STUDIA MATHEMATICA 199 (2) (2010)

Best possible sufficient conditions for the Fourier transform to satisfy the Lipschitz or Zygmund condition

by

FERENC MÓRICZ (Szeged)

Abstract. We consider complex-valued functions $f \in L^1(\mathbb{R})$, and prove sufficient conditions in terms of f to ensure that the Fourier transform \hat{f} belongs to one of the Lipschitz classes $\text{Lip}(\alpha)$ and $\text{lip}(\alpha)$ for some $0 < \alpha \leq 1$, or to one of the Zygmund classes $\text{Zyg}(\alpha)$ and $\text{zyg}(\alpha)$ for some $0 < \alpha \leq 2$. These sufficient conditions are best possible in the sense that they are also necessary in the case of real-valued functions f for which either $xf(x) \geq 0$ or $f(x) \geq 0$ almost everywhere.

1. Introduction. We consider complex-valued functions $f : \mathbb{R} \to \mathbb{C}$ which are integrable in Lebesgue's sense over $\mathbb{R} := (-\infty, \infty)$, in symbols: $f \in L^1(\mathbb{R})$. As is well known, the Fourier transform of f defined by

(1.1)
$$\hat{f}(t) := \frac{1}{2\pi} \int_{\mathbb{R}} f(x) e^{-itx} dx, \quad t \in \mathbb{R},$$

is a continuous function and $\hat{f}(t) \to 0$ as $|t| \to \infty$. For more information see, e.g., [2, Chapter I].

We recall that \hat{f} is said to satisfy the *Lipschitz condition of order* $\alpha > 0$, in symbols: $\hat{f} \in \text{Lip}(\alpha)$, if

(1.2)
$$|\hat{f}(t+h) - \hat{f}(t)| \le Ch^{\alpha}$$
 for all $t \in \mathbb{R}$ and $h > 0$,

where the constant C does not depend on t or h. Furthermore, \hat{f} is said to belong to the *little Lipschitz class* lip(α) for some $\alpha > 0$ if

$$\lim_{h \to 0} h^{-\alpha} [\hat{f}(t+h) - \hat{f}(t)] = 0 \quad \text{uniformly in } t \in \mathbb{R}.$$

Since \hat{f} is bounded on \mathbb{R} and vanishes at $\pm \infty$, it is enough to require the fulfillment of (1.2) for $0 < h \leq 1$.

²⁰¹⁰ Mathematics Subject Classification: Primary 42A38; Secondary 26A16.

Key words and phrases: Fourier transform, best possible sufficient conditions, classical function classes $\operatorname{Lip}(\alpha), \operatorname{Iip}(\alpha), \operatorname{Zyg}(\alpha)$ and $\operatorname{Zyg}(\alpha)$.

F. Móricz

We recall that the Fourier transform \hat{f} is said to satisfy the Zygmund condition of order $\alpha > 0$, in symbols: $\hat{f} \in \text{Zyg}(\alpha)$, if

(1.3)
$$|\hat{f}(t+h) - 2\hat{f}(t) + \hat{f}(t-h)| \le Ch^{\alpha} \text{ for all } t \in \mathbb{R} \text{ and } h > 0,$$

where the constant C does not depend on t or h. Furthermore, \hat{f} is said to belong to the *little Zygmund class* $zyg(\alpha)$ for some $\alpha > 0$ if

$$\lim_{h \to 0} h^{-\alpha} [\hat{f}(t+h) - 2\hat{f}(t) + \hat{f}(t-h)] = 0 \quad \text{uniformly in } t \in \mathbb{R}.$$

Again, it is enough to require the fulfillment of (1.3) for $0 < h \leq 1$.

It is well known (see, e.g., [1, Chapter 2] or [3, Chapter 2, §3]) that if $\hat{f} \in \text{lip}(1)$, in particular if $\hat{f} \in \text{Lip}(\alpha)$ for some $\alpha > 1$, then $\hat{f} \equiv 0$. Furthermore, if $\hat{f} \in \text{zyg}(2)$, in particular if $\hat{f} \in \text{Zyg}(\alpha)$ for some $\alpha > 2$, then $\hat{f} \equiv 0$.

2. Main results. Our main results are formulated in the following four theorems.

Theorem 1.

(i) Suppose
$$f : \mathbb{R} \to \mathbb{C}$$
 is such that $f \in L^1_{\text{loc}}(\mathbb{R})$. If for some $0 < \alpha \leq 1$,

(2.1)
$$\int_{|x| < y} |xf(x)| \, dx = O(y^{1-\alpha}) \quad \text{for all } y > 0,$$

then $f \in L^1(\mathbb{R})$ and $\hat{f} \in \operatorname{Lip}(\alpha)$.

(ii) Conversely, suppose $f \in L^{1}(\mathbb{R})$ and $xf(x) \geq 0$ for almost every $x \in \mathbb{R}$. If $\hat{f} \in \text{Lip}(\alpha)$ for some $0 < \alpha \leq 1$, then condition (2.1) holds.

Theorem 2.

(i) Suppose
$$f : \mathbb{R} \to \mathbb{C}$$
 is such that $f \in L^1_{loc}(\mathbb{R})$. If for some $0 < \alpha \leq 2$,

(2.2)
$$\int_{|x| < y} x^2 |f(x)| \, dx = O(y^{2-\alpha}) \quad for \ all \ y > 0,$$

then $f \in L^1(\mathbb{R})$ and $\hat{f} \in \operatorname{Zyg}(\alpha)$.

(ii) Conversely, suppose $f \in L^1(\mathbb{R})$ and $f(x) \ge 0$ for almost every $x \in \mathbb{R}$. If $\hat{f} \in \text{Zyg}(\alpha)$ for some $0 < \alpha \le 2$, then condition (2.2) holds.

Modifying the proofs of Theorems 1 and 2, in Section 4 we obtain the following two theorems.

THEOREM 3. In case $0 < \alpha < 1$, both statements in Theorem 1 remain valid if the right-hand side in (2.1) is replaced by $o(y^{1-\alpha})$ as $y \to \infty$, and $f \in \operatorname{Lip}(\alpha)$ is replaced by $f \in \operatorname{lip}(\alpha)$. THEOREM 4. In case $0 < \alpha < 2$, both statements in Theorem 2 remain valid if the right-hand side in (2.2) is replaced by $o(y^{2-\alpha})$ as $y \to \infty$, and $f \in \text{Zyg}(\alpha)$ is replaced by $f \in \text{zyg}(\alpha)$.

3. Auxiliary results. In this section, we consider nonnegative-valued, measurable functions g defined on $\mathbb{R}_+ := [0, \infty)$. We will prove two lemmas, which are of interest in themselves.

LEMMA 1.
(i) If
$$\delta > \gamma \ge 0$$
 and
(3.1)
$$\int_{0}^{y} u^{\delta}g(u) \, du = O(y^{\gamma}) \quad for \ all \ y > 0,$$
then $g \in L^{1}(y, \infty)$ and

(3.2)
$$\int_{y}^{\infty} g(u) \, du = O(y^{\gamma - \delta}) \quad \text{for all } y > 0.$$

(ii) Conversely, if $\delta \geq \gamma > 0$ and condition (3.2) holds, then condition (3.1) also holds.

We note that Lemma 1 fails in the endpoint cases not included above. For example, if $\delta = \gamma > 0$ in (i), then for $g(u) := u^{-1}$ condition (3.1) is satisfied, while (3.2) is not. If $\delta > \gamma = 0$ in (ii), then for $g(u) := u^{-1-\delta}$ condition (3.2) is satisfied, while (3.1) is not.

Proof of Lemma 1. (i) By (3.1), there exists a constant C = C(g) such that for all y > 0,

$$y^{\delta} \int_{y}^{2y} g(u) \, du \leq \int_{y}^{2y} u^{\delta} g(u) \, du \leq C(2y)^{\gamma},$$

whence it follows that

(3.3)
$$\int_{y}^{2y} g(u) \, du \le 2^{\gamma} C y^{\gamma - \delta},$$

and since $\gamma < \delta$, we conclude that

(3.4)
$$\int_{y}^{\infty} g(u) \, du \leq 2^{\gamma} C y^{\gamma-\delta} \sum_{m=0}^{\infty} \int_{2^{m} y}^{2^{m+1} y} g(u) \, du$$
$$\leq 2^{\gamma} C y^{\gamma-\delta} \sum_{m=0}^{\infty} 2^{m(\gamma-\delta)} = O(y^{\gamma-\delta}), \quad y > 0$$

This proves (3.2).

(ii) By (3.2), there exists another constant C = C(g) such that for all y > 0,

(3.5)
$$\int_{y/2}^{y} u^{\delta} g(u) \, du \le y^{\delta} \int_{y/2}^{y} g(u) \, du \le 2^{\delta - \gamma} C y^{\gamma},$$

and since $\gamma > 0$, we conclude that

(3.6)
$$\int_{0}^{y} u^{\delta} g(u) \, du = \sum_{m=-\infty}^{0} \int_{2^{m-1}y}^{2^{m}y} u^{\delta} g(u) \, du$$
$$\leq 2^{\delta - \gamma} C y^{\gamma} \sum_{m=-\infty}^{0} 2^{m\gamma} = O(y^{\gamma}), \quad y > 0.$$

This proves (3.1).

Modifying the proof of Lemma 1, we obtain

Lemma 2.

(i) If
$$\delta > \gamma > 0$$
 and
(3.7)
$$\int_{0}^{y} u^{\delta}g(u) \, du = o(y^{\gamma}) \quad as \ y \to \infty,$$

then $g \in L^1(y, \infty)$ for large enough y and

(3.8)
$$\int_{y}^{\infty} g(u) \, du = o(y^{\gamma - \delta}) \quad as \ y \to \infty.$$

(ii) Conversely, if $\delta > \gamma > 0$, $u^{\delta}g(u) \in L^{1}_{loc}(\mathbb{R}_{+})$, and condition (3.8) holds, then condition also holds.

We note that the endpoint case $\delta > \gamma = 0$ in (i) makes no sense, unless g(u) = 0 almost everywhere, since the left-hand side in (3.7) is an increasing function of y. In the other endpoint case $\delta = \gamma \ge 0$, both (3.7) and (3.8) are trivially satisfied if $g \in L^1(\mathbb{R})$.

Proof of Lemma 2. (i) By (3.7), for every $\varepsilon > 0$ there exists $y_0 = y_0(\varepsilon)$ such that for all $y \ge y_0$, (3.3) is satisfied with ε in place of C. Analogously to (3.4), it follows that

$$\int_{y}^{\infty} g(u) \, du \le 2^{\gamma} \varepsilon y^{\gamma - \delta} \sum_{n=0}^{\infty} 2^{m(\gamma - \delta)}, \quad y \ge y_0.$$

Since $\delta > \gamma$ and $\varepsilon > 0$ is arbitrary, this proves (3.8).

202

(ii) By (3.8), for every $\varepsilon > 0$ there exists another $y_0 = y_0(\varepsilon)$ such that for all $y \ge y_0$, (3.5) is satisfied with ε in place of C, that is,

(3.9)
$$\int_{y/2}^{y} u^{\delta} g(u) \, du \le 2^{\delta - \gamma} \varepsilon y^{\gamma}, \quad y \ge y_0.$$

Due to the assumption $u^{\delta}g(u) \in L^{1}_{loc}(\mathbb{R}_{+})$, there exists $y_{1} = y_{1}(\varepsilon, y_{0}) > 2y_{0}$ such that

(3.10)
$$\int_{0}^{y_0} u^{\delta} g(u) \, du \le \varepsilon y_1^{\gamma}.$$

Given any $y \ge y_1$, there exists an integer $m_0 = m_0(y_1) \le -1$ for which $2^{-m_0-1}y < y_0 \le 2^{m_0}y$.

Now, by (3.9) and (3.10), we conclude (cf. (3.6)) that for all $y \ge y_1$ we have

$$\begin{split} \int_{0}^{y} u^{\delta}g(u) \, du &\leq \Big\{ \int_{0}^{y_0} + \sum_{m=-m_0}^{0} \int_{2^{m-1}y}^{2^m y} \Big\} u^{\delta}g(u) \, du \\ &\leq \varepsilon y_1^{\gamma} + \sum_{m=-m_0}^{0} 2^{\delta-\gamma} \varepsilon (2^m y)^{\gamma} \leq \varepsilon y^{\gamma} \Big(1 + 2^{\delta-\gamma} \sum_{m=-m_0}^{0} 2^{m\gamma} \Big). \end{split}$$

Since $\gamma > 0$ and $\varepsilon > 0$ is arbitrary, this proves (3.7).

4. Proofs of theorems

Proof of Theorem 1. (i) For any $t \in \mathbb{R}$ and h > 0, by (1.1) we have (4.1) $2\pi |\hat{f}(t+h) - \hat{f}(t)| = \left| \int_{\mathbb{R}} f(x) e^{-itx} (e^{-ihx} - 1) dx \right|$ $\leq \left\{ \int_{|x|<1/h} + \int_{|x|>1/h} \right\} |f(x)| |e^{-ihx} - 1| =: I_h + J_h,$

say. Since

$$|e^{-ihx} - 1| = \left|2\sin\frac{hx}{2}\right| \le \min\{2, h|x|\},$$

by (2.1) we estimate as follows:

(4.2)
$$|I_h| \le h \int_{|x|<1/h} |xf(x)| \, dx = hO\left(\left(\frac{1}{h}\right)^{1-\alpha}\right) = O(h^{\alpha}).$$

Applying Lemma 1(i) in the case of (2.1), we find that

(4.3)
$$|J_h| \le 2 \int_{|x|>1/h} |f(x)| \, dx = O\left(\left(\frac{1}{h}\right)^{-\alpha}\right) = O(h^{\alpha}).$$

Combining (4.1)–(4.3) gives $\hat{f} \in \text{Lip}(\alpha)$.

F. Móricz

(ii) Assume
$$\hat{f} \in \operatorname{Lip}(\alpha)$$
 for some $0 < \alpha \leq 1$. By (1.1), we have

$$2\pi |\hat{f}(t) - \hat{f}(0)| = \left| \int_{\mathbb{R}} f(x)(e^{-itx} - 1) \, dx \right| \leq Ct^{\alpha}, \quad t > 0,$$

where the constant C does not depend on t. Taking only the imaginary part of the integral between the absolute value bars, we even have

(4.4)
$$\left| \int_{\mathbb{R}} f(x) \sin tx \, dx \right| \le Ct^{\alpha}, \quad t > 0.$$

We may integrate the integral in (4.4) with respect to t over the interval (0, h), where h > 0. By Fubini's theorem, we obtain

(4.5)
$$\left| \int_{\mathbb{R}} f(x) \frac{1 - \cos hx}{x} \, dx \right| = \int_{\mathbb{R}} \frac{f(x)}{x} \, 2\sin^2 \frac{hx}{2} \, dx \le C \frac{h^{\alpha+1}}{\alpha+1}$$

where the constant C does not depend on h, and we took into account that $xf(x) \ge 0$. Using the well-known inequality

(4.6)
$$\sin u \ge \frac{2}{\pi}u \quad \text{for } 0 \le u \le \pi/2,$$

it follows from (4.5) that

$$\frac{2h^2}{\pi^2} \int_{|x|<1/h} xf(x) \, dx \le C \frac{h^{\alpha+1}}{\alpha+1},$$

that is,

$$\int_{|x|<1/h} xf(x) \, dx \le \frac{C\pi^2}{2(\alpha+1)} h^{\alpha-1} = O\left(\left(\frac{1}{h}\right)^{1-\alpha}\right), \quad h > 0.$$

This proves (2.1) with y := 1/h, h > 0.

Proof of Theorem 3. It runs along the same lines as the proof of Theorem 1, using Lemma 2 instead of Lemma 1. The details are left to the reader. \blacksquare

Proof of Theorem 2. (i) For any $t \in \mathbb{R}$ and h > 0, by (1.1) we have

$$(4.7) \quad 2\pi |\hat{f}(t+h) - 2\hat{f}(t) + \hat{f}(t-h)| \\ = \left| \int_{\mathbb{R}} f(x) e^{-itx} (e^{-ihx} - 2 + e^{ihx}) dx \right| \\ \le \left\{ \int_{|x|<1/h} + \int_{|x|>1/h} \right\} |f(x)| |e^{-ihx} - 2 + e^{ihx} |dx =: I_h + J_h,$$

say. Since

$$|e^{-ihx} - 2 + e^{ihx}| = |2(\cos hx - 1)| = 4\sin^2 \frac{hx}{2} \le \min\{4, h^2x^2\},$$

by (2.2) we estimate as follows:

204

Lipschitz or Zygmund condition for the Fourier transform

(4.8)
$$|I_h| \le h^2 \int_{|x|<1/h} x^2 |f(x)| \, dx = h^2 O\left(\left(\frac{1}{h}\right)^{2-\alpha}\right) = O(h^{\alpha}).$$

Applying Lemma 1(i) in the case of (2.2), we find that

(4.9)
$$|J_h| \le 4 \int_{|x|>1/h} |f(x)| \, dx = O\left(\left(\frac{1}{h}\right)^{-\alpha}\right) = O(h^{\alpha}).$$

Combining (4.7)–(4.9) gives $\hat{f} \in \text{Zyg}(\alpha)$.

(ii) Assume $\hat{f} \in \text{Zyg}(\alpha)$ for some $0 < \alpha \leq 2$. By (1.1), we have

$$(4.10) \quad 2\pi |\hat{f}(h) - 2\hat{f}(0) + \hat{f}(-h)| = \left| \int_{\mathbb{R}} f(x)(2\cos hx - 2) \, dx \right| \\ = 4 \int_{\mathbb{R}} f(x) \sin^2 \frac{hx}{2} \, dx \le Ch^{\alpha}, \quad h > 0,$$

where the constant C does not depend on h, and we took into account that $f(x) \ge 0$. Making use of inequality (4.6), it follows from (4.10) that

$$\frac{4h^2}{\pi^2} \int_{|x|<1/h} x^2 f(x) dx \le Ch^{\alpha},$$

that is,

$$\int_{|x|<1/h} x^2 f(x) \, dx \le \frac{C\pi^2}{4} h^{\alpha-2} = O\left(\left(\frac{1}{h}\right)^{2-\alpha}\right), \quad h > 0.$$

This proves (2.2) with y := 1/h, h > 0.

Proof of Theorem 4. It is a repetition of the proof of Theorem 2 with appropriate modifications, using Lemma 2 instead of Lemma 1. The details are left to the reader. \blacksquare

References

- [1] R. de Vore and G. G. Lorentz, *Constructive Approximation*, Springer, Berlin, 1993.
- [2] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.
- [3] A. Zygmund, Trigonometric Series, Vol. I, Cambridge Univ. Press, 1959.

Ferenc Móricz Bolyai Institute University of Szeged Aradi vértanúk tere 1 H-6720 Szeged, Hungary E-mail: moricz@math.u-szeged.hu

(6868)

205