Best possible sufficient conditions for the Fourier transform to satisfy the Lipschitz or Zygmund condition

by
Ferenc Móricz (Szeged)

Abstract

We consider complex-valued functions $f \in L^{1}(\mathbb{R})$, and prove sufficient conditions in terms of f to ensure that the Fourier transform \hat{f} belongs to one of the Lipschitz classes $\operatorname{Lip}(\alpha)$ and $\operatorname{lip}(\alpha)$ for some $0<\alpha \leq 1$, or to one of the Zygmund classes $\operatorname{Zyg}(\alpha)$ and $\operatorname{zyg}(\alpha)$ for some $0<\alpha \leq 2$. These sufficient conditions are best possible in the sense that they are also necessary in the case of real-valued functions f for which either $x f(x) \geq 0$ or $f(x) \geq 0$ almost everywhere.

1. Introduction. We consider complex-valued functions $f: \mathbb{R} \rightarrow \mathbb{C}$ which are integrable in Lebesgue's sense over $\mathbb{R}:=(-\infty, \infty)$, in symbols: $f \in L^{1}(\mathbb{R})$. As is well known, the Fourier transform of f defined by

$$
\begin{equation*}
\hat{f}(t):=\frac{1}{2 \pi} \int_{\mathbb{R}} f(x) e^{-i t x} d x, \quad t \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

is a continuous function and $\hat{f}(t) \rightarrow 0$ as $|t| \rightarrow \infty$. For more information see, e.g., [2, Chapter I].

We recall that \hat{f} is said to satisfy the Lipschitz condition of order $\alpha>0$, in symbols: $\hat{f} \in \operatorname{Lip}(\alpha)$, if

$$
\begin{equation*}
|\hat{f}(t+h)-\hat{f}(t)| \leq C h^{\alpha} \quad \text { for all } t \in \mathbb{R} \text { and } h>0 \tag{1.2}
\end{equation*}
$$

where the constant C does not depend on t or h. Furthermore, \hat{f} is said to belong to the little Lipschitz class $\operatorname{lip}(\alpha)$ for some $\alpha>0$ if

$$
\lim _{h \rightarrow 0} h^{-\alpha}[\hat{f}(t+h)-\hat{f}(t)]=0 \quad \text { uniformly in } t \in \mathbb{R}
$$

Since \hat{f} is bounded on \mathbb{R} and vanishes at $\pm \infty$, it is enough to require the fulfillment of (1.2) for $0<h \leq 1$.

[^0]We recall that the Fourier transform \hat{f} is said to satisfy the Zygmund condition of order $\alpha>0$, in symbols: $\hat{f} \in \operatorname{Zyg}(\alpha)$, if

$$
\begin{equation*}
|\hat{f}(t+h)-2 \hat{f}(t)+\hat{f}(t-h)| \leq C h^{\alpha} \quad \text { for all } t \in \mathbb{R} \text { and } h>0, \tag{1.3}
\end{equation*}
$$

where the constant C does not depend on t or h. Furthermore, \hat{f} is said to belong to the little Zygmund class $\operatorname{zyg}(\alpha)$ for some $\alpha>0$ if

$$
\lim _{h \rightarrow 0} h^{-\alpha}[\hat{f}(t+h)-2 \hat{f}(t)+\hat{f}(t-h)]=0 \quad \text { uniformly in } t \in \mathbb{R} .
$$

Again, it is enough to require the fulfillment of (1.3) for $0<h \leq 1$.
It is well known (see, e.g., [1, Chapter 2] or [3, Chapter 2, §3]) that if $\hat{f} \in \operatorname{lip}(1)$, in particular if $\hat{f} \in \operatorname{Lip}(\alpha)$ for some $\alpha>1$, then $\hat{f} \equiv 0$. Furthermore, if $\hat{f} \in \operatorname{zyg}(2)$, in particular if $\hat{f} \in \operatorname{Zyg}(\alpha)$ for some $\alpha>2$, then $\hat{f} \equiv 0$.
2. Main results. Our main results are formulated in the following four theorems.

Theorem 1.

(i) Suppose $f: \mathbb{R} \rightarrow \mathbb{C}$ is such that $f \in L_{\mathrm{loc}}^{1}(\mathbb{R})$. If for some $0<\alpha \leq 1$,

$$
\begin{equation*}
\int_{|x|<y}|x f(x)| d x=O\left(y^{1-\alpha}\right) \quad \text { for all } y>0, \tag{2.1}
\end{equation*}
$$

then $f \in L^{1}(\mathbb{R})$ and $\hat{f} \in \operatorname{Lip}(\alpha)$.
(ii) Conversely, suppose $f \in L^{1}(\mathbb{R})$ and $x f(x) \geq 0$ for almost every $x \in \mathbb{R}$. If $\hat{f} \in \operatorname{Lip}(\alpha)$ for some $0<\alpha \leq 1$, then condition (2.1) holds.

Theorem 2.

(i) Suppose $f: \mathbb{R} \rightarrow \mathbb{C}$ is such that $f \in L_{\text {loc }}^{1}(\mathbb{R})$. If for some $0<\alpha \leq 2$,

$$
\begin{equation*}
\int_{|x|<y} x^{2}|f(x)| d x=O\left(y^{2-\alpha}\right) \quad \text { for all } y>0 \tag{2.2}
\end{equation*}
$$

then $f \in L^{1}(\mathbb{R})$ and $\hat{f} \in \operatorname{Zyg}(\alpha)$.
(ii) Conversely, suppose $f \in L^{1}(\mathbb{R})$ and $f(x) \geq 0$ for almost every $x \in \mathbb{R}$. If $\hat{f} \in \operatorname{Zyg}(\alpha)$ for some $0<\alpha \leq 2$, then condition (2.2) holds.

Modifying the proofs of Theorems 1 and 2, in Section 4 we obtain the following two theorems.

Theorem 3. In case $0<\alpha<1$, both statements in Theorem 1 remain valid if the right-hand side in (2.1) is replaced by $o\left(y^{1-\alpha}\right)$ as $y \rightarrow \infty$, and $f \in \operatorname{Lip}(\alpha)$ is replaced by $f \in \operatorname{lip}(\alpha)$.

Theorem 4. In case $0<\alpha<2$, both statements in Theorem 2 remain valid if the right-hand side in (2.2) is replaced by o($y^{2-\alpha}$) as $y \rightarrow \infty$, and $f \in \operatorname{Zyg}(\alpha)$ is replaced by $f \in \operatorname{zyg}(\alpha)$.
3. Auxiliary results. In this section, we consider nonnegative-valued, measurable functions g defined on $\mathbb{R}_{+}:=[0, \infty)$. We will prove two lemmas, which are of interest in themselves.

Lemma 1.
(i) If $\delta>\gamma \geq 0$ and

$$
\begin{equation*}
\int_{0}^{y} u^{\delta} g(u) d u=O\left(y^{\gamma}\right) \quad \text { for all } y>0 \tag{3.1}
\end{equation*}
$$

then $g \in L^{1}(y, \infty)$ and

$$
\begin{equation*}
\int_{y}^{\infty} g(u) d u=O\left(y^{\gamma-\delta}\right) \quad \text { for all } y>0 \tag{3.2}
\end{equation*}
$$

(ii) Conversely, if $\delta \geq \gamma>0$ and condition (3.2) holds, then condition (3.1) also holds.

We note that Lemma 1 fails in the endpoint cases not included above. For example, if $\delta=\gamma>0$ in (i), then for $g(u):=u^{-1}$ condition (3.1) is satisfied, while (3.2) is not. If $\delta>\gamma=0$ in (ii), then for $g(u):=u^{-1-\delta}$ condition (3.2) is satisfied, while (3.1) is not.

Proof of Lemma 1. (i) By (3.1), there exists a constant $C=C(g)$ such that for all $y>0$,

$$
y^{\delta} \int_{y}^{2 y} g(u) d u \leq \int_{y}^{2 y} u^{\delta} g(u) d u \leq C(2 y)^{\gamma}
$$

whence it follows that

$$
\begin{equation*}
\int_{y}^{2 y} g(u) d u \leq 2^{\gamma} C y^{\gamma-\delta} \tag{3.3}
\end{equation*}
$$

and since $\gamma<\delta$, we conclude that

$$
\begin{align*}
\int_{y}^{\infty} g(u) d u & \leq 2^{\gamma} C y^{\gamma-\delta} \sum_{m=0}^{\infty} \int_{2^{m} y}^{2^{m+1} y} g(u) d u \tag{3.4}\\
& \leq 2^{\gamma} C y^{\gamma-\delta} \sum_{m=0}^{\infty} 2^{m(\gamma-\delta)}=O\left(y^{\gamma-\delta}\right), \quad y>0 .
\end{align*}
$$

This proves (3.2).
(ii) By (3.2), there exists another constant $C=C(g)$ such that for all $y>0$,

$$
\begin{equation*}
\int_{y / 2}^{y} u^{\delta} g(u) d u \leq y^{\delta} \int_{y / 2}^{y} g(u) d u \leq 2^{\delta-\gamma} C y^{\gamma} \tag{3.5}
\end{equation*}
$$

and since $\gamma>0$, we conclude that

$$
\begin{align*}
\int_{0}^{y} u^{\delta} g(u) d u & =\sum_{m=-\infty}^{0} \int_{2^{m-1} y}^{2^{m} y} u^{\delta} g(u) d u \tag{3.6}\\
& \leq 2^{\delta-\gamma} C y^{\gamma} \sum_{m=-\infty}^{0} 2^{m \gamma}=O\left(y^{\gamma}\right), \quad y>0
\end{align*}
$$

This proves (3.1).
Modifying the proof of Lemma 1, we obtain

Lemma 2.

(i) If $\delta>\gamma>0$ and

$$
\begin{equation*}
\int_{0}^{y} u^{\delta} g(u) d u=o\left(y^{\gamma}\right) \quad \text { as } y \rightarrow \infty \tag{3.7}
\end{equation*}
$$

then $g \in L^{1}(y, \infty)$ for large enough y and

$$
\begin{equation*}
\int_{y}^{\infty} g(u) d u=o\left(y^{\gamma-\delta}\right) \quad \text { as } y \rightarrow \infty \tag{3.8}
\end{equation*}
$$

(ii) Conversely, if $\delta>\gamma>0, u^{\delta} g(u) \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}_{+}\right)$, and condition (3.8) holds, then condition also holds.

We note that the endpoint case $\delta>\gamma=0$ in (i) makes no sense, unless $g(u)=0$ almost everywhere, since the left-hand side in (3.7) is an increasing function of y. In the other endpoint case $\delta=\gamma \geq 0$, both (3.7) and (3.8) are trivially satisfied if $g \in L^{1}(\mathbb{R})$.

Proof of Lemma 2. (i) By (3.7), for every $\varepsilon>0$ there exists $y_{0}=y_{0}(\varepsilon)$ such that for all $y \geq y_{0}$, (3.3) is satisfied with ε in place of C. Analogously to (3.4), it follows that

$$
\int_{y}^{\infty} g(u) d u \leq 2^{\gamma} \varepsilon y^{\gamma-\delta} \sum_{n=0}^{\infty} 2^{m(\gamma-\delta)}, \quad y \geq y_{0}
$$

Since $\delta>\gamma$ and $\varepsilon>0$ is arbitrary, this proves (3.8).
(ii) By (3.8), for every $\varepsilon>0$ there exists another $y_{0}=y_{0}(\varepsilon)$ such that for all $y \geq y_{0}$, (3.5) is satisfied with ε in place of C, that is,

$$
\begin{equation*}
\int_{y / 2}^{y} u^{\delta} g(u) d u \leq 2^{\delta-\gamma} \varepsilon y^{\gamma}, \quad y \geq y_{0} \tag{3.9}
\end{equation*}
$$

Due to the assumption $u^{\delta} g(u) \in L_{\text {loc }}^{1}\left(\mathbb{R}_{+}\right)$, there exists $y_{1}=y_{1}\left(\varepsilon, y_{0}\right)>$ $2 y_{0}$ such that

$$
\begin{equation*}
\int_{0}^{y_{0}} u^{\delta} g(u) d u \leq \varepsilon y_{1}^{\gamma} \tag{3.10}
\end{equation*}
$$

Given any $y \geq y_{1}$, there exists an integer $m_{0}=m_{0}\left(y_{1}\right) \leq-1$ for which

$$
2^{-m_{0}-1} y<y_{0} \leq 2^{m_{0}} y
$$

Now, by (3.9) and (3.10), we conclude (cf. (3.6)) that for all $y \geq y_{1}$ we have

$$
\begin{aligned}
\int_{0}^{y} u^{\delta} g(u) d u & \leq\left\{\int_{0}^{y_{0}}+\sum_{m=-m_{0}}^{0} \int_{2^{m-1} y}^{2^{m} y}\right\} u^{\delta} g(u) d u \\
& \leq \varepsilon y_{1}^{\gamma}+\sum_{m=-m_{0}}^{0} 2^{\delta-\gamma} \varepsilon\left(2^{m} y\right)^{\gamma} \leq \varepsilon y^{\gamma}\left(1+2^{\delta-\gamma} \sum_{m=-m_{0}}^{0} 2^{m \gamma}\right)
\end{aligned}
$$

Since $\gamma>0$ and $\varepsilon>0$ is arbitrary, this proves (3.7).

4. Proofs of theorems

Proof of Theorem 1. (i) For any $t \in \mathbb{R}$ and $h>0$, by (1.1) we have

$$
\begin{align*}
2 \pi|\hat{f}(t+h)-\hat{f}(t)| & =\left|\int_{\mathbb{R}} f(x) e^{-i t x}\left(e^{-i h x}-1\right) d x\right| \tag{4.1}\\
& \leq\left\{\int_{|x|<1 / h}+\int_{|x|>1 / h}\right\}|f(x)|\left|e^{-i h x}-1\right|=: I_{h}+J_{h}
\end{align*}
$$

say. Since

$$
\left|e^{-i h x}-1\right|=\left|2 \sin \frac{h x}{2}\right| \leq \min \{2, h|x|\}
$$

by (2.1) we estimate as follows:

$$
\begin{equation*}
\left|I_{h}\right| \leq h \int_{|x|<1 / h}|x f(x)| d x=h O\left(\left(\frac{1}{h}\right)^{1-\alpha}\right)=O\left(h^{\alpha}\right) \tag{4.2}
\end{equation*}
$$

Applying Lemma 1(i) in the case of (2.1), we find that

$$
\begin{equation*}
\left|J_{h}\right| \leq 2 \int_{|x|>1 / h}|f(x)| d x=O\left(\left(\frac{1}{h}\right)^{-\alpha}\right)=O\left(h^{\alpha}\right) \tag{4.3}
\end{equation*}
$$

Combining (4.1)-(4.3) gives $\hat{f} \in \operatorname{Lip}(\alpha)$.
(ii) Assume $\hat{f} \in \operatorname{Lip}(\alpha)$ for some $0<\alpha \leq 1$. By (1.1), we have

$$
2 \pi|\hat{f}(t)-\hat{f}(0)|=\left|\int_{\mathbb{R}} f(x)\left(e^{-i t x}-1\right) d x\right| \leq C t^{\alpha}, \quad t>0
$$

where the constant C does not depend on t. Taking only the imaginary part of the integral between the absolute value bars, we even have

$$
\begin{equation*}
\left|\int_{\mathbb{R}} f(x) \sin t x d x\right| \leq C t^{\alpha}, \quad t>0 \tag{4.4}
\end{equation*}
$$

We may integrate the integral in (4.4) with respect to t over the interval $(0, h)$, where $h>0$. By Fubini's theorem, we obtain

$$
\begin{equation*}
\left|\int_{\mathbb{R}} f(x) \frac{1-\cos h x}{x} d x\right|=\int_{\mathbb{R}} \frac{f(x)}{x} 2 \sin ^{2} \frac{h x}{2} d x \leq C \frac{h^{\alpha+1}}{\alpha+1} \tag{4.5}
\end{equation*}
$$

where the constant C does not depend on h, and we took into account that $x f(x) \geq 0$. Using the well-known inequality

$$
\begin{equation*}
\sin u \geq \frac{2}{\pi} u \quad \text { for } 0 \leq u \leq \pi / 2 \tag{4.6}
\end{equation*}
$$

it follows from (4.5) that

$$
\frac{2 h^{2}}{\pi^{2}} \int_{|x|<1 / h} x f(x) d x \leq C \frac{h^{\alpha+1}}{\alpha+1}
$$

that is,

$$
\int_{|x|<1 / h} x f(x) d x \leq \frac{C \pi^{2}}{2(\alpha+1)} h^{\alpha-1}=O\left(\left(\frac{1}{h}\right)^{1-\alpha}\right), \quad h>0
$$

This proves (2.1) with $y:=1 / h, h>0$.
Proof of Theorem 3. It runs along the same lines as the proof of Theorem 1, using Lemma 2 instead of Lemma 1. The details are left to the reader.

Proof of Theorem 2. (i) For any $t \in \mathbb{R}$ and $h>0$, by (1.1) we have

$$
\begin{align*}
& 2 \pi|\hat{f}(t+h)-2 \hat{f}(t)+\hat{f}(t-h)| \tag{4.7}\\
& \quad=\left|\int_{\mathbb{R}} f(x) e^{-i t x}\left(e^{-i h x}-2+e^{i h x}\right) d x\right| \\
& \quad \leq\left\{\int_{|x|<1 / h}+\int_{|x|>1 / h}\right\}|f(x)|\left|e^{-i h x}-2+e^{i h x}\right| d x=: I_{h}+J_{h}
\end{align*}
$$

say. Since

$$
\left|e^{-i h x}-2+e^{i h x}\right|=|2(\cos h x-1)|=4 \sin ^{2} \frac{h x}{2} \leq \min \left\{4, h^{2} x^{2}\right\}
$$

by (2.2) we estimate as follows:

$$
\begin{equation*}
\left|I_{h}\right| \leq h^{2} \int_{|x|<1 / h} x^{2}|f(x)| d x=h^{2} O\left(\left(\frac{1}{h}\right)^{2-\alpha}\right)=O\left(h^{\alpha}\right) \tag{4.8}
\end{equation*}
$$

Applying Lemma 1(i) in the case of (2.2), we find that

$$
\begin{equation*}
\left|J_{h}\right| \leq 4 \int_{|x|>1 / h}|f(x)| d x=O\left(\left(\frac{1}{h}\right)^{-\alpha}\right)=O\left(h^{\alpha}\right) \tag{4.9}
\end{equation*}
$$

Combining (4.7)-(4.9) gives $\hat{f} \in \operatorname{Zyg}(\alpha)$.
(ii) Assume $\hat{f} \in \operatorname{Zyg}(\alpha)$ for some $0<\alpha \leq 2$. By (1.1), we have

$$
\begin{align*}
2 \pi|\hat{f}(h)-2 \hat{f}(0)+\hat{f}(-h)| & =\left|\int_{\mathbb{R}} f(x)(2 \cos h x-2) d x\right| \tag{4.10}\\
& =4 \int_{\mathbb{R}} f(x) \sin ^{2} \frac{h x}{2} d x \leq C h^{\alpha}, \quad h>0
\end{align*}
$$

where the constant C does not depend on h, and we took into account that $f(x) \geq 0$. Making use of inequality (4.6), it follows from (4.10) that

$$
\frac{4 h^{2}}{\pi^{2}} \int_{|x|<1 / h} x^{2} f(x) d x \leq C h^{\alpha}
$$

that is,

$$
\int_{|x|<1 / h} x^{2} f(x) d x \leq \frac{C \pi^{2}}{4} h^{\alpha-2}=O\left(\left(\frac{1}{h}\right)^{2-\alpha}\right), \quad h>0
$$

This proves (2.2) with $y:=1 / h, h>0$.
Proof of Theorem 4. It is a repetition of the proof of Theorem 2 with appropriate modifications, using Lemma 2 instead of Lemma 1. The details are left to the reader.

References

[1] R. de Vore and G. G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.
[2] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.
[3] A. Zygmund, Trigonometric Series, Vol. I, Cambridge Univ. Press, 1959.
Ferenc Móricz
Bolyai Institute
University of Szeged
Aradi vértanúk tere 1
H-6720 Szeged, Hungary
E-mail: moricz@math.u-szeged.hu

[^0]: 2010 Mathematics Subject Classification: Primary 42A38; Secondary 26A16.
 Key words and phrases: Fourier transform, best possible sufficient conditions, classical function classes $\operatorname{Lip}(\alpha), \operatorname{lip}(\alpha), \operatorname{Zyg}(\alpha)$ and $\operatorname{zyg}(\alpha)$.

