dν ≤ C

�

X

|f |p dν.

If ϕ = χ(0,1) then we say that the semigroup G+ is Cesàro bounded in Lp(ν).

Observe that if the semigroup G+ is ϕ-bounded in Lp(ν) and f ∈ Lp(ν)
then the averages A+

ε,ϕf are well defined and (1.4) holds for all f ∈ Lp(ν).
Obviously, the semigroup G+ is ϕ-bounded in Lp(ν) if gt(x) = 1 and the
flow is measure preserving.

In what follows we look for a relation between ϕ-bounded semigroups
and Cesàro bounded semigroups (this is probably known, for instance see
[9] for Abel means).

Proposition 1.3. Let G be a group as in Definition 1.1. Let ϕ be a
nonnegative integrable decreasing function on (0,∞) with

	∞
0 ϕ > 0 and let

1 ≤ p < ∞. The semigroup G+ is Cesàro bounded in Lp(ν) if and only if
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the semigroup G+ is ϕ-bounded in Lp(ν). Furthermore, there exists C > 0
such that CM+f(x) ≤M+

ϕf(x) ≤ (
	
ϕ)M+f(x) for all measurable f , where

M+f(x) = supε>0 |A+
ε f(x)|.

Proof. It suffices to consider f ≥ 0. Notice that if ϕ(u) > 0 for some
u > 0 then, since ϕ is decreasing, A+

ε,ϕf(x) ≥ uϕ(u)A+
εuf(x). From this

inequality, we see that ϕ-bounded implies Cesàro bounded and

M+f(x) ≤ 1
uϕ(u)

M+
ϕf(x).

On the other hand, if ϕ is a simple function, ϕ=
∑n

i=1 ciχ(0,bi), ci ≥ 0, we
get

(1.5) A+
ε,ϕf(x) =

n∑
i=1

cibiA+
εbi
f(x) ≤

( n∑
i=1

cibi

)
M+f(x) =

(�
ϕ
)
M+f(x).

Then M+
ϕf(x) ≤ (

	
ϕ)M+f(x) and

�

X

|A+
ε,ϕf |p dν ≤

(�
ϕ
)p

sup
ε>0

�

X

|A+
ε f |p dν.

Consequently, Cesàro bounded implies ϕ-bounded for ϕ simple. For gen-
eral ϕ, the assertion follows from the above inequalities and the monotone
convergence theorem.

Proposition 1.3 allows us to reduce the study of the boundedness of
M+

ϕ to the usual ergodic maximal operator, i.e., to the case ϕ = χ(0,1)

corresponding to the standard ergodic averages. In the next proposition we
show that the almost everywhere convergence of A+

ε,ϕf also reduces to the
standard case.

Proposition 1.4. Let G be a group as in Definition 1.1. Let ϕ be a
nonnegative integrable decreasing function on (0,∞) with

	∞
0 ϕ > 0 and let

1 ≤ p <∞. Assume that for a nonnegative measurable function f the limit
limε→∞A+

ε f(x) = ` exists and M+f(x) < ∞ for some x. Then the limits
limε→∞A+

ε,ϕf(x) = (
	
ϕ)` exists. The same statement holds for the limit as

ε goes to zero.

Proof. If ϕ is a simple function then the assertion follows immediately
from the first equality in (1.5). Assume now that ϕ has compact support. It
is easy to see that there exists a sequence {ϕn}n of nonnegative decreasing
simple functions such that ϕn ↑ ϕ and ϕ−ϕn ≤ ψn, where the functions ψn
are nonnegative, integrable, decreasing and limn→∞

	∞
0 ψn = 0. By Proposi-

tion 1.3 we have

|A+
ε,ϕf(x)−A+

ε,ϕnf(x)| = A+
ε,ϕ−ϕnf(x) ≤ A+

ε,ψn
f(x) ≤

(�
ψn

)
M+f(x).
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The result now follows immediately sinceM+f(x) is finite, limn→∞
	
ψn = 0

and limε→∞A+
ε,ϕnf(x) = (

	
ϕn)`.

Take now a general ϕ. Let L > 0 and ϕL = ϕχ(0,L]. Let ψL = ϕ(L)χ(0,L]

+ ϕχ(L,∞). Then∣∣∣A+
ε,ϕf(x)−

(�
ϕ
)
`
∣∣∣ ≤ ∣∣∣A+

ε,ϕL
f(x)−

(�
ϕ
)
`
∣∣∣+ |A+

ε,ψL
f(x)|

≤
∣∣∣A+

ε,ϕL
f(x)−

(�
ϕ
)
`
∣∣∣+
(�
ψL

)
M+f(x).

Since limL→∞
	
ψL = 0 and M+f(x) < ∞, and ϕL has compact support,

the general case follows from what we have already proved.

Now we are going to give some nontrivial examples of Cesàro bounded
semigroups. Some other examples and related questions are studied in §6.

Example 1.5. Let 1 ≤ p <∞ and T tf(x) = (Jt(x))1/pf(τtx), where Jt
is the Radon–Nikodym derivative considered at the beginning of the intro-
duction. It is clear that each T t is an isometry on Lp(ν), and consequently
G+ is Cesàro bounded in Lp(ν). Observe that G− = {T t : t < 0} is also
Cesàro bounded in Lp(ν).

Example 1.6. Let X = [0, 1) with the Lebesgue σ-algebra. Let dν =
w(x) dx, where w(x) = xβ and −1 < β < 0. Consider the flow τt(x) = x+ t
(mod 1), that is, τt(x) = x+ t− [x+ t], where [x+ t] stands for the integer
part of x + t. Set T tf(x) = f(τtx). The semigroup G+ is Cesàro bounded
in L1(ν) (and therefore bounded in Lp(ν), 1 < p < ∞) if and only if there
exists C > 0 such that for all ε > 0,

1
ε

ε�

0

w(τ−tx) dt ≤ Cw(x) a.e. x.

This holds since |x|β satisfies the Muckenhoupt A1 condition on the real line
(see [10], [7] or [12]), i.e., there exists C > 0 such that (b− a)−1

	b
a |x|

β dx ≤
C infx∈(a,b) |x|β for all intervals (a, b). However, the semigroup G− = {T t :
t < 0} is not Cesàro bounded in L1(ν). To prove this we observe that G−
is Cesàro bounded in L1(ν) if and only if there exists C > 0 such that,
for all ε > 0, ε−1

	ε
0w(τtx)dt ≤ Cw(x) a.e. x. By the continuity of w, this

inequality would hold for all x 6= 0. If we take ε > 0 and x = 1− ε, we have

1
2ε

2ε�

0

w(τtx) dt ≥ 1
2ε

ε�

0

yβ dy =
1

2(β + 1)
εβ.

Since w(x) = w(1− ε) < 2 for ε small, we see that
1
2ε

	2ε
0 w(τt(1− ε))dt
w(1− ε)

≥ 1
4(β + 1)

εβ
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is as large as we wish if we take ε small enough. Therefore, G− is not Cesàro
bounded in L1(ν).

Clearly, the measure ν is equivalent to the Lebesgue measure (the in-
variant measure for the flow Γ ) in the sense that they have the same sets of
measure zero. However ν is not comparable to the Lebesgue measure, that is,
there is no constant K > 0 such that (1/K)|E| ≤ ν(E) ≤ K|E| for all mea-
surable sets E, where |E| is the Lebesgue measure of E: if E = (0, b) ⊂ (0, 1)
we have ν(E)/|E| = bβ/(β + 1) and bβ is as large as we wish if we take b
small enough.

One may ask whether or not the flow could have the property that for
some constant K > 0,

(1.6) (1/K)ν(E) ≤ ν(τt(E)) ≤ Kν(E)

for all measurable sets E and all t. Then there should be a σ-finite measure
µ equivalent to ν for which the flow is measure preserving and such that µ is
comparable to ν (consequently, everything would be reduced to the measure
preserving case). Our present example shows that the measure µ would be
the Lebesgue measure and we have already shown that it is not comparable
to ν. However, we are going to give a direct proof showing that (1.6) does
not hold in our example although the semigroup is Cesàro bounded in L1(ν).
In fact, for 0 < ε < 1 and Iε = (1− ε, 1), we have τε(Iε) = (0, ε). Therefore,
ν(τε(Iε)) = εβ+1/(β + 1). Since ν(Iε) ≤ 2−βε, we have

ν(τε(Iε))
ν(Iε)

≥ 2βεβ

β + 1
,

which is as large as we wish if we take ε small enough.

In what follows we state our results about the boundedness of M+
ϕ and

the convergence of the averages A+
ε,ϕf under the main assumption that the

semigroup G+ is Cesàro bounded in Lp(ν).

Theorem 1.7. Let (X,F , ν), Γ , {gt : t ∈ R} and G = {T t : t ∈ R} be as
in Definition 1.1. Let ϕ be a nonnegative integrable decreasing function on
(0,∞) and let 1 ≤ p <∞. Assume that the semigroup G+ is Cesàro bounded
in Lp(ν).

(a) If 1 < p <∞ then:

(i) There exists C > 0 such that for all f ∈ Lp(ν),�

X

|M+
ϕf |p dν ≤ C

�

X

|f |p dν.

(ii) For all f ∈ Lp(ν), limε→0+ Aε,ϕf = (
	
ϕ)f a.e. and in Lp(ν).

(iii) For all f ∈ Lp(ν), the averages A+
ε,ϕf converge a.e. and in

Lp(ν) as ε→∞.
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(b) If p = 1 and gt(x) = 1 then:

(i) There exists C > 0 such that for all f ∈ L1(ν) and all λ > 0,

ν({x ∈ X : |M+
ϕf(x)| > λ}) ≤ C

λ

�

X

|f |p dν.

(ii) For all f ∈ L1(ν), limε→0+ A+
ε,ϕf = (

	
ϕ)f a.e. and in measure.

(iii) For all f ∈ L1(ν), the averages A+
ε,ϕf converge a.e. and in

measure as ε→∞.

Remark 1.8. The result does not hold if p = 1 and gt(x) 6= 1. To show
an example we work on the real line. We follow Example 2.11 in [11]. Take

g(x) = χ(−∞,1)(x) +
1
x
χ(1,∞)(x), T tf(x) =

g(x− t)
g(x)

f(x− t)

and dν = g(x) dx. It is easy to see that the semigroup G+ is Cesàro bounded
in L1(dν). Notice that the maximal operator M+ associated to the semi-
group satisfies

M+f(x) =
1

g(x)
M−(fg)(x),

where M− is the one-sided Hardy–Littlewood maximal function defined by
M−f(x) = supε>0 ε

−1
	x
x−ε |f(s)| ds. Therefore, if a weak type (1, 1) inequal-

ity were satisfied for M+ with respect to ν we would have
�

{x : (1/g(x))M−f(x)>λ}

g(x) dx ≤ C

λ

�

R
|f(x)| dx.

If we take f = χ(0,1) then M−f(x) = 1/x for x > 1. Taking λ = 1/2, we
have ∞ =

	
(1,∞) g(x) dx ≤ 2C

	
R |f(x)| dx = 2C.

Once we know that the convergence of A+
ε,ϕf holds in the almost every-

where sense or in the Lp-norm, it is reasonable to try to give some informa-
tion about how the convergence occurs.

Take any sequence {εk}k∈Z with εk+1 > εk > 0 for all k, limk→−∞ εk = 0
and limk→∞ εk = ∞. Nothing can be said about the rate of convergence of
limk→−∞A+

εk,ϕ
f . However, for N ≤ 0,

∑0
k=N (Aεk,ϕf(x) − Aεk−1,ϕf(x)) =

Aε0,ϕf(x)−AεN−1,ϕf(x). Therefore, the limit

(1.7) lim
N→−∞

0∑
k=N

(Aεk,ϕf(x)−Aεk−1,ϕf(x))

= Aε0,ϕf(x)− lim
N→−∞

AεN−1,ϕf(x)

exists and is essentially equal to limk→−∞A+
εk,ϕ

f . Consequently, if we try
to give some information about the convergence of A+

εk,ϕ
f , we can analyze
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the convergence of
∑0

k=−∞(Aεk,ϕf(x)−Aεk−1,ϕf(x)). We can try to prove
the absolute convergence, the unconditional convergence or the existence in
Lp(ν) of the square function

∑∞
k=−∞ |Aεk,ϕf −Aεk−1,ϕf |2. If, in particular,

we take a lacunary sequence {εk}k∈Z, i.e., εk > 0 and εk+1/εk ≥ ρ > 1
for all k, then an example in [1] shows that there exists f ∈ L∞(ν) such
that the series does not converge absolutely. More precisely, let X = [0, 1)
with the Lebesgue measure ν and, as before, consider the flow τt(x) =
x + t (mod 1). Let ϕ = χ(0,1). Then there exists f ∈ L∞(ν) such that∑0

k=−∞ |Aεk,ϕf(x) − Aεk−1,ϕf(x)| = ∞ a.e. (The example in [1] is for
ϕ = χ(−1,1), that is, Aεf(x) = (2ε)−1

	ε
−ε f(x + t) dt, but the example

for ϕ = χ(0,1) follows immediately.) Given the cancellation properties of∑0
k=−∞(Aεk,ϕf(x) − Aεk−1,ϕf(x)) and the last result, it is natural to con-

sider the convergence of
0∑

k=−∞
υk(Aεk,ϕf(x)−Aεk−1,ϕf(x)),

where υk is a bounded sequence of real or complex numbers. Reasoning in the
same way for k →∞, we arrive at the problem of convergence of the series∑∞

k=−∞ υk(Aεk,ϕf(x)−Aεk−1,ϕf(x)), where υk is a bounded sequence of real
or complex numbers. We shall only study the convergence and boundedness
of the last series for lacunary sequences because the expected results imply
unconditional convergence of the series

∑∞
k=−∞(Aεk,ϕf(x) − Aεk−1,ϕf(x)),

and this fact restricts the classes of sequences for which you can expect
positive results (see Remark 1.15 after the statement of the results). We
must point out that Jones and Rosenblatt [14] studied this problem for
ϕ = χ(0,1) in the setting of periodic functions on the real line with the flow
τt(x) = x + t and for discrete averages associated to a measure preserving
transformation; the problem for general functions on the real line with the
same flow and in the context of weighted spaces was studied in [3].

So far, we have only established our main aim, that is, to study the
convergence and boundedness of

(1.8)
∞∑

k=−∞
υk(Aεk,ϕf(x)−Aεk−1,ϕf(x))

in the setting of Cesàro bounded semigroups, where εk is a lacunary sequence
and υk is a bounded sequence of real or complex numbers. The natural
approach is to consider the maximal operator

T ∗ϕ f(x) = sup
N
|TN,ϕf(x)|,

where for each N = (N1, N2) ∈ Z2 with N1 ≤ N2, TN,ϕ is the truncation
operator
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TN,ϕf(x) =
N2∑

k=N1

υk(Aεk,ϕf(x)−Aεk−1,ϕf(x)).

Unlike the problem of the boundedness of M+
ϕ , it is not immediately clear

how to estimate the maximal operator T ∗ϕ by T ∗, i.e., by the corresponding
operator associated to the standard ergodic averages, or, in other words, it
is not obvious how to reduce the general problem of the convergence of (1.8)
to the case ϕ = χ(0,1). That is due to the nature of the operator T ∗ϕ which
is essentially a singular integral maximal operator (when we look at the real
line with τtx = x+ t).

Our results are collected in the following theorems.

Theorem 1.9. Let (X,F , ν), Γ , {gt : t ∈ R}, G and ϕ be as in Theo-
rem 1.7. Let 1 ≤ p < ∞ and assume that the semigroup G+ is Cesàro
bounded in Lp(ν).

(a) If 1 < p < ∞ then there exists C > 0 such that for all f ∈ Lp(ν),	
X |T

∗
ϕ f |pdν ≤ C

	
X |f |

pdν.
(b) If p = 1 and gt(x) = 1 then there exists C > 0 such that for all f ∈

L1(ν) and all λ > 0, ν({x ∈ X : |T ∗ϕ f(x)| > λ}) ≤ (C/λ)
	
X |f | dν.

To obtain the a.e. convergence of TN,ϕf it suffices to prove that the limits
limN→∞ T 1

N,ϕf(x) and limN→∞ T 2
N,ϕf(x) exist a.e., where

T 1
N,ϕf(x) =

0∑
k=−N

υk(A+
εk,ϕ

f(x)−A+
εk−1,ϕ

f(x)),

T 2
N,ϕf(x) =

N∑
k=1

υk(A+
εk,ϕ

f(x)−A+
εk−1,ϕ

f(x)).

(HereN stands for a natural number.) We shall need some extra assumptions
on ϕ but we point out that the examples in the introduction and others as
the Poisson kernel, ϕ(t) = 1/(1 + t2), satisfy these conditions.

Theorem 1.10. Let (X,F , ν), Γ , {gt : t ∈ R}, G and ϕ be as in Theo-
rem 1.7. Let 1 < p <∞. Assume that

	
tβϕ(t) dt <∞ for all 0 < β < 1 and

the semigroup G+ is Cesàro bounded in Lp(ν). Then for all f ∈ Lp(ν), the
sequence T 1

N,ϕf converges a.e. and in Lp(ν) as N →∞.

If gt(x) = 1, that is, T tf(x) = f(τtx), we can prove the same result,
including the case p = 1, with a weaker condition on ϕ. The key point is
that in this case the operators T t are contractions in L∞(ν).

Theorem 1.11. Let (X,F , ν), Γ and ϕ be as in Theorem 1.7. Let G
be the group defined as T tf(x) = f(τtx). Let 1 ≤ p < ∞. Assume that	∞
1 |log t|ϕ(t) dt <∞ and the semigroup G+ is Cesàro bounded in Lp(ν).
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(a) If 1 < p < ∞ then for all f ∈ Lp(ν), the sequence T 1
N,ϕf converges

a.e. and in Lp(ν) as N →∞.
(b) If p = 1 then for all f ∈ L1(ν), the sequence T 1

N,ϕf converges a.e.
and in measure as N →∞.

For the same class of semigroups, i.e., gt(x) = 1, we have the following
result for the convergence of T 2

N,ϕf .

Theorem 1.12. Let (X,F , ν), Γ and ϕ be as in Theorem 1.7. Let G
be the group defined as T tf(x) = f(τtx). Let 1 ≤ p < ∞. Assume that	1
0 |log t|ϕ(t) dt <∞ and the semigroup G+ is Cesàro bounded in Lp(ν).

(a) If 1 < p < ∞ then for all f ∈ Lp(ν), the sequence T 2
N,ϕf converges

a.e. and in Lp(ν) as N →∞.
(b) If p = 1 then for all f ∈ L1(ν), the sequence T 2

N,ϕf converges a.e.
and in measure as N →∞.

Under the assumptions in Theorems 1.11 and 1.12, if
	∞
0 |log t|ϕ(t) dt

<∞ and the semigroup G+ is Cesàro bounded in Lp(ν) then the correspond-
ing results on convergence of TN,ϕf hold as N = (N1, N2)→ (−∞,∞).

For general groups but for standard averages, we can obtain the a.e.
convergence of T 2

N,ϕf .

Theorem 1.13. Let (X,F , ν), Γ , {gt : t ∈ R} and G be as in Theo-
rem 1.7. Let 1 < p < ∞ and assume that the semigroup G+ is Cesàro
bounded in Lp(ν). Then for all f ∈ Lp(ν), the sequence T 2

Nf converges a.e.
and in Lp(ν) as N →∞.

Applying Theorems 1.10 and 1.13 we obtain the following result for gen-
eral groups and standard averages.

Theorem 1.14. Let (X,F , ν), Γ , {gt : t ∈ R} and G be as in Theo-
rem 1.7. Let 1 < p < ∞ and assume that the semigroup G+ is Cesàro
bounded in Lp(ν). Then, for all f ∈ Lp(ν), the sequence TNf converges a.e.
and in Lp(ν) as N = (N1, N2)→ (−∞,∞).

Remark 1.15. As Jones and Rosenblatt remarked in [14], once we have
Theorem 1.9, we can deduce, under the same assumptions, that if 1 < p
< ∞ then the square operator Sf(x) = (

∑∞
k=−∞ |Aεk,ϕf − Aεk−1,ϕf |2)1/2

is bounded in Lp(ν). Furthermore, as in [14], Theorem 1.9 implies that the
series

∞∑
k=−∞

(Aεk,ϕf(x)−Aεk−1,ϕf(x))

converges unconditionally in Lp(ν), 1 < p < ∞. We remark that Johnson
[13] characterized the decreasing sequences εk with limk→−∞ εk = 0 such
that the series

∑0
k=−∞(Aεk,ϕf(x)−Aεk−1,ϕf(x)) is unconditionally conver-
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gent for all f ∈ L2(ν) in the case X = [0, 1) with τt(x) = x + t (mod 1)
and ϕ = χ(0,1). This characterization allows one to see that the lacunary
sequences are good but εk = −1/k, k < 0, is a bad sequence, in the sense
that the series does not converge unconditionally for all f ∈ L2(ν) (see [13]).
Therefore, our results are not valid for εk = −1/k, k < 0, and we have to
restrict our attention to a class of subsequences, for instance, the lacunary
sequences, as we have done.

We start by establishing in §2 the results for T ∗ϕ in the case of the real
line and τtx = x + t in weighted Lp spaces. We prove Theorem 1.7 in §3.
Next, we transfer the results in §2 to the ergodic setting and prove Theorem
1.9 in §4. The proofs of Theorems 1.10–1.13 are in §5. We point out that
in §3 and §4 we need the results in weighted spaces. One of the difficulties
in the transference argument in §4 comes from the fact that ϕ does not
necessarily have compact support. Another problem to overcome is the a.e.
convergence of the truncation operators TN,ϕf for functions f in the suitable
dense class. Finally, in §6, we provide general examples of Cesàro bounded
semigroups.

2. Theorem 1.9 on the real line for the translation flow. Let
us consider X = R with the Lebesgue measure, the flow on R defined by
τt(x) = x + t and gt(x) = 1. Let ϕ be a nonnegative integrable decreasing
function on (0,∞). The ϕ-averages associated to this flow are

A+
ε,ϕf(x) =

1
ε

∞�

0

f(x+ t)ϕ(t/ε) dt.

In this section we consider ϕ extended to the whole real line with ϕ(t) = 0
for t ≤ 0 and we define ϕ̃(t) = ϕ(−t). With this notation,

A+
ε,ϕf(x) =

1
ε

∞�

−∞
f(x− t)ϕ̃(t/ε) dt = f ∗ ϕ̃ε(x).

Notice that ϕ̃ is increasing in (−∞, 0). It is well known (use Proposi-
tion 1.3) that the maximal function Mϕf(x) = supε>0 |A+

ε,ϕf(x)| is con-
trolled by the one-sided Hardy–Littlewood maximal function M+f(x) =
supε>0 ε

−1
	ε
0 |f(x+ t)| dt. More precisely,

Mϕf(x) ≤
( ∞�
−∞

ϕ
)
M+f(x).

(Notice that M+ is Mϕ for ϕ = χ(0,1).) It follows that weights good for M+

are also good for Mϕ (by a weight we mean a nonnegative measurable func-
tion defined on R). The following results can be obtained from the theorems
in [24] and [20].
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(1) Assume that w ∈ A+
1 , i.e., there exists C such that

M−w(x) = sup
ε>0

1
ε

ε�

0

|w(x− t)| dt ≤ Cw(x) a.e.

(M− is the left-sided Hardy–Littlewood maximal function). Then
the operator Mϕ is of weak type (1, 1) with respect to the mea-
sure w(x) dx, that is, there exists C such that

	
{x :Mϕf(x)>λ}w ≤

(C/λ)
	
|f |w for all λ > 0 and all f ∈ L1(w).

(2) Assume that w ∈ A+
p , i.e., there exists C such that for any three

points a < b < c,

(2.1)
(b�
a

w
)1/p(c�

b

w1−p′
)1/p′

≤ C(c− a),

where p+ p′ = pp′. Then the operator Mϕ is bounded in Lp(w), 1 <
p < ∞, that is, there exists C > 0 such that

	
|Mϕf |pw ≤ C

	
|f |pw

for all f ∈ Lp(w).

Remarks 2.1. Notice that w ∈ A+
p , 1 < p < ∞, if and only if (2.1)

holds for a < b < c with b = (a+ c)/2. We point out that we can define A−p
classes, reversing the orientation of the real line, and obtain the correspond-
ing results for the maximal function associated to a function ϕ supported in
(−∞, 0). There are many important properties of these classes of weights;
in particular, in §6 we shall frequently use the following result (see [24] and
[20]): w ∈ A+

p if and only if there exist u ∈ A+
1 and v ∈ A−1 such that

w = uv1−p.

Throughout the paper, we will consider a bounded sequence v = {vk},
k ∈ Z, of real or complex numbers and a lacunary sequence ε = {εk} of
positive numbers. We say that v = {vk} is a multiplying sequence and we
write ‖v‖∞ = supk |vk|. For each N ∈ Z2, N = (N1, N2) with N1 ≤ N2, we
define the sum

(2.2) TN,ϕf(x) =
N2∑

k=N1

vk(A+
εk,ϕ

f(x)−A+
εk−1,ϕ

f(x)) = KN,ϕ ∗ f(x),

where KN,ϕ(x) =
∑N2

k=N1
vk(ϕ̃εk(x) − ϕ̃εk−1

(x)). Notice that TN,ϕ is the
operator TN,ϕ defined in the previous section with the flow τt(x) = x+ t and
gt(x) = 1. If we need to emphasize the dependence on ε = {εk} and v = {vk}
we shall write TN,ϕ,ε,v and KN,ϕ,ε,v. As usual, to prove the a.e. convergence,
we shall study the boundedness of the associated maximal operator

T ∗ϕf(x) = sup
N∈Z2

|Tϕ,Nf(x)|
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in the setting of the weighted spaces Lp(w) = {f : (
	
R |f |

pw)1/p < ∞}. (If
necessary, we shall write T ∗ϕ,ε,v.) Since the operators Tϕ,N are convolution
operators with kernels Kϕ,N supported in (−∞, 0), the study of T ∗ϕ and Tϕ,N
is related to the right-sided Hardy–Littlewood maximal operator M+.

Now we can state the main result in this section.

Theorem 2.2. Let ϕ be a nonnegative integrable function with support
in (0,∞) and decreasing in that interval. Let ε = {εk} be a ρ-lacunary
sequence and let v = {vk} be a multiplying sequence.

(i) If 1 < p <∞ and w ∈ A+
p then there exists a constant C depending

only on ρ, p, ‖v‖∞ and w such that
	
R |T

∗
ϕf |pw ≤ C(

	
ϕ)p

	
R |f |

pw
for all f ∈ Lp(w).

(ii) If w ∈ A+
1 then there exists C depending only on ρ, ‖v‖∞ and w

such that
	
{x∈R : |T ∗ϕf(x)|>λ}w ≤ (C/λ)(

	
ϕ)‖f‖L1(w) for all λ > 0 and

all f ∈ L1(w).

The organization of this section is as follows. Subsection 2.1 is devoted
to notations and properties of lacunary sequences. In Subsections 2.2 and
2.3 we prove Theorem 2.2(i) and Theorem 2.2(ii) respectively.

Throughout this paper, we shall use the notations introduced in this
section and the letter C will mean a positive constant not necessarily the
same at each occurrence.

2.1. Lacunary sequences. In this section we establish in this section
some properties of the ρ-lacunary sequence ε = {εk}. The next proposition
shows that, without loss of generality, we may assume that

(2.3) 1 < ρ ≤ εk+1/εk ≤ ρ2.

Proposition 2.3. Given the ρ-lacunary sequence ε = {εk} and the mul-
tiplying sequence v = {vk}, we can define a ρ-lacunary sequence η = {ηk}
and a multiplying sequence u = {uk} with the following properties:

(i) 1 < ρ ≤ ηk+1/ηk ≤ ρ2 and ‖v‖∞ = ‖u‖∞.
(ii) For all N = (N1, N2) there exists M = (M1,M2) with TN,ϕ = T̃M,ϕ,

where T̃M,ϕ is the operator defined in (2.2) for η = {ηk} and u =
{uk}.

The proof is exactly as in the case ϕ = χ(0,1) (see [3]). It follows from
this proposition that it is enough to prove all the results of this paper in the
case of a ρ-lacunary sequence satisfying (2.3). For this reason, in the rest of
the paper we tacitly assume that {εk} satisfies (2.3). Observe that, under
this assumption,

(2.4) (1/ρ)2(m−n) ≤ εn/εm ≤ (1/ρ)m−n for all m > n.
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If we denote by α the smallest positive integer such that 1/ρ+ (1/ρ)α ≤ 1,
from (2.4) we get εi + εm ≤ εm+1 for all m ≥ i+ α− 1.

2.2. Proof of Theorem 2.2(i). First assume that ϕ is simple, that is,
ϕ =

∑s
`=1 a`χ(−b`,0), a` ≥ 0. We point out that this theorem was proved in

[3] for the function χ = χ(−1,0). Observe that the kernels KN,ϕ satisfy

KN,ϕ =
s∑
`=1

a`b`

N2∑
k=N1

vk

(
1
b`εk

χ(−b`εk,0) −
1

b`εk−1
χ(−b`εk−1,0)

)
.

For each `, set ε` = {ε`k} where ε`k = b`εk is a ρ-lacunary sequence and the
equality can be written as KN,ϕ =

∑s
`=1 a`b`KN,χ,ε`,v. Therefore, TN,ϕ =∑s

`=1 a`b`TN,χ,ε`,v and T ∗ϕ ≤
∑s

`=1 a`b`T
∗
χ,ε`,v

. By the results in [3], there
exists a constant C depending only on ρ and ‖v‖∞ such that

	
|T ∗
χ,ε`,v

f |pw ≤
C
	
|f |pw. Thus

�
|T ∗ϕf |pw ≤ C

( s∑
`=1

a`b`

)p �
|f |pw = C

(�
ϕ
)p �
|f |pw.

Now, let f ∈ L1(dx) ∩ Lp(w). Choose a sequence {ϕk} of simple functions
with support in (0,∞), decreasing in (0,∞) and such that ϕk converges
to ϕ in the L1-norm. Then TN,ϕkf converges to TN,ϕf in the L1-norm as
k → ∞. Fix a positive integer M . It follows that there exists a subse-
quence ϕkj such that TN,ϕkj f converges a.e. to TN,ϕf as j → ∞ for all
N = (N1, N2) such that |N1|, |N2| ≤ M . Then |TN,ϕf | ≤ lim infj→∞ T ∗ϕkj f
almost everywhere for all N = (N1, N2) such that |N1|, |N2| ≤ M . Con-
sequently, supN=(N1,N2) : |N1|,|N2|≤M |TN,ϕf | ≤ lim infj→∞ T ∗ϕkj f , a.e. By the
Fatou Lemma and the result for simple functions we have

�
sup

N=(N1,N2) : |N1|,|N2|≤M
|TN,ϕf |pw ≤ lim inf

j→∞

�
|T ∗ϕkj f |

pw

≤ C lim inf
j→∞

(�
ϕkj

)p �
|f |pw = C

(�
ϕ
)p �
|f |pw.

Letting M tend to∞ we obtain
	
|T ∗ϕf |pw ≤ C(

	
ϕ)p

	
|f |pw for f ∈ L1(dx)∩

Lp(w). Now let f ∈ Lp(w). There exists a sequence fn ∈ L1(dx) ∩ Lp(w)
that converges to f in Lp(w). Fix M . There is a constant CM such that if
N = (N1, N2) with |N1|, |N2| ≤M , then

|TN,ϕf | ≤ |TN,ϕ(f − fn)|+ |TN,ϕ(fn)| ≤ CMM+(f − fn) + T ∗ϕfn.

Therefore supN=(N1,N2) : |N1|,|N2|≤M |TN,ϕf | ≤ CMM
+(f −fn) +T ∗fn. Using

that w ∈ A+
p and what we have already proved, we have
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�
sup

N=(N1,N2) : |N1|,|N2|≤M
|TN,ϕf |pw ≤ CM

�
|M+(f − fn)|pw + C

�
|T ∗ϕfn|pw

≤ CM
�
|f − fn|pw + C

(�
ϕ
)p �
|fn|pw.

Letting n→∞ and then M →∞ we finish the proof.

2.3. Proof of Theorem 2.2(ii). As in [3] for the function χ = χ(−1,0),
the theorem follows from Theorem 2.2(i) and the following lemma.

Lemma 2.4. Let a be supported on I = (x∗, x∗ + h) with
	
I a = 0 and

let w ∈ A+
1 . If A = ρ2(α+1) there exists C, independent of x∗, h and a, such

that �

z<x∗−Ah
T ∗ϕa(z)w(z) dz ≤ C

�

I

|a(z)|w(z) dz.

Proof. We start by pointing out that this result was proved in [3] for the
function χ = χ(−1,0). Second, as in [3], it suffices to prove

�

z<−εi+α

T ∗ϕa(z)w(z) dz ≤ C
�

I

|a(z)|w(z) dz,

assuming that I = (0, εi).
First we prove the inequality for simple functions. Letϕ =

∑s
`=1 a`χ(−b`,0),

a` ≥ 0. For each `, pick ε`t(`) such that ε`t(`)−1 < εi ≤ ε`t(`). Obviously, a has
support in (0, ε`t(`)) and T ∗ϕa(z) ≤

∑s
`=1 a`b`T

∗
χ,ε`,v

a(z). Therefore,

�

z<−εi+α

T ∗ϕa(z)w(z) dz ≤
s∑
`=1

a`b`
�

z<−εi+α

T ∗χ,ε`,va(z)w(z) dz

=
s∑
`=1

a`b`
�

z<−ε`
t(`)+α

T ∗χ,ε`,va(z)w(z) dz

+
s∑
`=1

a`b`
�

−ε`
t(`)+α

<z<−εi+α

T ∗χ,ε`,va(z)w(z) dz.

By the result in [3] for χ = χ(−1,0) (notice that ε` = {ε`k} is a ρ-lacunary
sequence), we have

s∑
`=1

a`b`
�

z<−ε`
t(`)+α

T ∗χ,ε`,va(z)w(z) dz ≤ C
(�
ϕ
) �
|a(z)|w(z) dz.

Now we estimate the term
∑s

`=1 a`b`
	
−ε`

t(`)+α
<z<−εi+α T

∗
χ,ε`,v

a(z)w(z) dz.

Since ε`t(`)−1 < εi, we have ε`t(`)+α ≤ εi+2α+2. Therefore
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�

−ε`
t(`)+α

<z<−εi+α

T ∗χ,ε`,va(z)w(z) dz ≤
i+2α+1∑
m=i+α

−εm�

−εm+1

T ∗χ,ε`,va(z)w(z) dz.

Fix ` and N ∈ Z2. Notice that |TN,χ,ε`k,vka(z)| is bounded by∑
k

∣∣∣∣ �
I

vk

(
1
ε`k
χ(−ε`k,0)(z − u)− 1

ε`k−1

χ(−ε`k−1,0)(z − u)
)
a(u) du

∣∣∣∣.
If z ∈ (−εm+1,−εm) and u ∈ I, then z−u ∈ (−εm+2,−εm) and the k-terms
in the above sum such that ε`k ≤ εm or εm+2 ≤ ε`k−1 are zero: in the first
case because (−ε`k, 0) ∩ (−εm+2,−εm) = ∅, and in the second case because
χ(−ε`k,0)(z − u) = χ(−ε`k−1,0)(z − u) = 1 and

	
I a = 0. Then we only have at

most four terms in the above sum and in these cases ε`k ≈ εm. Consequently,
|TN,χ,ε`k,vka(z)| ≤ C(1/εm)

	
I |a(u)| du and

−εm�

−εm+1

T ∗χ,ε`,va(z)w(z) dz ≤ C 1
εm

�

I

|a(u)| du
−εm�

−εm+1

w(z) dz.

Since w ∈ A+
1 , we have

−εm�

−εm+1

T ∗χ,ε`,va(z)w(z) dz ≤ C
�

I

|a(u)|w(u) du.

Hence
�

−ε`
t(`)+α

<z<−εi+α

T ∗χ,ε`,va(z)w(z) dz ≤ C
i+2α+1∑
m=i+α

�

I

|a(u)|w(u) du

= C
�

I

|a(u)|w(u) du.

Then
s∑
`=1

a`b`
�

−ε`
t(`)+α

<z<−εi+α

T ∗χ,ε`,va(z)w(z) dz ≤ C
(�
ϕ
) �
I

|a(u)|w(u) du,

and we are done for simple functions.
For the general case, using the notations introduced in the proof of The-

orem 2.2(i) (with f = a), we have
�

z<−εi+α

sup
N : |N1|,|N2|≤M

|TN,ϕa(z)|w(z) dz ≤ lim inf
j→∞

�

z<−εi+α

T ∗ϕkj
a(z)w(z) dz

≤ C lim inf
j→∞

(�
ϕkj

) �
I

|a(z)|w(z) dz = C
(�
ϕ
) �
I

|a(z)|w(z) dz.

Letting M tend to ∞, we are done.
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3. Proof of Theorem 1.7

Proof of (a)(ii) and (b)(ii) for ϕ = χ(0,1). We follow the idea in [16] (see
Theorem 2.5 on page 11). Since the semigroup is Cesàro bounded in Lp(ν),
for all f ∈ Lp(ν) and a.e. x ∈ X the functions fx(s) = T sf(x) are locally
integrable. It follows that for a.e. x,

lim
ε→0+

1
ε

ε�

0

fx(s+ t) dt = fx(s) a.e. s.

Since, for a.e. s and a.e. t, fx(s + t) = gs(x)gt(τsx)f(τs+tx) and fx(s) =
gs(x)f(τsx), we have

lim
ε→0+

1
ε

ε�

0

gt(τsx)f(τs+tx) dt = f(τsx) a.e. s ≥ 0.

Let E = {(x, s) : s ≥ 0, limε→0+ ε−1
	ε
0 gt(τsx)f(τs+tx) dt = f(τsx)}. This set

is measurable in the product space. LetN = X×[0,∞)\E andNx = {s ≥ 0 :
(x, s) ∈ N}. Then for almost every x, the Lebesgue measure |Nx| is zero.
Therefore, |N | = 0 and for a.e. s ≥ 0 the set N s = {x ∈ X : (x, s) ∈ N} has
measure zero. Notice that N s = τ−s(N0). Let s > 0 be such that ν(N s) = 0.
Since the transformations are nonsingular, we obtain ν(N0) = 0. That means
that for a.e. x, limε→0+ ε−1

	ε
0 gt(x)f(τtx) dt = f(x), as we wished to prove.

Before continuing, we notice that we have just proved that M+f(x) =
sup0<ε∈QA+

ε |f |(x) a.e. for each measurable function f . Therefore M+f is
measurable. It is proved in a similar way that M+

ϕf is measurable when ϕ
is a simple function. Finally, for general ϕ, M+

ϕf is measurable since it is
the limit of M+

ϕnf , where ϕn is a sequence of simple functions.

Proof of (b)(i). As we said at the beginning of the introduction, the
functions Ht(x) are measurable with respect to the σ-algebra product and
for a.e. t,

(3.1)
�

X

f(x) dν(x) =
�

X

f(τtx)Ht(x) dν(x)

for all nonnegative functions and all f ∈ L1(ν) (see (1.3) and keep in mind
that we assume gt(x) = 1 in the case p = 1). Since the flow is Cesàro
bounded in L1(ν), by Tonelli’s Theorem we have

1
ε

ε�

0

�

X

f(τtx) dν dt ≤ C
�

X

f(x) dν

for every ε > 0 and each measurable function f ≥ 0. But, for almost all t,	
X f(τtx) dν =

	
X f(x)H−t(x) dν. Therefore
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�

X

f(x)
(

1
ε

ε�

0

H−t(x) dt
)
dν ≤ C

�

X

f(x) dν

for all nonnegative measurable functions f , which implies ε−
	ε
0H−t(x) dt

≤ C a.e. x. Since the function on the left-hand side is F-measurable and τs
is nonsingular we see that for all s, ε−1

	ε
0H−t(τsx) dt ≤ C a.e. x. Multiply-

ing by Hs(x) gives ε−1
	ε
0H−t(τsx)Hs(x) dt ≤ CHs(x) a.e. x. Therefore, for

almost every s,

1
ε

ε�

0

H−t(τsx)Hs(x) dt =
1
ε

ε�

0

Hs−t(x) dt ≤ CHs(x) a.e. x.

Notice that the set

E =
{

(x, s) ∈ X × R :
1
ε

ε�

0

H−t(τsx)Hs(x) dt > CHs(x)
}

is measurable in the completion of the product σ-algebra F ⊗L and the last
statement implies that the completion of the product measure of E is zero.
Then it follows that for almost every x ∈ X,

1
ε

s�

s−ε
Ht(x) dt =

1
ε

ε�

0

Hs−t(x) dt ≤ CHs(x) for a.e. s,

or, in other words, for almost every x the functions t 7→ Ht(x) satisfy A+
1

with a constant independent of x.
Since M+

ϕ ≤ (
	∞
0 ϕ)M+, it is enough to prove the weak type (1, 1)

inequality for M+ and we shall do it by transference arguments. We can
assume that f ≥ 0. For each η > 0, consider M+

η f(x) = sup0<ε≤ηA+
ε f(x).

Let λ > 0 and Eλ = {x ∈ X :M+
η f(x) > λ}. Fix R > 0. Then, by (3.1),

ν(Eλ) =
1
R

R�

0

�

X

χEλ(τtx)Ht(x) dν(x) dt

=
�

X

1
R

R�

0

χEλ(τtx)Ht(x) dt dν(x).

If we define fx(t) = f(τtx), we find that if R > 0, t ≤ R, and χEλ(τtx) = 1
then M+(fxχ[0,R+η])(t) > λ. Therefore

ν(Eλ) ≤
�

X

1
R

�

{t :M+(fxχ[0,R+η])(t)>λ}

Ht(x) dt dν(x).

Since, for almost every x, the functions t 7→ Ht(x) satisfy A+
1 with a con-

stant independent of x, and A+
1 characterizes the weak-type (1, 1) inequality
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of M+ (see §2), we obtain

ν(Eλ) ≤ C

λ

�

X

1
R

R+η�

0

fx(t)Ht(x) dt dν(x)

=
C

λR

R+η�

0

�

X

f(τtx)Ht(x) dν(x) dt

=
C

λR

R+η�

0

�

X

f(x) dν(x) dt =
C(R+ η)

λR

�

X

f(x) dν(x).

Letting R and then η tend to infinity we obtain the inequality that we wished
to prove.

Proof of (a)(i). We start by proving that our assumption, that the semi-
group G+ is Cesàro bounded in Lp(ν), implies that

(3.2)
for almost every x ∈ X, the function t 7→ Ht(x)
belongs to A+

p with a constant independent of x.

We shall use the ideas of Rubio de Francia about factorization of weights [21].
By hypothesis, there exists C > 0 independent of ε > 0 and f such that

�

X

|A+
2εf |

p dν ≤ C
�

X

|f |p dν for all f ∈ Lp(ν),

and consequently
�

X

|(A+
2ε)
∗f |p′dν ≤ C

�

X

|f |p′dν for all f ∈ Lp′(ν),

where (A+
2ε)
∗ is the adjoint operator of A+

2εf . Notice that if T ∗t is the formal
adjoint of Tt then for almost all t,

T ∗t h(x) =
J−t(x)
g−t(x)

h(τ−tx),(3.3)

Ht(x) = ((T−t)∗hp)(x)(T thp
′
)1−p(x) a.e. x(3.4)

for any function h > 0, h ∈ Lpp
′
(ν). For h ∈ Lpp

′
(ν), we define Qεh =

(A+
2ε|h|p

′
)1/p

′
and Pεh = ((A+

2ε)
∗|h|p)1/p. Then Qε, Pε and Rε = Qε +Pε are

bounded from Lpp
′
(ν) into Lpp

′
(ν) with constants independent of ε > 0. Fix

C > 0 such that ‖Rεh‖Lpp′ (ν) ≤ C‖h‖Lpp′ (ν) for all h ∈ Lpp′(ν) and all ε > 0.

For fixed h > 0, h ∈ Lpp′(ν), and ε > 0, let G(x) =
∑∞

j=0R
(j)
ε h(x)/(2C)j ,

where R(j)
ε is the jth iteration of Rε. Then G ∈ Lpp′(ν), h ≤ G a.e., RεG ≤

2CG a.e. and so PεG ≤ 2CG a.e. and QεG ≤ 2CG a.e., i.e., there exists
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C > 0 such that

A+
2εG

p′ ≤ CGp′ a.e.,(3.5)

(A+
2ε)
∗Gp ≤ CGp a.e.(3.6)

Since the operators T t are linear and positive, we infer from (3.5) that for
s ≤ t ≤ s+ ε,

CT tGp
′
(x) ≥ T t(A+

2εG
p′)(x) =

1
2ε

2ε�

0

T t+sGp
′
(x) ds

=
1
2ε

2ε+t�

t

T uGp
′
(x) du ≥ 1

2ε

s+2ε�

s+ε

T uGp
′
(x)du.

Raising to the power 1− p < 0, multiplying by (T−t)∗Gp(x) and using (3.4)
we have, for almost all t,

CHt(x) ≤
(

1
2ε

s+2ε�

s+ε

T uGp
′
(x) du

)1−p
(T−t)∗Gp(x) a.e. x,

where the exceptional set depends on ε and t. Integrating over any measur-
able set A ⊂ X gives

C
�

A

Ht(x) dν ≤
�

A

(
1
2ε

s+2ε�

s+ε

T uGp
′
(x) du

)1−p
(T−t)∗Gp(x) dν

for a.e. t ∈ [s, s + ε]. Integrating over the interval [s, s + ε] and applying
Fubini’s Theorem, we obtain

C
�

A

s+ε�

s

Ht(x) dt dν

≤
�

A

(
1
2ε

s+2ε�

s+ε

T uGp
′
(x) du

)1−p(s+ε�
s

(T−t)∗Gp(x) dt
)
dν.

Since A is any measurable subset we have

(3.7) C

s+ε�

s

Ht(x) dt

≤
(

1
2ε

s+2ε�

s+ε

T uGp
′
(x) du

)1−p(s+ε�
s

(T−t)∗Gp(x) dt
)

a.e. x,

where the exceptional set depends on s and ε. On the other hand, since the
adjoints (T−t)∗ are also linear and positive, arguing in the same way we
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deduce from (3.6) that

(3.8) C

s+2ε�

s+ε

(Ht(x))1−p
′
dt

≤
(

1
2ε

s+ε�

s

(T−u)∗Gp(x) du
)1−p′ s+2ε�

s+ε

T tGp
′
(x) dt a.e. x,

where the exceptional set depends on s and ε. From (3.8) and (3.7), we get

(3.9)
s+ε�

s

Ht(x) dt
(s+2ε�

s+ε

(Ht(x))1−p
′
dt
)p−1

≤ Cεp a.e. x,

where the exceptional set depends on s and ε. Then, for almost every x,

(3.10)
b�

a

Ht(x) dt
(c�
b

(Ht(x))1−p
′
dt
)p−1

≤ C(c− a)p

for all rational numbers a < c and b = (a + c)/2. Now it is clear that the
same holds for all real numbers a < c and b = (a + c)/2. Therefore, (3.2)
holds (see Remarks 2.1).

Now, let us prove (a)(i). Since M+f(x) ≤ M+(|f |)(x), we can assume
that f ≥ 0. For each η > 0, consider M+

η f(x) = sup0<ε≤ηA+
ε f(x). From

the positivity of T t we have T tM+
η f(x) =M+

η (T tf)(x). If we define fx(t) =
T tf(x), we find for all R > 0 and all t ≤ R,

M+
η (T tf)(x) = sup

0<ε≤η

1
ε

ε�

0

T s+tf(x) ds = sup
0<ε≤η

1
ε

ε�

0

fx(s+ t) ds(3.11)

= sup
0<ε≤η

1
ε

ε�

0

fxχ[0,R+η](s+ t) ds ≤M+(fxχ[0,R+η])(t),

where M+ is the one-sided Hardy–Littlewood maximal operator in R. Then,
by (1.3), Fubini’s Theorem, (3.2) and the fact that A+

p implies boundedness
of the one-sided Hardy–Littlewood maximal operator, we conclude that for
each R > 0,

(3.12)
�

X

(M+
η f(x))p dν(x) =

1
R

R�

0

�

X

|T tM+
η f(x)|pHt(x) dν(x) dt

≤
�

X

1
R

R�

0

|M+(fxχ[0,R+η])(t)|pHt(x) dt dν(x)

≤ C

R

�

X

R+η�

0

|fx(t)|pHt(x) dt dν(x)
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=
C

R

R+η�

0

�

X

|T tf(x)|pHt(x) dν(x) dt =
C

R

R+η�

0

�

X

|f(x)|p dν(x) dt

= C
R+ η

R

�

X

|f(x)|p dν(x).

Letting first R and then η go to infinity we obtain�

X

(M+f(x))p dν(x) ≤ C
�

X

|f(x)|p dν(x).

Proof of (a)(ii) and (b)(ii). Since the maximal operator is bounded in
Lp(ν) (p > 1) or of weak type (1, 1), it is enough to prove the a.e. con-
vergence. By Proposition 1.4 it suffices to show the a.e. convergence in the
standard case ϕ = χ(0,1), which has already been proved at the beginning
of this section.

Proof of (a)(iii). Since the maximal operator is bounded in Lp(ν) it is
enough to prove the a.e. convergence in a dense class. As before, it is enough
to prove it in the standard case ϕ = χ(0,1). To find the dense class we proceed
almost as in Lemma 4.2 of [4]. We shall need some results of independent
interest.

Lemma 3.1. Under the conditions of Theorem 1.7 if 1 ≤ r < p let
Gr = {St : t ∈ R} be the one-parameter group of positive operators defined
by Stf(x) = (gt(x))rf(τtx) for all f ≥ 0. Then there exists r, 1 < r < p,
such that the semigroup Gr,+ = {St : t > 0} is Cesàro bounded in Lp/r(ν).
Furthermore, the maximal operator associated to Gr,+ is bounded in Lp/r(ν).

Proof. We have already seen in the proof of (a)(i) that G+ Cesàro
bounded implies that for almost every x the functions t 7→ Ht(x) belong
to A+

p with a constant independent of x (actually, the implication is an
equivalence, see Remark 3.5). Then by the properties of A+

p classes, there
exists r, 1 < r < p, such that for almost every x the function t 7→ Ht(x)
belongs to A+

p/r with a constant independent of x (see [24] and [19]). We
notice that

(3.13)
�

X

|Stf(x)|p/rHt(x) dν(x) =
�

X

|f(x)|p/r dν(x)

for all f ∈ Lp/r(ν) and all f ≥ 0. Again, by the proof of (a)(i) applied to
the semigroup Gr,+, the maximal operator associated to Gr,+ is bounded in
Lp/r(ν), and therefore the semigroup is Cesàro bounded in Lp/r(ν).

Lemma 3.2. Under the conditions of Theorem 1.7, if 1 < p < ∞, then,
for all f ∈ Lp(ν):

(a) limε→∞[A+
ε f(x)−A+

γ (A+
ε f)(x)] = 0 a.e. for all γ > 0.

(b) limε→∞ ‖A+
ε f −A+

γ (A+
ε f)‖p = 0 for all γ > 0.
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Proof. First, notice that

(3.14) A+
ε f(x)−A+

γ (A+
ε f)(x) =

1
γ

γ�

0

(A+
ε f(x)− T s(A+

ε f)(x)) ds.

Fix 0 < s < γ and ε > γ. Then

|A+
ε f(x)− T s(A+

ε f)(x)| =
∣∣∣∣1ε

ε�

0

T tf(x) dt− 1
ε

s+ε�

s

T tf(x) dt
∣∣∣∣(3.15)

=
∣∣∣∣1ε

s�

0

T tf(x) dt− 1
ε

s+ε�

ε

T tf(x) dt
∣∣∣∣

≤ 1
ε

γ�

0

T t|f |(x) dt+
1
ε

γ+ε�

ε

T t|f |(x) dt.

Therefore, by (3.14),

(3.16) |A+
ε f(x)−A+

γ (A+
ε f)(x)| ≤ 1

ε

γ�

0

T t|f |(x) dt+
1
ε

γ+ε�

ε

T t|f |(x) dt.

It is clear that limε→∞ ε
−1

	γ
0 T

t|f |(x) dt = 0 for a.e. x, since the function
fx(t) = T tf(x) is locally integrable for almost every x. To control the other
term we use Lemma 3.1. Let p > r > 1, let Γγ = {St : t ∈ R} be as in that
lemma, let M̃+ be the maximal operator associated to Gr,+ = {St : t > 0}.
By Lemma 3.1, M̃+ is bounded from Lp/r(ν) into Lp/r(ν). Consequently,
M̃+(|f |r)(x) < ∞ a.e. for f ∈ Lp(ν). It follows that ε−1

	γ+ε
ε T t|f |(x)dt

tends to 0 a.e. as ε goes to infinity since

1
ε

γ+ε�

ε

T t|f |(x) dt ≤ 1
ε

(γ+ε�
ε

(T t|f |(x))r dt
)1/r

γ1/r′(3.17)

≤ (γ + ε)1/r

ε

(
1

γ + ε

γ+ε�

0

St(|f |r)(x) dt
)1/r

γ1/r′

≤ (γ + ε)1/rγ1/r′

ε
[M̃+(|f |r)(x)]1/r.

Therefore (a) is completely proved.
To prove (b) we observe that |A+

ε f −A+
γ (A+

ε f)| ≤ M+f +M+(A+
γ f).

It follows from statement (a)(i) of Theorem 1.7 that M+f +M+(A+
γ f) ∈

Lp(ν). Then (b) follows from (a) and the dominated convergence theorem.

The next theorem follows from Lemma 3.2 using a standard argument.
We include it for the sake of completeness.
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Theorem 3.3. Under the conditions of Theorem 1.7 with 1 < p <∞, let
A = {f ∈ Lp(ν) : A+

γ f = f for all γ > 0} and let B be the linear manifold
generated by {f − A+

γ f : f ∈ Lp(ν), γ > 0}. Then A ⊕ B̄ = Lp(ν), where
B̄ stands for the closure of B and A ⊕ B̄ = {f + g : f ∈ A, g ∈ B̄}. In
particular A⊕B is dense in Lp(ν).

Proof. We first prove that {A+
ε f} is weakly convergent as ε goes to

infinity for all f ∈ Lp(ν).
Let f ∈ Lp(ν). By hypothesis, supε>0 ‖A+

ε f‖Lp(ν) ≤ C‖f‖Lp(ν). This
shows that the set {A+

ε f : ε > 0} is bounded in Lp(ν). Therefore there exists
a sequence {εk} → ∞ such that {A+

εk
f} is weakly convergent. If we suppose

that {A+
ε f} is not weakly convergent as ε goes to infinity, then there exist

another sequence {ηk} → ∞ and g1, g2 ∈ Lp(ν), g1 6= g2, such that {A+
εk
f}

converges weakly to g1 and {A+
ηk
f} converges weakly to g2. The continuity

of A+
γ gives that {A+

εk
f − A+

γ (A+
εk
f)} converges weakly to g1 − A+

γ g1. On
the other hand, by Lemma 3.2(b), {A+

εk
f − A+

γ (A+
εk
f)} converges to 0 in

Lp(ν). Therefore, g1 ∈ A. The same argument shows that g2 ∈ A, and so
0 6= g1 − g2 ∈ A.

We now prove that g1−g2 ∈ B̄. Otherwise there exists a linear functional
Λ : Lp(ν) → R such that Λ(B̄) = 0 and Λ(g1 − g2) = 1. It follows that
Λg = Λ(A+

γ g) for all g ∈ Lp(ν) and all γ > 0. In particular, Λ(A+
εk
f) = Λf.

On the other hand, {Λ(A+
εk
f)} converges to Λg1 in R. Then Λg1 = Λf .

In an analogous way we get Λg2 = Λf . It follows that 1 = Λ(g1 − g2) =
Λg1 − Λg2 = 0, a contradiction. Thus g1 − g2 ∈ B̄.

Let us now prove that ‖A+
ε g‖Lp(ν) → 0 as ε tends to infinity, for all

g ∈ B̄. If g = g0 − A+
γ g0 for some g0 ∈ Lp(ν) and s > 0, this follows from

Lemma 3.2(b), and therefore it holds for any g ∈ B. Now fix g ∈ B̄. For any
δ > 0, there exists g0 ∈ B such that ‖g − g0‖Lp(ν) < δ. As a consequence,

‖A+
ε g‖Lp(ν) ≤ ‖A+

ε g −A+
ε g0‖Lp(ν) + ‖A+

ε g0‖Lp(ν)
= ‖A+

ε (g − g0)‖Lp(ν) + ‖A+
ε g0‖Lp(ν) ≤ Cδ + ‖A+

ε g0‖Lp(ν).
Since ‖A+

ε g0‖Lp(ν) → 0 as ε tends to infinity (g0 ∈ B) and δ is any positive
number we conclude that ‖A+

ε g‖Lp(ν) → 0 as ε tends to infinity .
We have already seen that g1−g2 ∈ B̄. Thus {A+

ε (g1−g2)} converges to 0
in Lp(ν). On the other hand, g1− g2 ∈ A, which implies that A+

ε (g1− g2) =
g1 − g2. Hence g1 − g2 = 0, a contradiction. Therefore, {A+

ε f} is weakly
convergent as ε goes to infinity. (The preceding argument also proves that
A ∩ B̄ = {0}.)

We now prove that A⊕ B̄ = Lp(ν). Let Pf be the weak limit of {A+
ε f}

as ε tends to infinity. Then f = Pf + (f − Pf). From the continuity of
A+
γ and Lemma 3.2(b), it follows that A+

γ (Pf) = Pf for all γ > 0, that
is, Pf ∈ A. If we suppose that f − Pf /∈ B̄, then there exists a linear
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functional Λ : Lp(ν)→ R such that Λ(B̄) = 0 and Λ(f − Pf) = 1. But Pf
is the weak limit of A+

ε f and therefore Λ(Pf) = limε→∞ Λ(A+
ε f). However,

Λ(A+
ε f) = Λf . Therefore Λ(f − Pf) = 0, a contradiction.

Now we can conclude the proof of (a)(iii) of Theorem 1.7. Since the
maximal operator is bounded in Lp(ν) it is enough to prove the a.e. conver-
gence in the dense class D1 = A ⊕ B. If f ∈ A this is obvious. For f ∈ B,
Lemma 3.2(a) proves that {A+

ε f} converges to 0 a.e. as ε tends to infinity.

Remark 3.4. The set A in Theorem 3.3 equals {f ∈ Lp(ν) : T sf = f
for all s > 0}, since it follows from (3.15) and (3.17) that A+

ε f − T s(A+
ε f)

→ 0 a.e. as ε→∞ for all f ∈ Lp(ν).

Proof of (b)(ii) and (iii). Since the flow is Cesàro bounded in L1(ν) and
gt(x) = 1, it is Cesàro bounded in Lp(ν) for 1 < p <∞. Then the averages
converge a.e. as ε→ 0 and as ε→∞ for f ∈ Lp(ν)∩L1(ν), which is a dense
set in L1(ν). Together with the weak type (1, 1) inequality forM+ this gives
the almost everywhere convergence and the convergence in measure of the
ϕ-averages for all f ∈ L1(ν).

Remark 3.5. It follows from the proof of Theorem 1.7 that the semi-
group G+ is Cesàro bounded in Lp(ν) if and only if

(3.18)
for almost every x ∈ X, the function t 7→ Ht(x)
belongs to A+

p with a constant independent of x,

where Ht(x) is defined in (1.3).

4. Proof of Theorem 1.9. We shall use transference arguments and
only prove (a) since the proof of (b) is similar. We point out that the sup-
port of ϕ is not necessarily bounded. For that reason, we have to modify
slightly the usual transference arguments. As before, we shall use the nota-
tion fx(t) = T tf(x).

For each natural M , we consider the set QM = {N ∈ Z2 : N =
(N1, N2), N1 ≤ N2, |N1| ≤ M, |N2| ≤ M} and the operator T ∗ϕ,Mf(x) =
supN∈QM |Tϕ,Nf(x)|.

Let L > 0 and ϕL = ϕχ(0,L]. Then T ∗ϕ,M ≤ T ∗ϕL,M + T ∗ϕ−ϕL,M . Since the
semigroup G+ is Cesàro bounded in Lp(ν) we know that for almost every
x the function t 7→ Ht(x) belongs to A+

p with a constant independent of x.
Then, for each R > 0, (1.3) and Theorem 2.2 give

�

X

[T ∗ϕL,Mf(x)]p dν(x) =
1
R

R�

0

�

X

[T t(T ∗ϕL,Mf)(x)]pHt(x) dν(x) dt

≤
�

X

1
R

R�

0

|T ∗ϕL(fxχ(0,LεM+R))(t)|pHt(x) dt dν(x)
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≤ C
(�
ϕL

)p �

X

1
R

LεM+R�

0

|fx(t)|pHt(x) dt dν(x)

= C
(�
ϕL

)p 1
R

LεM+R�

0

�

X

|T tf(x)|pHt(x) dν(x) dt

= C
(�
ϕL

)pLεM +R

R

�

X

|f(x)|p dν(x).

Letting R go to infinity, we obtain
�

X

[T ∗ϕL,Mf(x)]p dν(x) ≤ C
(�
ϕL

)p �

X

|f(x)|p dν(x),

with a constant independent of M and L.
Let ψL = ϕ(L)χ(0,L] + ϕχ(L,∞). By Proposition 1.3, T ∗ϕ−ϕL,Mf(x) ≤

4MM+
ψL
f(x) ≤ 4M‖ψL‖1M+f(x). Then

�

X

[T ∗ϕ−ϕL,Mf(x)]p dν(x) ≤ CMp‖ψL‖p1
�

X

|f(x)|p dν(x).

Therefore�

X

[T ∗ϕ,Mf(x)]p dν(x) ≤
�

X

[T ∗ϕL,Mf(x)]p dν(x) +
�

X

[T ∗ϕ−ϕL,Mf(x)]p dν(x)

≤ C
[(�

ϕL

)p
+ CMp‖ψL‖p1

] �
X

|f(x)|p dν(x).

Since ‖ψL‖1 → 0 as L→∞, we have
�

X

[T ∗ϕ,Mf(x)]p dν(x) ≤ C
(�
ϕ
)p �

X

|f(x)|p dν(x).

Finally, letting M go to ∞ we are done.

5. Proofs of Theorems 1.10–1.13

5.1. Proof of Theorem 1.10. Since T ∗ϕ is of strong type (p, p) (Theo-
rem 1.9) it suffices to prove the a.e. convergence for f in the set D = {A+

γ g :
g ∈ Lp(ν), γ > 0}, which is dense in Lp(ν) (see Theorem 1.7). Assume that
f ∈ D, i.e., f = A+

γ g for some g ∈ Lp(ν) and some γ > 0. In this case

|A+
εk,ϕ

f(x)−A+
εk−1,ϕ

f(x)| ≤ |A+
εk,ϕ

(A+
γ g)(x)−A+

γ g(x)|
+ |A+

γ g(x)−A+
εk−1,ϕ

(A+
γ g)(x)|.

We can deal with both terms in the same way. We only give the details for
the first one. We may assume that

	
ϕ = 1. Since εk → 0 as k → −∞, there
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exists k0 ≤ 0 such that εk0 < γ2 and εk0+1 < 1. Therefore,

|A+
εk,ϕ

(A+
γ g)(x)−A+

γ g(x)|

=
1
γεk

∣∣∣∞�
0

ϕ(t/εk)
[γ�
0

T s+tg(x) ds−
γ�

0

T sg(x) ds
]
dt
∣∣∣

≤ 1
γεk

√
εk�

0

ϕ(t/εk)
∣∣∣t+γ�
t

T sg(x) ds−
γ�

0

T sg(x) ds
∣∣∣ dt

+
1
γεk

∞�
√
εk

ϕ(t/εk)
∣∣∣t+γ�
t

T sg(x) ds−
γ�

0

T sg(x) ds
∣∣∣ dt

= Ik + IIk.

It will suffice to prove that

(5.1)
k0∑

k=−∞
Ik <∞ and

k0∑
k=−∞

IIk <∞

for almost every x. We start with IIk. We have

IIk =
1
γεk

∞�
√
εk

ϕ(t/εk)
∣∣∣t+γ�
t

T sg(x) ds−
γ�

0

T sg(x) ds
∣∣∣ dt(5.2)

≤ 1
γεk

∞�
√
εk

ϕ(t/εk)
(t+γ�

t

|T sg(x)| ds
)
dt

+
1
γεk

∞�
√
εk

ϕ(t/εk)
(γ�

0

|T sg(x)| ds
)
dt = II ′k + II ′′k .

Now

II ′′k ≤
M+g(x)

εk

∞�
√
εk

ϕ(t/εk) dt =M+g(x)
∞�

1/
√
εk

ϕ(t) dt(5.3)

≤M+g(x)
1/
√
εk

1/
√
εk − 1/√εk+1

1/
√
εk�

1/
√
εk+1

1
s

∞�

s

ϕ(t) dt ds

≤ CM+g(x)
1/
√
εk�

1/
√
εk+1

1
s

∞�

s

ϕ(t) dt ds.

Therefore, for almost every x,
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k0∑
k=−∞

II ′′k ≤ CM+g(x)
k0∑

k=−∞

1/
√
εk�

1/
√
εk+1

1
s

∞�

s

ϕ(t) dt ds(5.4)

≤ CM+g(x)
∞�

1

1
s

∞�

s

ϕ(t) dt ds = CM+g(x)
∞�

1

(log t)ϕ(t) dt

≤ CM+g(x)
∞�

1

t1/2ϕ(t) dt <∞.

On the other hand, to control II ′k we use Lemma 3.1. Let p > r > 1, let
Gr = {St : t ∈ R} be as in that lemma and let M̃+ be the maximal operator
associated to Gr,+ = {St : t > 0}. By Lemma 3.1, M̃+ is bounded from
Lp/r(ν) into Lp/r(ν). Consequently, M̃+(|g|r)(x) < ∞ a.e. for g ∈ Lp(ν).
Applying Hölder’s inequality, we have

II ′k ≤
1

γ1/rεk
(M̃+|g|r(x))1/r

∞�
√
εk

(t+ γ)1/rϕ(t/εk) dt

≤ C

εk
(M̃+|g|r(x))1/r

∞�
√
εk

ϕ(t/εk) dt

+
C

γ1/rεk
(M̃+|g|r(x))1/r

∞�
√
εk

t1/rϕ(t/εk) dt.

By the lacunarity of the sequence and the property of ϕ, we have, for a.e. x,

k0∑
k=−∞

II ′k

≤ C(M̃+|g|r(x))1/r
( k0∑
k=−∞

∞�

1/
√
εk

ϕ(t) dt+
k0∑

k=−∞

ε
1/r
k

γ1/r

∞�

1/
√
εk

t1/rϕ(t) dt
)

≤ C(M̃+|g|r(x))1/r
(∞�

1

(log t)ϕ(t) dt+
k0∑

k=−∞

ε
1/r
k

γ1/r

∞�

1

t1/rϕ(t) dt
)
<∞.

So far, we have proved the second inequality in (5.1). To prove the first
inequality, we notice that

Ik =
1
γεk

√
εk�

0

ϕ(t/εk)
∣∣∣t+γ�
t

T sg(x) ds−
γ�

0

T sg(x) ds
∣∣∣ dt
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≤ 1
γεk

√
εk�

0

ϕ(t/εk)
(t�

0

|T sg(x)| ds+
t+γ�

γ

|T sg(x)| ds
)
dt

≤ 1
γεk

√
εk�

0

ϕ(t/εk)
(√εk�

0

|T sg(x)| ds+

√
εk+γ�

γ

|T sg(x)| ds
)
dt

= I ′k + I ′′k .

Now

I ′k ≤
√
εk

γεk
M+g(x)

√
εk�

0

ϕ(t/εk) dt

≤
√
εk
γ
M+g(x)

∞�

0

ϕ(t) dt =
√
εk
γ
M+g(x),

so that
∑k0

k=−∞ I
′
k ≤ γ−1(

∑k0
k=−∞

√
εk)M+g(x) <∞ a.e.

To control I ′′k we use again Lemma 3.1. Let p > r > 1, let Γγ = {St :
t ∈ R} be as in that lemma and let M̃+ be the maximal operator associated
to Gr,+ = {St : t > 0}. By Lemma 3.1, M̃+ is bounded from Lp/r(ν)
into Lp/r(ν). Consequently, M̃+(|g|r)(x) < ∞ a.e. for g ∈ Lp(ν). Applying
Hölder’s inequality, we have

I ′′k =
1
γ

(1/
√
εk�

0

ϕ(t) dt
)(√εk+γ�

γ

|T sg(x)| ds
)

(5.5)

≤ 1
γ

(1/
√
εk�

0

ϕ(t) dt
)(√εk+γ�

γ

|T sg(x)|r ds
)1/r

(
√
εk)1/r

′

≤ 1
γ

(1/
√
εk�

0

ϕ(t) dt
)

(
√
εk + γ)1/r(

√
εk)1/r

′
(M̃+(|g|r)(x))1/r

≤ (2γ)1/r

γ

(1/
√
εk�

0

ϕ(t) dt
)

(
√
εk)1/r

′
(M̃+(|g|r)(x))1/r

≤ 21/r

γ1/r′

(∞�
0

ϕ(t) dt
)

(
√
εk)1/r

′
(M̃+(|g|r)(x))1/r.

Therefore
∑k0

k=−∞ I
′′
k <∞ a.e. This finishes the proof of (5.1).

5.2. Proof of Theorem 1.11. It suffices to prove the a.e. convergence
in the case p > 1. The other statements follow from the results already
proved and standard arguments. We also notice that it is enough to prove
the a.e. convergence for f in the set D̃ = {A+

ε g : g ∈ Lp(ν)∩L∞(ν), ε > 0},
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which is dense in Lp(ν) (see Theorem 1.7). So, we take f = A+
ε g, g ∈

Lp(ν) ∩ L∞(ν), and we follow the proof of Theorem 1.10 except for the
estimates for II ′k (see (5.2)), which is now estimated in the following way:

II ′k =
1
γεk

∞�
√
εk

ϕ(t/εk)
(t+γ�

t

|T sg(x)| ds
)
dt ≤ ‖g‖∞

εk

∞�
√
εk

ϕ(t/εk) dt.

The conclusion follows with the same computations as in (5.3) and (5.4).

5.3. Proof of Theorem 1.12. As before, it suffices to prove the a.e.
convergence in the case p > 1. To prove the convergence of T 2

Nf(x), it is
enough to establish it for f ∈ A ⊕ B̃, where A = {f ∈ Lp(ν) : f(τtx) =
f(x) for all t > 0} and B̃ is the linear manifold generated by

{f(x)−A+
γ f(x) : f ∈ Lp(ν) ∩ L∞(ν), γ > 0},

since it follows from Theorem 3.3 that A ⊕ B̃ is dense in Lp(ν). If f ∈ A
there is nothing to prove. Suppose f = g −A+

γ g, g ∈ Lp(ν)∩L∞(ν), γ > 0.
Then

|A+
εk,ϕ

f(x)−A+
εk−1,ϕ

f(x)| ≤ |A+
εk,ϕ

(g −A+
γ g)(x)|+ |A+

εk−1,ϕ
(g −A+

γ g)(x)|.

Again, we can deal with both terms in the same way. Since εk → ∞ as
k → ∞, there exists k0 such that for all k ≥ k0 − 1 we have εk > γ and
εk > 1 . Therefore, for k ≥ k0,

|A+
εk,ϕ

(g −A+
γ g)(x)|

=
∣∣∣∣∞�

0

T tg(x)ϕεk(t) dt− 1
γ

γ�

0

∞�

0

T t+sg(x)ϕεk(t) dt ds
∣∣∣∣

=
∣∣∣∣∞�

0

T tg(x)ϕεk(t) dt− 1
γ

γ�

0

∞�

s

T tg(x)ϕεk(t− s) dt ds
∣∣∣∣

≤ 1
γ

γ�

0

1
εk

s�

0

|T tg(x)|ϕ(t/εk) dt ds

+
1
γ

γ�

0

1
εk

∞�

s

|T tg(x)| |ϕ(t/εk)− ϕ(t/εk − s/εk)| dt ds.

Notice that, by the hypothesis on the function ϕ,
∞�

s

|ϕ(t/εk)− ϕ((t− s)/εk)| dt =
∞�

s

[ϕ((t− s)/εk)− ϕ(t/εk)] dt =
s�

0

ϕ(t/εk) dt.
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Using that ‖T tg‖∞ ≤ ‖g‖∞, we have

|A+
εk,ϕ

(g −A+
γ g)(x)| ≤ 2

γ
‖g‖∞

γ�

0

1
εk

s�

0

ϕ(t/εk) dt ds.

For s < γ,

1
εk

s�

0

ϕ(t/εk) dt =
s/εk�

0

ϕ(t) dt ≤ 1/εk−1

1/εk−1 − 1/εk

γ/εk−1�

γ/εk

1
u

u�

0

ϕ(t) dt du

≤ C
γ/εk−1�

γ/εk

1
u

u�

0

ϕ(t) dt du.

Then

∞∑
k=k0

|A+
εk,ϕ

(g −A+
γ g)(x)| ≤ C‖g‖∞

∞∑
k=k0

γ/εk−1�

γ/εk

1
s

s�

0

ϕ(t) dt ds

≤ C‖g‖∞
1�

0

1
s

s�

0

ϕ(t) dt ds = C‖g‖∞
1�

0

| log t|ϕ(t) dt <∞,

and we are done.

5.4. Proof of Theorem 1.13. It suffices to prove the a.e. convergence.
To prove the a.e. convergence of T 2

Nf(x), it is enough to establish it for
f ∈ A⊕B, where A and B are the sets in the proof of Theorem 3.3, that is,
A = {f ∈ Lp(ν) : f(τtx) = f(x) for all t > 0} and B is the linear manifold
generated by {f(x)−A+

γ f(x) : f ∈ Lp(ν), γ > 0}. If f ∈ A there is nothing
to prove. Suppose f = g −A+

γ g, g ∈ Lp(ν), γ > 0. Then

|A+
εk
f(x)−A+

εk−1
f(x)| ≤ |A+

εk
(g −A+

γ g)(x)|+ |A+
εk−1

(g −A+
γ g)(x)|.

Again, we can deal with both terms in the same way. Since εk → ∞ as
k → ∞, there exists k0 such that for all k ≥ k0 − 1 we have εk > γ.
Therefore, for k ≥ k0, using (3.16),

|A+
εk

(g −A+
γ g)(x)| ≤ 1

εk

γ�

0

T t|g|(x) dt+
1
εk

γ+εk�

εk

T t|g|(x) dt(5.6)

= Ik + IIk.

It is clear that
∑

k≥k0 Ik ≤
∑

k≥k0(γ/εk)M+g(x) <∞ a.e. since g ∈ Lp(ν).
To control the other term we use again Lemma 3.1. Let p > r > 1, let
Gr = {St : t ∈ R} be as in that lemma and let M̃+ be the maximal operator
associated to Gr,+ = {St : t > 0}. By Lemma 3.1, M̃+ is bounded from
Lp/r(µ) into Lp/r(µ). Consequently, M̃+(|g|r)(x) <∞ a.e. for g ∈ Lp(µ). It
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follows that

IIk ≤
1
εk

(γ+εk�
εk

(T t|g|(x))rdt
)1/r

γ1/r′

≤ (γ + εk)1/r

εk

(
1

γ + εk

γ+εk�

0

St(|g|r)(x)dt
)1/r

γ1/r′

≤ (γ + εk)1/rγ1/r′

εk
[M̃+(|g|r)(x)]1/r ≤ 21/rγ1/r′

ε
1/r′

k

[M̃+(|g|r)(x)]1/r.

Therefore ∑
k≥k0

IIk ≤
∑
k≥k0

21/rγ1/r′

ε
1/r′

k

[M̃+(|g|r)(x)]1/r <∞ a.e.

Consequently,∑
k≥k0

|A+
εk,ϕ

(g −A+
γ g)(x)| ≤

∑
k≥k0

(Ik + IIk) <∞ a.e.,

as we wished to prove.

6. Examples of Cesàro bounded semigroups. The aim of this sec-
tion is to provide more examples of Cesàro bounded semigroups. We fol-
low the arguments in [18]. Given a nonsingular flow Γ = {τt : t ∈ R},
we first study the groups T tf(x) = f(τtx) and then the general groups
T tf(x) = gt(x)f(τtx). We frequently use Remark 3.5.

6.1. The group T tf(x) = f(τtx). We start by giving examples in the
basic setting of the interval [0, 1).

Example 6.1. Let X = [0, 1) with the Lebesgue σ-algebra. Let dν =
w(x) dx, where w(x) = xβ. Consider the flow τtx = x + t (mod 1) and the
group T tf(x) = f(τtx). In this case Ht(x) = w(τtx)/w(x). In Example 1.6
we have seen that if −1 < β ≤ 0 then the function t 7→ Ht(x) belongs to A+

1

with a constant independent of x. Therefore, by Remark 3.5, G+ is Cesàro
bounded in L1(ν). We already know (see Example 1.6) that the semigroup
G− = {T t : t < 0} is not Cesàro bounded in L1(ν) for β < 0.

In the same way, if w(x) = (1 − x)β and −1 < β ≤ 0 then the function
t 7→ Ht(x) belongs to A−1 with a constant independent of x. It follows from
the theory of one-sided weights (see Remarks 2.1) that if 0 ≤ β < p−1, p > 1,
and w(x) = (1 − x)β or w(x) = xβ, −1 < β ≤ 0, then t 7→ Ht(x) belongs
to A+

p with a constant independent of x. Therefore, in those cases, the
semigroup G+ is Cesàro bounded in Lp(ν). As in Example 1.6, the semigroup
G− = {T t : t < 0} is not Cesàro bounded in Lp(ν) for β 6= 0.
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We can see that in the above example the flow preserves a measure µ
(the Lebesgue measure) which is equivalent to ν (that is, ν(E) = 0 if and
only if µ(E) = 0). One may ask if this is always the case when we consider
Cesàro bounded semigroups of the form T tf(x) = f(τtx). The answer is
affirmative when the measure ν is finite. We state it as a theorem.

Theorem 6.2. Let (X,F , ν) be a finite measure space and let Γ = {τt :
t ∈ R} be a nonsingular flow on X. Let G = {T t : t ∈ R} be the group
defined as T tf(x) = f(τtx). Let 1 ≤ p < ∞. If the semigroup G+ is Cesàro
bounded in Lp(ν) then there exists a finite measure µ preserved by the flow
and equivalent to ν.

The proof is as in [18, proof of Theorem 1, p. 545]. Therefore, we do not
include it.

6.2. Nontrivial examples of Cesàro bounded general semi-
groups. Consider a σ-finite measure space (X,F , ν) and a nonsingular flow
{τt : t ∈ R} on X. Recall that the transformation τt is ergodic if τ−t(E) = E
for a measurable set E implies that ν(E) = 0 or ν(X \ E) = 0.

Let G = {T t : t ∈ R} be the group defined by T tf(x) = (Jt(x))1/pf(τtx),
1 ≤ p < ∞. Clearly, each T t is an isometry on Lp(ν). Therefore G+ =
{T t : t > 0} is Cesàro bounded in Lp(ν). Our next result yields nontrivial
examples of Cesàro bounded semigroups, in the sense that the operators T t,
t > 0, are not isometries, moreover they are not uniformly bounded.

Theorem 6.3. Let (X,F , ν) be a nonatomic finite measure space and
let Γ = {τt : t ∈ R} be a nonsingular flow on X. Assume that τt is ergodic
for some t with respect to ν. Let 1 ≤ p < ∞. Then there exists a group
of positive operators Sp = {T t : t ∈ R} induced by the flow, acting on
measurable functions, such that

(1) the semigroup S+
p = {T t : t > 0} is Cesàro bounded in Lp(ν),

(2) the semigroup S+
p is not uniformly bounded in Lp(ν), that is, there

is no C > 0 such that
	
X |T

tf |pdν ≤ C
	
X |f |

pdν for all t > 0 and
all f ∈ Lp(ν).

Notice that the result is a generalization of Theorem 7 in [18].

Proof. We start by proving the case p = 1. We do it in two steps. We
again use ideas of Rubio de Francia.

1) Let p = 1 and assume that there exists a finite measure µ equivalent
to ν and preserved by the flow Γ . LetM−µ be the maximal operator defined
by M−µ f(x) = supε>0 ε

−1
	0
−ε |f(τtx)| dt. We know that M−µ is bounded on

L2(µ), i.e., there exists a constant A > 0 such that ‖M−µ f‖2,µ ≤ A‖f‖2,µ.
Let f > 0, f ∈ L2(µ) \ L∞(µ). Let w =

∑∞
i=0A

−i(M−µ )(i)f , where (M−µ )(i)

is the ith iteration of M−µ . Then w ≥ f > 0, w ∈ L2(µ), w is finite a.e.,
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w /∈ L∞(µ) and M−µw ≤
∑∞

i=0A
−i(M−µ )(i+1)w ≤ Aw a.e., which implies

that

(6.1)
for a.e. x the functions t 7→ w(τtx)
belong to A+

1 with a uniform constant.

Let u = dµ/dν be the Radon–Nikodym derivative. Let

gt(x) =
u(x)w(x)

(u(τtx)w(τtx))

and let S1 = {T t : t ∈ R} be the group defined as T tf(x) = gt(x)f(τtx).
Since Jt(x) = u(x)/u(τtx), it follows from (6.1) that the semigroup S1 =
{T t : t > 0} is Cesàro bounded in L1(ν) (this can be seen directly or by
applying Remark 3.5).

Now assume towards a contradiction that the semigroup S1 is uniformly
bounded in L1(dν). It is clear that then there exists a constant C > 0 such
that

�

X

u(x)w(x)
u(τtx)w(τtx)

f(τtx) dν ≤ C
�

X

f(x) dν =
�

X

f(τtx)
u(x)
u(τtx)

dν

for all f ≥ 0. This inequality implies, for all t > 0, w(x) ≤ Cw(τtx) a.e. x,
which implies that w ∈ L∞(dν), by applying the ergodicity of some τt, which
is a contradiction.

2) Let p = 1 and assume that there is no finite measure µ equivalent
to ν and preserved by the flow Γ . Let 1 < q < ∞ and let q′ be the
conjugate exponent. We consider the group Gq′ = {T t : t ∈ R} where
T tf(x) = (Jt(x))1/q

′
f(τtx). Since the operators T t are positive isometries

on Lq
′
(ν), the maximal operator M−q′f(x) = supε>0 ε

−1
	0
−ε |T

tf(x)| dt is
bounded on Lq

′
(ν), i.e., there exists A > 0 such that ‖M−q′f‖q′,ν ≤ A‖f‖q′,ν .

Let f > 0, f ∈ Lq′(ν). Let w =
∑∞

i=0A
−i(M−q′)

(i)f , where (M−q′)
(i) is the

ith iteration of M−q′ . Then w ≥ f > 0, w ∈ Lq
′
(ν), w is finite a.e. and

M−q′w ≤
∑∞

i=0A
−i(M−q′)

(i+1)w ≤ Aw a.e., which means that

(6.2)
for a.e. x the functions t 7→ (Jt(x))1/q

′
w(τtx)

belong to A+
1 with a uniform constant.

Let gt(x) = w(x)
w(τtx)

(Jt(x))1/q and let S1 = {T t : t ∈ R} be the group defined
as T tf(x) = gt(x)f(τtx). As before, it follows from (6.2) that the semigroup
S1 = {T t : t > 0} is Cesàro bounded in L1(ν) (this can be seen directly or
by applying Remark 3.5).

Now assume towards a contradiction that the semigroup S1 is uniformly
bounded in L1(dν). It is clear that then there exists a constant C > 0 such
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that
�

X

w(x)
w(τtx)

(Jt(x))1/qf(τtx) dν ≤ C
�

X

f(x) dν =
�

X

f(τtx)Jt(x) dν

for all f ≥ 0. This inequality implies, for all t > 0,

w(x) ≤ Cw(τtx)(Jt(x))1/q
′

a.e. x.

Raising to the power q′, multiplying by χA(τtx), where A is any measurable
set, and integrating on X, we have�

X

χA(τtx)wq
′
(x) dν =

�

τ−tA

wq
′
dν ≤ C

�

A

wq
′
dν =

�

X

χA(x)wq
′
(x) dν

for all t > 0. This condition implies that if T̃ tf(x) = f(τtx) and dν̃ = wq
′
dν

then the semigroup {T̃ t : t > 0} is Cesàro bounded in L1(dν̃). By Theo-
rem 6.2, there exists a finite measure µ preserved by the flow and equivalent
to ν̃, and hence to ν. That is a contradiction.

3) Let p > 1 and assume that there exists a finite measure µ equivalent
to ν and preserved by the flow Γ . As in the case p = 1 but with the maximal
operatorM+

µ f(x) = supε>0 ε
−1

	ε
0 |f(τtx)| dt, there exists w ∈ L2(µ)\L∞(µ)

such that M+
µw ≤ Aw a.e., which means that for a.e. x the functions t 7→

w(τtx) belong to A−1 with a uniform constant. Let v = w1−p. Then it is well
known (see Remarks 2.1) that

(6.3)
for a.e. x the functions t 7→ v(τtx)
belong to A+

p with a uniform constant.

Let u = dµ/dν be the Radon–Nikodym derivative. Let

gt(x) =
(

u(x)v(x)
u(τtx)v(τtx)

)1/p

and let Sp = {T t : t ∈ R} be the group defined as T tf(x) = gt(x)f(τtx). It
follows from (6.3) that the semigroup Sp = {T t : t > 0} is Cesàro bounded
in Lp(ν) (this can be seen by applying Remark 3.5).

Now assume that the semigroup Sp is uniformly bounded in Lp(dν). It
is clear that then there exists a constant C > 0 such that

�

X

u(x)v(x)
u(τtx)v(τtx)

|f(τtx)|p dν ≤ C
�

X

|f(x)|p dν =
�

X

|f(τtx)|p u(x)
u(τtx)

dν

for all f ≥ 0. As in the case p = 1, this implies that w ∈ L∞(dν), a
contradiction.

4) Let p > 1 and assume that there is no finite measure µ equiva-
lent to ν and preserved by the flow Γ . As in case 2), using M−q′f(x) =

supε>0 ε
−1

	0
−ε |T

tf(x)| dt, we have a function w ∈ Lq′(ν) such thatM−q′w ≤
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Aw a.e., which means that for a.e. x the functions t 7→ (Jt(x))1/q
′
w(τtx)

belong to A−1 with a uniform constant. Then

(6.4) for a.e. x the functions t 7→ ((Jt(x))1/q
′
w(τtx))1−p

belong to A+
p with a uniform constant.

Let

gt(x) =
(
w(x)
w(τtx)

) 1−p
p

(Jt(x))
1
p
+ 1
p′q′

and let Sp = {T t : t ∈ R}, where T tf(x) = gt(x)f(τtx). As before, it follows
from (6.4) that the semigroup Sp = {T t : t > 0} is Cesàro bounded in Lp(ν).

Now we see that that the semigroup Sp is not uniformly bounded in
Lp(dν). Proceeding as in case 2), we obtain, for all t > 0, w(τtx)(Jt(x))1/q

′ ≤
Cw(x) a.e. x and, for any measurable set A,

�

X

χA(τ−tx)wq
′
(x) dν ≤ C

�

X

χA(x)wq
′
(x) dν

for all t > 0. This implies that if T̃ tf(x) = f(τ−tx) and dν̃ = wq
′
dν then the

semigroup {T̃ t : t > 0} is Cesàro bounded in L1(dν̃). By Theorem 6.2, there
exists a finite measure µ equivalent to ν̃ (and hence to ν) and preserved by
the flow. That is a contradiction.
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Ciencia y Tecnoloǵıa grants MTM2005-8350-C03-02 and MTM2008-06621-
C02-02, and Junta de Andalućıa grants FQM-354 and FQM-01509.

References

[1] M. A. Akcoglu, R. L. Jones and P. O. Schwartz, Variation in probability, ergodic
theory and analysis, Illinois J. Math. 42 (1998), 1, 154–177.

[2] E. Berkson and T. A. Gillespie, A Tauberian theorem for ergodic averages, spectral
decomposability, and the dominated ergodic estimate for positive invertible operators,
Positivity 7 (2003), 161–175.

[3] A. L. Bernardis, M. Lorente, F. J. Mart́ın-Reyes, M. T. Mart́ınez, A. de la Torre
and J. L. Torrea, Differential transforms in weighted spaces, J. Fourier Anal. Appl.
12 (2006), 83–103.

[4] —, —, —, —, —, Differences of ergodic averages for Cesàro bounded operators,
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