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The group of automorphisms of L∞
is algebraically reflexive

by

Félix Cabello Sánchez (Badajoz)

Abstract. We study the reflexivity of the automorphism (and the isometry) group
of the Banach algebras L∞(µ) for various measures µ. We prove that if µ is a non-
atomic σ-finite measure, then the automorphism group (or the isometry group) of L∞(µ)
is [algebraically] reflexive if and only if L∞(µ) is ∗-isomorphic to L∞[0, 1]. For purely
atomic measures, we show that the group of automorphisms (or isometries) of `∞(Γ ) is
reflexive if and only if Γ has non-measurable cardinal. So, for most “practical” purposes,
the automorphism group of `∞(Γ ) is reflexive.

Introduction. Let X be a Banach space and L(X) the Banach algebra
of all (linear, continuous) operators on X. Suppose S is any subset of L(X).
An operator T is said to be locally in S if for each x ∈ X there is L ∈ S
(probably depending on x) such that T (x) = L(x). If each operator which
is locally in S belongs to S, we say that S is (algebraically) reflexive. This
notion of reflexivity has been fruitfully used in the analysis of operator alge-
bras. Although most of the early works on reflexivity were concerned with
derivations [10, 14, 15], in recent years the study of local automorphisms (of
Banach algebras) and local surjective isometries (of Banach spaces) spurred
a considerable interest in operator theory [3–7, 18, 19, 21–23, 26].

In spite of these efforts, the problem of reflexivity of the automorphism
group (and the isometry group) of the Banach algebra L∞ remained open.

As usual, given a measure space (Ω,Σ, µ), we write L∞(µ) for the Ba-
nach algebra of all essentially bounded measurable functions f : Ω → K
equipped with the essential supremum norm, “pointwise” operations, and
the traditional convention about identifying functions equal almost every-
where. When µ is Lebesgue measure on the Borel subsets of [0, 1] we simply
write L∞.

The main result of the paper is that both the automorphism group and
the isometry group of L∞ are (algebraically) reflexive.
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This is somewhat surprising since every surjective isometry of L∞ is the
adjoint of an isometry of L1 and the isometry group of L1 fails to be reflexive
(in a very strong way; see [6]). Moreover, as a commutative C∗-algebra,
L∞ can be regarded as the space of all continuous functions on its spectrum
and no point in the spectrum of L∞ is Gδ. The existence of enough Gδ-points
often plays an important rôle in obtaining positive results on reflexivity of
the automorphism (and isometry) groups for spaces of continuous functions;
see [3, 6, 21, 22]. We emphasize that, by former results of Batty and Molnár,
the group of automorphisms of L∞ is not topologically reflexive [3, The-
orem 5].

Actually, we shall prove that if µ is a non-atomic σ-finite measure, then
the automorphism group (or the isometry group) of L∞(µ) is reflexive if
and only if µ is a separable measure—this is equivalent to the separability
of the Banach space L1(µ), which is the natural predual of L∞(µ). And all
this happens if and only if L∞(µ) is ∗-isomorphic to L∞.

As for purely atomic measures, we show that the group of automorphisms
(or isometries) of `∞(Γ ) is reflexive if and only if Γ has non-measurable car-
dinal. So, for most “practical” purposes, the automorphism group of `∞(Γ )
is reflexive.

1. Homomorphisms of L∞(µ)-algebras. Let (Ω,Σ, µ) be a measure
space. Two measurable sets A and B will be called equivalent (modulo µ)
if µ(A4 B) = 0. Identifying equivalent sets, we obtain a Boolean algebra
denoted by Σ/µ in what follows. Of course, the Boolean structure of Σ/µ
comes from that of Σ by the rules

[A] ∪ [B] = [A ∪B], [A] ∩ [B] = [A ∩B], [A]c = [Ac],

where [A] denotes the class of A in Σ/µ and Ac is the complement of A in Ω.
Countable operations in Σ/µ can be defined in the obvious way. It is clear
that Σ/µ is isomorphic to the Boolean algebra of idempotents of L∞(µ)
via characteristic functions. Note that if A and B are equivalent sets, then
1A and 1B are the same element in L∞(µ), and so, the notation 1[A] makes
perfect (and obvious) sense.

Consider now measure spaces (Ωi, Σi, µi) for i = 1, 2 and let T : L∞(µ1)
→ L∞(µ2) be a homomorphism (that is, a linear and unital ring homomor-
phism). Since ring homomorphisms preserve idempotents there is a unique
mapping Φ : Σ1/µ1 → Σ2/µ2 such that

T (1A) = 1Φ[A] (A ∈ Σ1).

It is clear that Φ is a Boolean homomorphism (it preserves finite unions and
intersections, as well as complements). Moreover, if Φ : Σ1/µ1 → Σ2/µ2 is
a Boolean homomorphism, one can define a homomorphism T : L∞(µ1) →
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L∞(µ2) taking

T
( n∑

i=1

λi1Ai
)

=
n∑

i=1

λi1Φ[Ai]

for simple functions and extending it by continuity. Note that ‖T‖ ≤ 1.
All this shows that there exists a precise correspondence between homo-

morphisms of L∞(µ)-spaces and Boolean homomorphisms of the underlying
algebras.

Let (An) be a sequence in Σ1 and Φ : Σ1/µ1 → Σ2/µ2 a Boolean ho-
momorphism. It is clear that

⋃∞
n=1 Φ[An] ⊂ Φ[

⋃∞
n=1An]. But, in general,

that containment is proper: if χ : `∞ → K is a non-trivial character—here,
`∞ corresponds to counting measure on N and K is the algebra of functions
on a single point of mass one, so that Σ2 = {∅, Ω2}—then the associated
Boolean homomorphism Φ : 2N → {∅, Ω2} sends all finite subsets of N
into ∅, while Φ(N) = Ω2.

The following innocent observation is the key of the paper.

Lemma 1. Let T : L∞(µ1) → L∞(µ2) be a linear map. Suppose T is
a local isomorphism in the sense that for every f ∈ L∞(µ1) there is an
isomorphism U : L∞(µ1)→ L∞(µ2) such that Tf = Uf . Then

(a) T is an injective homomorphism.
(b) The Boolean homomorphism Φ associated to T preserves countable

operations.

Proof. In the complex case, part (a) follows from [3, Proposition 2]
(L∞(µ) is a von Neumann algebra provided µ is not too pathological) or
[6, Remark 5 after Theorem 5] (L∞(µ) is always semisimple) but we give a
simpler proof for this particular case which does not depend on the ground
field.

Let T be a local isomorphism. It is clear that T is a norm preserving map
sending 1Ω1 into 1Ω2 . Moreover, for each A ∈ Σ1 there is A′ ∈ Σ2 such that
T (1A) = 1A′ . Obviously, A′ is unique, modulo µ2-null sets. Let A and B be
disjoint subsets of Σ1. Then, from

1(A⊕B)′ = T (1A⊕B) = T (1A) + T (1B) = 1A′ + 1B′ ,

it follows that (A⊕B)′ = A′ ⊕B′, up to a null set.
Suppose f and g are simple functions in L∞(µ1). Then there is a partition

A1, . . . , An of Ω1 such that

f =
n∑

i=1

αi1Ai and g =
n∑

i=1

βi1Ai .

Since fg =
∑n

i=1 αiβi1Ai and taking into account that passing from [A]
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to [A′ ] preserves disjointness one has

T (fg) =
n∑

i=1

αiβiT (1Ai) =
n∑

i=1

αiβi1A′i

=
( n∑

i=1

αi1A′i

)
·
( n∑

i=1

βi1A′i

)
= (Tf) · (Tg),

which proves (a).
We now prove (b). A moment of reflection shows that it suffices to see

that

[Ω2] =
∞⋃

n=1

Φ[An]

whenever (An) is a countable partition of Ω1. Suppose U : L∞(µ1) →
L∞(µ2) is a linear ring isomorphism. It is clear that if f is a function in
L∞(µ1) vanishing on no set of positive measure, then the same occurs to Uf .
Hence T must send non-vanishing functions to non-vanishing functions.

Let (An) be a partition of Ω1. Take a sequence λn converging to zero,
with λn > 0 for all n. Clearly, the series

∑∞
n=1 λn1An is summable in L∞(µ1).

Hence,

T
( ∞∑

n=1

λn1An
)

=
∞∑

n=1

λn1Φ[An]

is non-zero µ2-almost everywhere, which implies that Φ[An] form a partition
of Ω2. This proves part (b).

We close the section with the following observation. If µ is any mea-
sure, every (linear, continuous) functional on L∞(µ) can be regarded as a
finitely additive (finite) measure ν : Σ/µ→ K. See [9, pp. 354–357]. Clearly,
if T : L∞(µ1) → L∞(µ2) is a continuous homomorphism whose associ-
ated homomorphism Φ : Σ1/µ1 → Σ2/µ2 preserves countable operations,
then the adjoint map T ∗ preserves countable additivity of measures. If µ
is σ-finite, then L∞(µ) equals L1(µ)∗ in the obvious way and, moreover,
every countably additive (finite) measure ν on Σ/µ belongs to L1(µ) (the
Radon–Nikodým theorem) in the sense that there is g ∈ L1(µ) such that

ν([A]) =
�

A

g dµ

for all A ∈ Σ. We have the following.

Lemma 2. Let µ1 and µ2 be σ-finite measures. For a continuous homo-
morphism T : L∞(µ1)→ L∞(µ2) the following statements are equivalent :

(a) The Boolean homomorphism associated to T preserves countable op-
erations.
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(b) The adjoint map T ∗ : L∞(µ2)∗ → L∞(µ1)∗ preserves countable ad-
ditivity.

(c) T is weak∗ continuous.

Proof. The implications (a)⇒(b)⇒(c) have already been proved. We
prove (c)⇒(a). Let (An) be a disjoint sequence in Σ1. Put A =

⊕
nAn.

Then

1A = weak∗- lim
n→∞

n∑

i=1

1Ai .

Since T is weak∗ continuous we have

1Φ[A] = T (1A) = weak∗- lim
n→∞

n∑

i=1

T (1Ai) = weak∗- lim
n→∞

n∑

i=1

1Φ[Ai],

and so

Φ[A] =
∞⊕

n=1

Φ[An],

which completes the proof.

2. Local automorphisms of L∞. In this section we prove that the
automorphism group of L∞(µ) is reflexive if the measure algebra Σ/µ is not
too “big”. To be more precise, let us consider the following distance in Σ/µ:

d([A], [B]) = µ(A4B).

The measure µ is said to be separable if (Σ/µ, d) is a separable metric space
(it has a countable dense subset). It is well known (and obvious) that µ is
separable if and only if L1(µ) is a separable Banach space. In that case L1(µ)
is (isometrically) lattice isomorphic either to one of the spaces L1 ⊕1 `1(Γ )
or `1(Γ ), where Γ is at most countable (and possibly empty) and therefore
L∞(µ) is (isometrically) ∗-isomorphic either to L∞ × `∞(Γ ) or to `∞(Γ ),
with Γ countable.

A complete classification of the algebras L∞(µ) (for arbitrary measures)
seems to be out of reach. Nevertheless, by a famous result of Maharam, if µ
is decomposable [9, Definition 19.25], then L∞(µ) can be represented as

L∞(µ) = `∞(Γ )×
(∏

i∈I
L∞(λmi)

)
∞

(1)

where Γ and I are (possibly empty) sets, mi are infinite cardinals and λ de-
notes Lebesgue measure on the Borel sets of the unit interval. The subscript
indicates that the product on the right-hand side of (1) carries the supre-
mum norm. Observe that, for instance, L∞(λℵ0) = L∞. Of course, σ-finite
measures are decomposable.
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The following result is a rewording of Sikorski’s generalization [27] of von
Neumann’s [24]. Although von Neumann’s result requires “hard” measure
theory, a very simple “functional-analytic” proof for L∞ is now at hand. We
present it, not only for the sake of completeness, but also to display some
arguments which we shall use later.

Theorem 1 (von Neumann–Sikorski). Let T : L∞ → L∞(µ) be a
weak∗ continuous homomorphism, where µ is σ-finite. Then there is a mea-
surable function ϕ : Ω → [0, 1] such that T (f) = f ◦ ϕ for all f ∈ L∞.
Moreover ϕ is unique in L∞(µ).

Proof. We prove the theorem for real scalars. The complex case follows
easily, by taking into account that T sends real functions to real functions.
Let ι be the identity on [0, 1] and put ϕ = T (ι). We show that

T (f) = f ◦ ϕ (f ∈ L∞).(2)

This is obvious if f is a polynomial function. Since polynomials are weak∗

dense in L∞ and both T and the composition operator f 7→ f ◦ϕ are weak∗

continuous it is clear that (2) holds for all f ∈ L∞.

Proposition 1. The group of automorphisms of L∞ is algebraically
reflexive.

Proof. Let T be a local automorphism of L∞ and let U be an automor-
phism such that T (ι) = U(ι), where ι is the identity on [0, 1]. We claim that
T = U . According to Lemmas 1 and 2, both T and U are weak∗ continuous.
The proof of Theorem 1 shows that

T (f) = f ◦ ϕ = U(f) (f ∈ L∞),

where ϕ = T (ι) = U(ι), and completes the proof.

Corollary 1. The isometry group of L∞ is algebraically reflexive.

Proof. Suppose T is a local surjective isometry of L∞ and let u = T (1).
It is clear that u is unimodular: each surjective isometry of L∞ is an auto-
morphism multiplied by some unimodular Borel function. Reasoning as in
[6, Theorem 5] and taking into account that the Gleason–Kahane–Żelazko
theorem applies to L∞ even in the real case, one sees that the map given by
L(f) = u−1T (f) is a (unital) endomorphism of L∞. Moreover, L is weak∗

continuous—it leaves invariant the set of non-vanishing functions: see the
proof of Lemma 1. It is also clear that L is locally a surjective isometry.
Let I be a surjective isometry of L∞ such that L(ι) = I(ι). A moment’s
reflection shows that I is in fact an automorphism and also that L = I.
Hence T is onto.
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3. Bigger measures. In this section we will prove that the automor-
phism group (hence the isometry group) of L∞(µ) is (algebraically) non-
reflexive if µ is an atomless non-separable σ-finite measure. In view of the
Maharam decomposition (1), it suffices to consider the case µ = λm, where
m is an uncountable cardinal. It will be convenient to regard m also as an
index set.

So, let [0, 1]m be the product of m copies of the unit interval. This is
a compact space whose algebra of Borel subsets will be denoted by Bm.
Finally, λm will stand for the (product) Lebesgue measure on Bm.

Our immediate aim is to show that functions in L∞(λm) depend only
on countably many coordinates of [0, 1]m. This is obvious for characteristic
functions of open subsets of [0, 1]m. Actually such functions depend only on
finitely many coordinates. Now, suppose B ∈ Bm. Since λm is regular, one
has

λm(B) = inf λm(A),

where A runs over all open sets containing B. It follows that there is a
decreasing sequence (An) of open sets containing B such that λm(An) con-
verges to λm(B). Hence, [B] = [

⋂
nAn], and since 1B is (almost everywhere)

the pointwise limit of the sequence (1An) it is clear that 1B has a repre-
sentative depending only on countably many coordinates; the same is true
for simple members of L∞(λm). Finally, each f ∈ L∞(λm) can be written
as a pointwise limit of simple Bm-measurable functions and, therefore, it
depends on countably many coordinates only.

Proposition 2. Let m be an uncountable cardinal. Then both the auto-
morphism group and the isometry group of L∞(λm) fail to be algebraically
reflexive.

Proof. Let σ : m→ m be any injective mapping whose image is a proper
subset of m. Define T : L∞(λm)→ L∞(λm) by

(Tf)((ti)i∈m) = f((tσ(i))i∈m).

This is clearly an injective unital endomorphism. For j ∈ m, let ιj denote
the projection of [0, 1]m onto the jth factor, that is,

ιj((ti)i∈m) = tj .

It is clear that ιj lies in the range of T if and only if j lies in that of σ,
and so, T cannot be onto. However, T is a local automorphism. To see
this, fix f ∈ L∞(λm) and let m(f) be a countable subset of m containing
all coordinates on which f depends. Let τ be a bijection of m such that
τ(i) = σ(i) provided σ(i) ∈ m(f). It is clear that the map given by

(Ug)((ti)i∈m) = g((tτ(i))i∈m)
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is an automorphism of L∞(λm). Moreover one has

(Uf)((ti)i∈m) = f((tτ(i))i∈m) = f((tσ(i))i∈m) = (Tf)((ti)i∈m).

Hence T is a local automorphism (and also a local surjective isometry). This
completes the proof.

We can summarize the results of Sections 2 and 3 as follows:

Theorem 2. Let µ be a σ-finite measure. The following statements are
equivalent :

(a) µ is separable.
(b) L∞(µ) is ∗-isomorphic to either `∞(Γ ) or `∞(Γ )× L∞, where Γ is

a countable set.
(c) The isometry group of L∞(µ) is reflexive.
(d) The automorphism group of L∞(µ) is reflexive.

Proof. The implication (a)⇒(b) follows from the Maharam decomposi-
tion (1). We show that the isometry group of `∞(Γ ) × L∞ is reflexive. It
is clear that every surjective isometry of `∞(Γ )× L∞ leaves invariant both
`∞(Γ ) and L∞. Hence every local surjective isometry can be decomposed as

T (g, f) = (R(g), S(f)) (g ∈ `∞(Γ ), f ∈ L∞),

where R and S are local surjective isometries of `∞(Γ ) and L∞, respectively.
Since the isometry groups of `∞(Γ ) and L∞ are reflexive ([3] and Corollary 1,
respectively) the implication obtains.

That (c) implies (d) is trivial. We close the circle by showing that (d)
implies (a). Suppose the isometry group of L∞(µ) is reflexive. Then the
Maharam decomposition of L∞(µ) contains no factor L∞(λm) with m un-
countable. Otherwise the local automorphism constructed in Proposition 2
would extend to a non-surjective local automorphism of L∞(µ). But µ is
σ-finite, and so, it is necessarily separable.

3.1. Applications to rearrangement invariant spaces. The reflexivity of
the isometry group for function lattices other than Lp was left open in [6].
We now answer the question in the affirmative, not only for Orlicz spaces
(as asked in [6]), but for almost all rearrangement invariant Banach function
spaces on [0, 1]. We refer the reader to [16, Section 2] for the notion of a
rearrangement invariant space.

Corollary 2. Let X be a (real or complex ) rearrangement invariant
Banach function space on [0, 1] which is not linearly isomorphic to Lp for
1 ≤ p ≤ ∞. Then the isometry group of X is algebraically reflexive.

Proof. Putting together the results in [31] and [12], it is clear that the
hypothesis on X implies that every surjective isometry T of X has the form

(Tf)(t) = σ(t)f(ϕ(t)),
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where σ is some unimodular Borel function and ϕ is a measure preserving
automorphism of [0, 1].

This obviously implies that if I is a local surjective isometry of X, then
I maps L∞ into itself, and I : L∞ → L∞ is a local surjective isometry for
the supremum norm. We know from Corollary 1 that I(L∞) = L∞. Since
L∞ is dense in X we conclude that the isometry I : X → X must be onto.

In the following result, L0 stands for the space of all (classes of) mea-
surable functions on [0, 1] equipped with the F -norm

‖f‖0 =
1�

0

|f(t)|
1 + |f(t)| dt.

Using [13, Theorem 4.1] instead of [31, 12] and taking into account that L∞
is still dense in L0 one gets the following (see [6, Remark 4]):

Corollary 3. The isometry group of L0 is algebraically reflexive.

Of course, these results can be generalized for many function spaces in
which a quasi-norm, metric or something like it is defined by an integral

I[f ] =
1�

0

ϕ(|f(t)|) dt,

where ϕ is a suitable function which is not a power. We refrain from entering
into further details here. We remark, however, that in view of the construc-
tion given in the proof of Proposition 2 one has the following “continuous”
analogue of [6, Example 1]:

Corollary 4. Let X be a (real or complex ) metric linear space of
(classes of ) measurable functions on [0, 1]m, where m is uncountable. If ev-
ery measure preserving automorphism of [0, 1]m induces an isometry of X,
then the isometry group of X is algebraically non-reflexive.

4. Purely atomic measures. So far, we have completely settled the
problem of reflexivity of the automorphism group of L∞(µ) for σ-finite mea-
sures. The simplest non-σ-finite measures are purely atomic measures on
uncountable sets, and so, we deal in this section with the automorphism
group of the algebra `∞(Γ ). It will turn out that the reflexivity of these
groups is closely related to “arithmetical” properties of the cardinal of Γ .

Recall that each (linear, continuous) functional on `∞(Γ ) can be rep-
resented as a finitely additive, finite measure on 2Γ . To avoid any possi-
ble confusion, if µ is such a measure, we write 〈µ, f〉 for the value of (the
functional represented by) µ at f ∈ `∞(Γ ), while the measure of A ⊂ Γ
will be denoted by µ(A). Needless to say, we have 〈µ, 1A〉 = µ(A) for all
A ⊂ Γ .
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It is well known (and obvious) that non-zero characters on `∞(Γ ) corre-
spond to finitely additive measures that take values in {0, 1}, with µ(Γ ) = 1.
These are called zero-one measures. Note that if µ is a zero-one measure and
f belongs to `∞(Γ ), then 〈µ, f〉 = a if and only if for each ε > 0 one has

µ({γ ∈ Γ : |f(γ)− a| ≤ ε}) = 1.

A measure vanishing on all singletons is said to be free. Clearly, a zero-one
measure is either free or fixed, that is, has the form

δγ(A) =
{

1 if γ ∈ A,

0 if γ 6∈ A,

for some γ ∈ Γ . These measures are evaluations at points in Γ .
Following [8, Section 12], let us say that Γ has measurable cardinal if

there exists a zero-one countably additive measure on 2Γ which is free. Oth-
erwise we call the cardinal of Γ non-measurable.

No measurable cardinal is known. For instance,

ℵ0,ℵ1, . . . ,ℵω, . . . ,ℵω1 , . . . ,ℵωω , . . . and c, 2c, 22c

, . . .

are all non-measurable (c is the continuum). And so are cardinals that can
be obtained from given non-measurable cardinals by the standard processes
of cardinal arithmetic. As explained in [8], the existence of measurable cardi-
nals cannot be proved in the standard settings of set theory. It is conceivable
that no such cardinal exists at all, but as far as we know, this is an unsolved
problem.

Theorem 3. The group of automorphisms of `∞(Γ ) is algebraically re-
flexive if and only if Γ has non-measurable cardinal.

Proof. First, we show that if Γ has measurable cardinal, then there is a
non-surjective local automorphism of `∞(Γ ). The construction is a refine-
ment of the argument given in [3] to show that the group of automorphisms
of `∞ is not topologically reflexive.

Let µ be a free, countably additive, zero-one measure on Γ . Note that
the intersection of countably many subsets of measure 1 (with respect to µ)
is still of measure 1. Thus, if 〈µ, f〉 = a, then the set

f−1(a) = {γ ∈ Γ : f(γ) = a} =
∞⋂

n=1

{γ ∈ Γ : |f(γ)− a| ≤ 1/n}

has measure 1, and therefore, it is infinite, since µ is free.
Fix α ∈ Γ , and take a bijection σ : Γ → Γ\{α}. Define T : `∞(Γ ) →

`∞(Γ ) by

Tf(γ) =
{
f(σ−1(γ)) if γ 6= α,

〈µ, f〉 if γ = α.
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We claim that T is a local automorphism. Fix f ∈ `∞(Γ ) and let

Γ0 = {γ ∈ Γ : f(γ) = 〈µ, f〉}.
It is clear that there is a bijection τ of Γ such that τ(γ) = σ(γ) for all γ 6∈ Γ0
and τ(Γ0) = σ(Γ0) ∪ {α}. Define U : `∞(Γ )→ `∞(Γ ) by

Ug(γ) = g(τ−1(γ)).

Obviously, U is an automorphism. Let us prove that Uf = Tf , that is,

Uf(γ) = Tf(γ) (γ ∈ Γ ).(3)

This is obvious if γ = α. In that case, one has

Uf(α) = f(τ−1(α)) = 〈µ, f〉 = Tf(α)

because τ−1(α) ∈ Γ0. If γ ∈ σ(Γ0), then both σ−1(γ) and τ−1(γ) are in Γ0
and so

Uf(γ) = f(τ−1(γ)) = 〈µ, f〉 = f(σ−1(γ)) = Tf(α).

Finally, for γ ∈ Γ\σ(Γ0 ∪{α}) we have σ−1(γ) = τ−1(γ) and (3) is obvious.
Hence T is a local automorphism.

However, the range of T does not contain 1α. For if we assume that
Tf = 1α, then since T must agree with some automorphism at f we would
have f = 1β , for some β ∈ Γ . But T (1β)(α) = 〈µ, 1β〉 = µ({β}) = 0 for all
β ∈ Γ , a contradiction. This proves the “only if” part of the theorem.

As for the converse, let T be a local automorphism of `∞(Γ ). By the
comments made after Lemma 1, the adjoint map T ∗ preserves countable
additivity. On the other hand, T is a unital endomorphism, and so T ∗ sends
zero-one measures (they are characters) into zero-one measures.

Now, the non-measurability of Γ goes at work: a zero-one measure on Γ
is countably additive if and only if it is fixed. Thus, we can define a mapping
σ : Γ → Γ taking T ∗(δγ) = δσ(γ). One has

Tf(γ) = 〈Tf, δγ〉 = 〈f, T ∗δγ〉 = 〈f, δσ(γ)〉
for all f ∈ `∞(Γ ) and all γ ∈ Γ . Hence,

T (f) = f ◦ σ.
The injectivity of T implies that σ is onto. It remains to see that σ is
injective. Take γ ∈ Γ . Then

T (1γ) = 1γ ◦ σ = 1σ−1(γ)

and since T is a local automorphism we see that σ−1(γ) is a singleton. This
completes the proof.

Arguing as in the proof of Corollary 1 we obtain the following amendment
of [6, Example 3(a)].
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Corollary 5. The isometry group of `∞(Γ ) is algebraically reflexive
if and only if Γ has non-measurable cardinal.

5. Concluding remarks. In view of Theorems 2 and 3 one might con-
jecture that the “mixed” algebra `∞(Γ,L∞) has reflexive automorphism
group if and only if Γ is non-measurable. Unfortunately, I have been un-
able to prove any part of that conjecture. Endomorphisms of `∞(Γ ) do
not extend to (endomorphisms of) `∞(Γ,L∞) because the latter algebra is
much bigger than C(βΓ,L∞) = `∞(Γ )⊗ L∞. So, the “obvious” pattern to
prove necessity cannot be followed. (Actually, the automorphism group of
`∞(N, L(`2)) is topologically reflexive [20], while that of `∞(N) is not [3].)
As for sufficiency, the main difficulty is that (unlike `∞(Γ )) no character on
the mixed algebra is weak∗ continuous—that is, in `1(Γ,L1). Some informa-
tion about countably additive members of `∞(Γ,L∞)∗ would be welcome.
In essence, this is a problem on (finite, non-negative) countably additive
measures on 2Γ . Call the cardinal of Γ decent if every (finite, non-negative)
countably additive measure on 2Γ vanishing on all singletons is null—this
is an a priori stronger form of non-measurability. Indecent cardinals are
termed real-valued measurable by some authors, but the terminology is not
completely standard.

It can be proved that if Γ has decent cardinal, then the isometry group
and the automorphism group of `∞(Γ,L∞) are reflexive. The key point is
that the hypothesis on Γ implies that each countably additive member of
`∞(Γ,L∞)∗ belongs to `1(Γ,L1). We leave the details to the reader because
not much is known about decent cardinals. As far as we know, questions
around the existence of indecent cardinals stem from the problem of whether
Lebesgue measure can be extended to a countably additive measure defined
on every subset of the unit interval—“le problème de la mesure”. Venera-
ble oldies are Ulam’s [30] and Banach–Kuratowski’s [2], where it is proved
that, under the Continuum Hypothesis (CH), the continuum is decent (and,
therefore, that such an extension cannot exist).

The existence of indecent cardinals is unprovable in ZFC (the usual set-
ting of set theory with the axiom of choice). Also, from a constructive view-
point, all cardinals are decent: Scott proved in [25] that indecent cardinals
do not exist assuming the usual axioms (Σ) of set theory and Gödel’s con-
structibility axiom V = L. In any case, the basic question is whether or not
the continuum is decent: Talamo’s work [29] shows that if indecent cardi-
nals do exist, then the continuum is one. So, under CH, all cardinals are
decent. For related results in the intermediate world of Martin’s Axiom, see
[1, 17, 28].

Added in proof. Theorem 3 was obtained earlier (for complex spaces) by K. Jarosz
and T. S. S. R. K. Rao, Local isometries of function spaces, Math. Z. 243 (2003), 449–469.
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