STUDIA MATHEMATICA 159 (1) (2003)

Composition of (E, 2)-summing operators

by

ANDREAS DEFANT (Oldenburg) and MIECZYSŁAW MASTYŁO (Poznań)

To Professor Aleksander Pełczyński on his 70th birthday

Abstract. The Banach operator ideal of (q, 2)-summing operators plays a fundamental role within the theory of *s*-number and eigenvalue distribution of Riesz operators in Banach spaces. A key result in this context is a composition formula for such operators due to H. König, J. R. Retherford and N. Tomczak-Jaegermann. Based on abstract interpolation theory, we prove a variant of this result for (E, 2)-summing operators, E a symmetric Banach sequence space.

1. Introduction and preliminaries. The theory of (q, 2)-summing operators today is considered to be at the heart of modern Banach space theory with many deep applications to various parts of analysis. For a Banach sequence space E containing ℓ_2 , the Banach operator ideal of (E, 2)summing operators consists of all (bounded linear) operators T between Banach spaces for which $\{||T(x_n)||\} \in E$ for all weakly 2-summable sequences $\{x_n\}$. Mainly basing on interpolation theory, several key results within the theory of (q, 2)-summing operators and its applications have recently been extended to the more general case of (E, 2)-summing operators (see [4]–[6]).

In this article we present a variant for (E, 2)-summing operators of a striking composition formula due to H. König, J. R. Retherford and N. Tomczak-Jaegermann [9], which in its original formulation says that the composition $T_N \circ \ldots \circ T_1$ of $(q_k, 2)$ -summing operators T_k between Banach spaces is 2-summing provided that $1/q_1 + \ldots + 1/q_N > 1/2$. By completely different methods a special case of this multiplication formula was obtained earlier by B. Maurey and A. Pełczyński [14].

A. Pietsch [17] recovered the composition formula by taking advantage of the intimate relationship between (p, 2)-summing norms and approximation numbers of operators in Banach spaces (for elaborations of this proof see [18, 2.7.7] and [8, 2.a.12]). Our approach to a variant for (E, 2)-summing

²⁰⁰⁰ Mathematics Subject Classification: Primary 47B10, 47L20; Secondary 46B70, 47B06.

Research of M. Mastyło was supported by KBN Grant 2 PO3A 042 18.

operators, where E is a symmetric Banach sequence which is an interpolation space with respect to the couple (ℓ_2, ℓ_∞) , combines Pietsch's ideas with abstract interpolation theory.

Before we sketch the content of our paper in more detail we fix some basic preliminaries about sequence spaces, *s*-numbers, and interpolation.

We shall use standard notation and notions from Banach space theory, as presented, e.g. in [7], [11] and [12]. In particular, for all information needed on *p*-convexity and *p*-concavity of Banach lattices/sequence spaces we refer to [11] and [12] (for the notion of 2-convexity see also end of Section 2). If a quasi-normed space $(E, \|\cdot\|_E)$ is a vector subspace of the space $\omega := \mathbb{R}^{\mathbb{N}}$ of all real sequences, and its quasi-norm satisfies (i) if $x \in E$, $y \in \omega$, $|y| \leq |x|$, then $y \in E$ and $\|y\|_E \leq \|x\|_E$, then E is said to be a quasi-normed sequence space. If E also satisfies (ii) if $x = \{x_n\} \in E$, then $x^* \in E$ and $\|x\|_E =$ $\|x^*\|_E$, where $x^* = \{x_n^*\}$ is the non-increasing rearrangement of x, then E is called a symmetric quasi-normed sequence space (resp., a symmetric (quasi-) Banach sequence space, whenever E is a (quasi-)Banach space). Note that if E is a separable Banach sequence space, then the sequences e_n form an unconditional basis in E; here and throughout the paper, $\{e_n\}$ denotes the standard unit vector basis in c_0 .

The Köthe dual E' of a Banach sequence space E is as usual defined by

$$E' := \Big\{ x = \{x_n\} \in \omega; \sum_{n=1}^{\infty} |x_n y_n| < \infty \text{ for all } y = \{y_n\} \in E \Big\},$$

which equipped with the norm $||x|| := \sup\{\sum_{n=1}^{\infty} |x_n y_n|; ||y||_E \le 1\}$ forms a Banach sequence space (symmetric provided so is E). The fundamental function λ_E of a quasi-Banach sequence space E is given by

$$\lambda_E(n) := \left\| \sum_{k=1}^n e_k \right\|_E, \quad n \in \mathbb{N}$$

For two Banach sequence spaces E and F, the space M(E, F) of multipliers from E into F consists of all scalar sequences $x = \{x_n\}$ such that the associated multiplication operator $\{y_n\} \mapsto \{x_n y_n\}$ is defined and bounded from E into F. The space M(E, F) is a Banach sequence space (symmetric provided so are E and F) equipped with the norm

$$||x|| := \sup\{||xy||_F; ||y||_E \le 1\}.$$

We note that if E is a Banach sequence space, then $M(E, \ell_1) = E'$ isometrically.

For all information on Banach operator ideals and s-numbers we refer to [7], [8], [16], [18] and [20]. As usual $\mathcal{L}(X, Y)$ denotes the Banach space of all (bounded linear) operators from X into Y endowed with the operator norm.

Recall that for an operator $T \in \mathcal{L}(X, Y)$ the *n*th approximation number is

$$a_n(T) := \inf\{ \|T - R\|; R \in \mathcal{L}(X, Y), \operatorname{rank} R < n \}$$

and the *n*th Weyl number is

$$x_n(T) := \sup\{a_n(TS); S \in \mathcal{L}(\ell_2, X) \text{ with } ||S|| \le 1\}.$$

Clearly, these sequences are non-increasing with $x_n(T) \leq a_n(T)$ and $x_1(T) = a_1(T) = ||T||$, and they are equal whenever T is defined on a Hilbert space. If E is a quasi-normed sequence space contained in ℓ_{∞} , and if s stands for the approximation numbers or Weyl numbers, or more generally if s is an s-number function (for the definition see, e.g., [18, 2.2.1]), then $\mathcal{L}_E^s(X, Y)$ denotes the set of all operators $T \in \mathcal{L}(X, Y)$ such that $\{s_n(T)\} \in E$. It can be easily seen that the functional

$$s_E(T) := \|\{s_n(T)\}\|_E \quad \text{for } T \in \mathcal{L}^s_E(X, Y)$$

defines a quasi-norm under which $\mathcal{L}_{E}^{s}(X, Y)$ is a quasi-Banach space whenever E is a maximal symmetric quasi-Banach sequence space (i.e., the unit ball $B_{E} := \{x; ||x||_{E} \leq 1\}$ of E is a closed subset of ω equipped with the topology of pointwise convergence).

Finally, for details and basic results on interpolation theory we refer to [1] or [2]. We recall that a mapping \mathcal{F} from the category of all couples of Banach spaces into the category of all Banach spaces is said to be an *interpolation* functor if for every Banach couple $\overline{X} := (X_0, X_1)$, the Banach space $\mathcal{F}(\overline{X})$ is intermediate with respect to \overline{X} (which means $X_0 \cap X_1 \hookrightarrow \mathcal{F}(\overline{X}) \hookrightarrow X_0 + X_1$), and moreover $T : \mathcal{F}(\overline{X}) \to \mathcal{F}(\overline{Y})$ is bounded for all operators $T : \overline{X} \to \overline{Y}$ between couples (meaning that $T : X_0 + X_1 \to Y_0 + Y_1$ is linear with bounded restrictions from X_j into Y_j). By the closed graph theorem, for any couples \overline{X} and \overline{Y} ,

$$||T||_{\mathcal{F}(X_0, X_1) \to \mathcal{F}(Y_0, Y_1)} \le C ||T||_{\overline{X} \to \overline{Y}} := C \max\{||T||_{X_0 \to Y_0}, ||T||_{X_1 \to Y_1}\}.$$

If C may be chosen independently of \overline{X} and \overline{Y} , we say that \mathcal{F} is a Cexact interpolation functor; and \mathcal{F} is said to be exact whenever C = 1. An intermediate space X of the couple \overline{X} is said to be an *interpolation space* with respect to this couple whenever X can be realized as $\mathcal{F}(\overline{X})$ for some interpolation functor \mathcal{F} . The definition of C-exact and exact interpolation spaces is obvious.

As already mentioned we follow Pietsch's route to prove our extension of the composition formula of König, Retherford and Tomczak-Jaegermann, which can be divided into three parts of independent interest, and each of our three sections is devoted to one of these parts. In Section 2 we estimate the (E, 2)-summing norm of finite rank operators between Banach spaces under the assumption that E is a symmetric Banach sequence which is an interpolation space with respect to the couple (ℓ_2, ℓ_{∞}) . It is shown that there exists a constant C > 0 such that $\pi_{E,2}(\operatorname{id}_X) \leq C\lambda_E(n)$ for every Banach space X with dim X = n. A key result in the theory of s-numbers states that for $2 \leq p < \infty$ each (p, 2)-summing operator T has its Weyl numbers in the Lorentz space $\ell_{p,1}$, and conversely each operator with Weyl numbers in the Marcinkiewicz space $\ell_{p,\infty}$ is (p, 2)-summing. In Section 3 the estimate from Section 2 is used to prove an analogue of these inclusions for (E, 2)-summing operators. Finally, in Section 4 we combine this relationship with a straightforward multiplication formula for s-number ideals in order to obtain the desired composition theorem for (E, 2)-summing operators in terms of appropriate indices of the sequence space E.

2. (E, 2)-summing norms of finite rank operators. The following definition is a natural extension of the notion of absolutely (q, p)-summing operators: Let E be a Banach sequence space which contains ℓ_p for some $1 \le p \le \infty$. Then an operator $T: X \to Y$ between Banach spaces X and Y is called (E, p)-summing if there exists a constant C > 0 such that for any weakly p-summable sequence $\{x_n\}$ (i.e., the scalar sequences $\{x^*(x_n)\}$ are in ℓ_p for every $x^* \in X^*$)

$$\|\{\|Tx_n\|_Y\}\|_E \le C \sup_{\|x^*\|_{X^*} \le 1} \Big(\sum_{n=1}^{\infty} |x^*(x_n)|^p\Big)^{1/p}.$$

We write $\pi_{E,p}(T)$ for the smallest constant C with the above property. The Banach space of all (E, p)-summing operators between Banach spaces Xand Y is denoted by $\Pi_{E,p}(X, Y)$. If $||e_n||_E = 1$ for all n, then $(\Pi_{E,p}, \pi_{E,p})$ is a Banach operator ideal, in particular for $E = \ell_q$ $(q \ge p)$ we obtain the well known ideal $(\Pi_{q,p}, \pi_{q,p})$ of all (q, p)-summing operators. For an Orlicz sequence space ℓ_{φ} , we write $\Pi_{\varphi,p}$ and $\pi_{\varphi,p}$ instead of $\Pi_{\ell_{\varphi},p}$ and $\pi_{\ell_{\varphi},p}$, respectively (for the theory of Orlicz functions and Orlicz spaces we refer to [11] and [12]). Recall that if φ is an Orlicz function (i.e., $\varphi : [0, \infty) \to [0, \infty)$ is a continuous and convex function with $\varphi^{-1}(\{0\}) = \{0\}$), then the Orlicz sequence space ℓ_{φ} consists of all real sequences $x = \{x_n\} \in \omega$ such that $\sum_{n=1}^{\infty} \varphi(|x_n|/\varepsilon) < \infty$ for some $\varepsilon > 0$. It is well known that ℓ_{φ} equipped with the norm

$$||x|| := \inf \left\{ \varepsilon > 0; \sum_{n=1}^{\infty} \varphi(|x_n|/\varepsilon) \le 1 \right\}$$

is a symmetric Banach sequence space.

We note an obvious fact, useful in what follows, that an operator $T : X \to Y$ is (E, 2)-summing if and only if

$$\pi_{E,2}(T) = \sup\{\pi_{E,2}(TS); S \in \mathcal{L}(\ell_2, X), \|S\| \le 1\}.$$

We refer to [4] and [5] for non-trivial examples of (E, p)-summing opera-

tors. We present new simple examples involving symmetric Banach function spaces on finite non-atomic measure spaces (for the theory of these spaces see, e.g., [10] and [12]). We recall that the *fundamental function* ψ_X of a symmetric Banach function space X on a non-atomic measure space $(\Omega, \mu) := (\Omega, \Sigma, \mu)$ is defined by $\psi_X(t) := \|\chi_A\|_X$ for any $0 \le t < \mu(\Omega)$ with $t = \mu(A), A \in \Sigma$.

PROPOSITION 2.1. Let X be a symmetric Banach function space defined on a non-atomic finite measure space (Ω, μ) which does not coincide with $L_{\infty} := L_{\infty}(\mu)$. Then the inclusion map id : $L_{\infty} \hookrightarrow X$ is $(\ell_{\varphi}, 1)$ -summing, where φ is any Orlicz function such that $\varphi^{-1} \asymp \psi_X$ on $(0, \mu(\Omega))$. In particular, id : $L_{\infty} \hookrightarrow X$ is $(M(\ell_q, \ell_{\varphi}), p)$ -summing with 1/p + 1/q = 1.

Proof. It is well known that for any symmetric Banach function space X we have $\Lambda(X) \hookrightarrow X$ (with norm ≤ 1), where $\Lambda(X)$ is the Lorentz symmetric function space equipped with the norm

$$||x||_{\Lambda(X)} := \int_{0}^{\mu(\Omega)} x^*(s) \, d\psi_X(s).$$

We put $\psi := \psi_X$. It is well known (see [10, formula, (5.4), p. 111]) that

$$||x||_{A(X)} = \int_{0}^{\infty} \psi(\mu_x(s)) \, ds,$$

where $\mu_x(s) := \mu(\{\omega \in \Omega; |x(\omega)| > s\})$ for s > 0. Let $x_1, \ldots, x_n \in L_\infty$. Then (see, e.g., [7, p. 41])

$$\sup_{\|x^*\|_{L_{\infty}^*} \le 1} \sum_{k=1}^n |x^*(x_k)| = \left\| \sum_{k=1}^n |x_k| \right\|_{L_{\infty}}.$$

Assume that $\left\|\sum_{k=1}^{n} |x_k|\right\|_{L_{\infty}} \leq 1$. Hence $\mu_{x_k}(s) = 0$ for any s > 1. Combining the above remarks with Jensen's inequality and the fact that $\varphi(\psi(t)) \approx t$ on $(0, \mu(\Omega))$ shows that there exists a constant C > 0 such that

$$\begin{split} \sum_{k=1}^{n} \varphi(\|x_k\|_X) &\leq \sum_{k=1}^{n} \varphi(\|x_k\|_{A(X)}) = \sum_{k=1}^{n} \varphi\left(\int_{0}^{1} \psi(\mu_{x_k}(s)) \, ds\right) \\ &\leq \sum_{k=1}^{n} \int_{0}^{1} \varphi(\psi(\mu_{x_k}(s))) \, ds \leq C \sum_{k=1}^{n} \int_{0}^{1} \mu_{x_k}(s) \, ds \\ &= C \int_{\Omega} \sum_{k=1}^{n} |x_k| \, d\mu \leq C \mu(\Omega) \Big\| \sum_{k=1}^{n} |x_k| \Big\|_{L_{\infty}}. \end{split}$$

This yields as desired id $\in \Pi_{\varphi,1}(L_{\infty}, X)$ with $\pi_{\varphi,1}(\mathrm{id}) \leq \max\{1, C\mu(\Omega)\}$. To conclude the proof it is enough to apply [4, Lemma 3.4].

The following interpolative estimate for the (E, 2)-summing norm of finite rank operators is crucial in what follows.

THEOREM 2.2. Assume that E is a symmetric Banach sequence space, and moreover E is a C-exact interpolation space with respect to the couple (E_1, E_2) , where both E_j are symmetric Banach sequence spaces which contain ℓ_2 . Then for every operator T between Banach spaces with rank $T \leq n$,

$$\pi_{E,2}(T) \le C\lambda_E(n) \|T\|,$$

provided $\pi_{E_j,2}(T) \le \lambda_{E_j}(n) ||T||$ for j = 1, 2.

The proof of this result needs two lemmas, both based on interpolation. Following [15] the *characteristic function* $\varphi_{\mathcal{F}} : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ of an exact interpolation functor \mathcal{F} is defined by

$$\varphi_{\mathcal{F}}(s,t)\mathbb{R} := \mathcal{F}(s\mathbb{R},t\mathbb{R}), \quad s,t > 0$$

where $\alpha \mathbb{R}$ with $\alpha > 0$ is \mathbb{R} equipped with the norm $||x||_{\alpha \mathbb{R}} := \alpha ||x||$. Note that $\varphi_{\mathcal{F}}$ is homogeneous of degree one, that is, $\varphi_{\mathcal{F}}(\alpha s, \alpha t) = \alpha \varphi_{\mathcal{F}}(s, t)$ for any $\alpha > 0$, and $\varphi_{\mathcal{F}}(\cdot, \cdot)$ is non-decreasing in each variable. Further for any Banach couple $\overline{X} = (X_0, X_1)$ one has

(1)
$$||x||_{\mathcal{F}(\overline{X})} \le \varphi_{\mathcal{F}}(||x||_{X_0}, ||x||_{X_1})$$

for every $0 \neq x \in X_0 \cap X_1$. For a fixed Banach space A which is intermediate with respect to the Banach couple \overline{A} , define the exact interpolation functor $H_A^{\overline{A}}: \overline{X} \mapsto (H_A^{\overline{A}}(\overline{X}), \|\cdot\|)$, where the space $H_A^{\overline{A}}(\overline{X})$ consists of all $x \in X_0 + X_1$ such that

$$||x|| := \sup\{||Tx||_A; ||T||_{\overline{X} \to \overline{A}} \le 1\} < \infty.$$

We need the well known fact (see, e.g., [1, 2.5.1]) that for any *C*-exact interpolation space *A* with respect to $\overline{A} = (A_0, A_1)$ the following continuous inclusions hold (with norms *C* and 1, respectively):

(2)
$$A \stackrel{C}{\hookrightarrow} H^{\overline{A}}_{A}(A_{0}, A_{1}) \stackrel{1}{\hookrightarrow} A.$$

LEMMA 2.3. Let E be a Banach space which is intermediate with respect to the Banach couple $\overline{E} = (E_0, E_1)$.

(i) If $\varphi_{\mathcal{F}}$ is the characteristic function of the maximal functor $\mathcal{F} = H_E^{\overline{E}}$, then for any s, t > 0,

$$\varphi_{\mathcal{F}}(s,t) = \psi_E(s,t) := \sup\{\|x\|_E; \, x \in E_0 \cap E_1, \, \|x\|_{E_0} \le s, \, \|x\|_{E_1} \le t\}.$$

(ii) If \overline{E} is a couple of symmetric Banach sequence spaces and E is a symmetric Banach sequence space which is a C-exact interpolation space with respect \overline{E} , then for each n,

$$\lambda_E(n) \le \psi_E(\lambda_{E_0}(n), \lambda_{E_1}(n)) \le C\lambda_E(n).$$

Proof. (i) Fix s, t > 0 and put $\overline{X} := (s\mathbb{R}, t\mathbb{R})$. Note first that for $T : \overline{X} \to \overline{E}$ and $x \in E_0 \cap E_1$ with T1 = x, we get $||T||_{\overline{X} \to \overline{E}} = \max\{||x||_{E_0}/s, ||x||_{E_1}/t\}$. Hence as desired

$$\begin{aligned} \varphi_{\mathcal{F}}(s,t) &= \|1\|_{\mathcal{F}(\overline{X})} = \sup\{\|T1\|_{E}; \|T\|_{\overline{X} \to \overline{E}} \le 1\} \\ &= \sup\{\|x\|_{E}; x \in E_{0} \cap E_{1}, \|x\|_{E_{0}} \le s, \|x\|_{E_{1}} \le t\}. \end{aligned}$$

The proof of (ii) is a minor modification of a similar result for the case of symmetric spaces on \mathbb{R}_+ presented in [13]. Put $\mathcal{F} := H_E^E$. Combining (i) with (1) and (2), we infer for every *n* that

$$\lambda_E(n) \le \psi_E(\lambda_{E_0}(n), \lambda_{E_1}(n)).$$

To prove the reverse inequality fix $n \in \mathbb{N}$ and $y \in E_0 \cap E_1$, and define the rank one operator $T: \overline{E} \to \overline{E}$ by

$$T := x^* \otimes y,$$

where $x^*(x) := \sum_{k=1}^n \xi_k$ for $x = \{\xi_k\} \in E_0 + E_1$. Clearly, $||T||_{E \to E} = \lambda_{E'}(n)||y||_E$ and $||T||_{E_j \to E_j} = \lambda_{E'_j}(n)||y||_{E_j}$, j = 0, 1. This yields, by the interpolation property,

$$\lambda_{E'}(n) \|y\|_E \le C \max\{\lambda_{E'_0}(n) \|y\|_{E_0}, \lambda_{E'_1}(n) \|y\|_{E_1}\},\$$

which, since $\lambda_E(n)\lambda_{E'}(n) = n$ (see [11, 3.a.6]), gives $||y||_E \leq C\lambda_E(n)/n$ whenever $||y||_{E_j} \leq \lambda_{E_j}(n)/n$, j = 0, 1. Hence

$$\psi_E(\lambda_{E_0}(n)/n, \lambda_{E_1}(n)/n) \le C\lambda_E(n)/n,$$

which completes the proof since ψ_E is positively homogeneous.

In the classical ℓ_p -case the second lemma needed is due to König [8]; for its extension to (E, 2)-summing operators see [4, 6.2]. Henceforth, \hookrightarrow denotes a continuous inclusion.

LEMMA 2.4. Let \mathcal{F} be an exact interpolation functor and let (E_0, E_1) be a couple of Banach sequence spaces which both contain ℓ_2 . Then for any Banach spaces X, Y,

$$\mathcal{F}(\Pi_{E_0,2}(X,Y),\Pi_{E_1,2}(X,Y)) \hookrightarrow \Pi_{\mathcal{F}(E_0,E_1),2}(X,Y).$$

Proof of Theorem 2.2. Let $T \in \mathcal{L}(X, Y)$ be of rank n. Put $\mathcal{F} := H_E^{(E_1, E_2)}$. Since E is a C-exact interpolation space with respect to (E_1, E_2) , by (2) we have $E \xrightarrow{C} \mathcal{F}(E_1, E_2) \xrightarrow{1} E$. Hence by applying Lemma 2.3, estimate (1) and Lemma 2.2, we obtain

$$\pi_{E,2}(T) \le \pi_{\mathcal{F}(E_1,E_2),2}(T) \le \|T\|_{\mathcal{F}(\Pi_{E_1,2}(X,Y),\Pi_{E_2,2}(X,Y))} \\ \le \varphi_{\mathcal{F}}(\lambda_{E_1}(n),\lambda_{E_2}(n))\|T\| = \psi_E(\lambda_{E_1}(n),\lambda_{E_2}(n))\|T\| \\ \le C\lambda_E(n)\|T\|. \quad \blacksquare$$

The following estimate will be of special interest.

COROLLARY 2.5. Let E be a symmetric Banach sequence space which is an interpolation space with respect to (ℓ_2, ℓ_{∞}) . Then there is a constant C depending on E such that

(i) For any operator T with rank $T \leq n$,

 $\pi_{E,2}(T) \le C\lambda_E(n) \|T\|.$

(ii) For the identity map id_X on an n-dimensional Banach space X,

$$C^{-1}\lambda_E(n) \le \pi_{E,2}(\mathrm{id}_X) \le C\lambda_E(n).$$

Proof. (i) Take T of rank n. Then it is well known that $\pi_{\ell_2,2}(\mathrm{id}_X) = \pi_2(\mathrm{id}_X) \leq n^{1/2} ||\mathrm{id}_X|| = \lambda_{\ell_2}(n) ||\mathrm{id}_X||$ (see, e.g., [8, 2.a.2 1.11]) and trivially $\pi_{\ell_{\infty},2}(\mathrm{id}_X) = ||\mathrm{id}_X|| = \lambda_{\ell_{\infty}}(n) ||\mathrm{id}_X||$. Hence the desired result is an immediate consequence of the preceding theorem and the fact that there exists a constant C > 0 such that E is a C-exact interpolation space with respect to (ℓ_2, ℓ_{∞}) .

(ii) The upper estimate in the second inequality follows by (i). For the lower bound we may assume that n > 1. Take $k \in \mathbb{N}$ so that $2k \leq n \leq 2k+1$. Then by the Dvoretzky–Rogers Lemma (see [7, Lemma 1.3]) there exist k vectors $x_1, \ldots, x_k \in X$ in the unit ball of X, each of norm $||x_j||_X \geq 1/2$, such that

$$\sup_{\|x^*\|_{X^*} \le 1} \left(\sum_{j=1}^k |x^*(x_j)|^2\right)^{1/2} \le 1.$$

Hence

$$\frac{1}{2}\lambda_E(k) \le \left\|\sum_{j=1}^k \|\mathrm{id}_X(x_j)\|_X e_j\right\|_E \le \pi_{E,2}(\mathrm{id}_X).$$

Since $k \mapsto \lambda_E(k)/k$ is a non-increasing function, $\lambda_E(n)/6 \le \pi_{E,2}(\mathrm{id}_X)$.

Implicitly and in a quite different way this result has been proved in [4, 6.4]—however, in [4] it was stated for the smaller class of all E's which are 2-convex although an analysis of the proof shows that in fact the formulation given here holds true. Recall that a Banach sequence space E is 2-convex (or equivalently, the dual of E has cotype 2, see [12, 1.f.16]) if there is a constant C > 0 such that for each choice of finitely many $x_1, \ldots, x_n \in E$,

$$\left\| \left(\sum_{k=1}^{n} |x_k|^2 \right)^{1/2} \right\| \le C \left(\sum_{k=1}^{n} \|x_k\|^2 \right)^{1/2}$$

It was shown in [4, Lemma 4.3] that each 2-convex maximal and symmetric Banach sequence space E is an exact interpolation space with respect to the couple (ℓ_2, ℓ_{∞}) . We note that there is a quite large class of symmetric sequence spaces which are exact interpolation spaces with respect to (ℓ_2, ℓ_{∞}) , but fail to be 2-convex. For example the real interpolation spaces $(\ell_2, \ell_\infty)_{\theta,q} = \ell_{p,q}$ with $1/p = (1 - \theta)/2$, $0 < \theta < 1$, $1 \le q < \infty$ contain order isomorphic copies of ℓ_q (see, e.g., [11, Prop. 4.e.3]). Thus these spaces are not 2-convex for any $1 \le q < 2$.

3. (E, 2)-summing operators and Weyl numbers. Let $w = \{w_n\}$ be a weight sequence (i.e., $w_n > 0$ for all n). For 0 the Lorentz space <math>d(w, p) is given by

$$d(w,p) := \left\{ x = \{x_n\} \in \omega; \, \|x\| := \left(\sum_{n=1}^{\infty} (x_n^*)^p w_n\right)^{1/p} < \infty \right\}$$

If $0 < p, q < \infty$ and $w = \{n^{1/p-1/q}\}$, then as usual d(w, p) is denoted by $\ell_{p,q}$. It is well known that if w is a non-increasing sequence, then d(w, p) is a maximal symmetric quasi-Banach sequence space (Banach whenever $1 \leq p < \infty$). If E is a symmetric Banach sequence space with the fundamental function λ_E , then the Lorentz space d(w, 1) with $w = \{\lambda_E(n)/n\}$ is denoted by $\lambda(E)$. For a positive non-decreasing function $\psi : \mathbb{N} \to \mathbb{R}_+$ satisfying $\psi(2n) \leq C\psi(n)$ for some C > 0 and all $n \in \mathbb{N}, m_{\psi}$ stands for the Marcinkiewicz sequence space of all real sequences x for which $\{\psi(n)x_n^*\} \in \ell_\infty$; equipped with $\|x\| := \sup_{n\geq 1} \psi(n)x_n^*$, it forms a maximal symmetric quasi-Banach sequence space. In the case when $\psi(n) = n^{1/p}, 0 , we write <math>\ell_{p,\infty}$ for m_{ψ} . If E is a symmetric Banach sequence space with the fundamental function λ_E , then we write m(E) for the Marcinkiewicz space m_{ψ} defined by $\psi = \lambda_E$.

As pointed out in the introduction we now prove an extension of one of the key results of the theory of asymptotic s-number/eigenvalue distribution of power compact operators in Banach spaces, namely the inclusions $\mathcal{L}_{p,1}^x \hookrightarrow \Pi_{p,2} \hookrightarrow \mathcal{L}_{p,\infty}^x$, $p \geq 2$ (see, e.g., [18, 2.7.4] and [8, 2.a.11]).

THEOREM 3.1. Let E be a symmetric Banach sequence such that $\ell_2 \hookrightarrow E$.

(i) If H is a Hilbert space, then $\Pi_{E,2}(H,Y) \hookrightarrow \mathcal{L}^a_E(H,Y)$ for every Banach space Y. In particular, $\Pi_{E,2} \hookrightarrow \mathcal{L}^x_{m(E)}$.

(ii) If E is an interpolation space with respect to the couple (ℓ_2, ℓ_{∞}) , then

$$\mathcal{L}^x_{\lambda(E)} \hookrightarrow \Pi_{E,2}.$$

Proof. Generalizing an inequality of König (see, e.g., [8, 2.a.3]) it was stated in [4, 3.6] (and proved in [6, Proposition 1]) that (i) holds.

(ii) Assume without loss of generality that the fundamental function $\lambda := \lambda_E$ of E satisfies $\lambda(1) = 1$, and note that λ is non-decreasing and $\lambda(2n) \leq 2\lambda(n)$ for all $n \in \mathbb{N}$. Then for $x = \{x_n\} \in \lambda(E)$,

$$\|x\|_{\lambda(E)} = \sum_{n=1}^{\infty} x_n^* \frac{\lambda(n)}{n} = x_1^* + \sum_{k=0}^{\infty} \left(\sum_{2^k < n \le 2^{k+1}} x_n^* \frac{\lambda(n)}{n}\right)$$

A. Defant and M. Mastyło

$$\geq x_1^* + \sum_{k=0}^{\infty} \lambda(2^k) x_{2^{k+1}}^* \left(\sum_{2^k < n \le 2^{k+1}} \frac{1}{n} \right)$$

$$\geq x_1^* + 4^{-1} \sum_{k=0}^{\infty} x_{2^{k+1}}^* \lambda(2^{k+1}) \ge 4^{-1} \sum_{k=1}^{\infty} x_{2^k}^* \lambda(2^k).$$

Fix $T \in \mathcal{L}^{a}_{\lambda(E)}(X, Y)$ and choose $S_k : X \to Y$ with rank $S_k < 2^k$ such that $||T - S_k|| \leq 2a_{2^k}(T), \ k = 0, 1, \ldots$, where $T_0 := 0$. Put $T_k = S_{k+1} - S_k$. Combining the above inequalities, we obtain

$$T = \sum_{k=0}^{\infty} T_k \quad \text{with } \operatorname{rank} T_k \le 2^k \text{ and } \{\lambda(2^k) \| T_k \| \} \in \ell_1$$

Now by applying Theorem 2.1, we get $\{\pi_{E,2}(T_k)\} \in \ell_1$. In consequence $T \in \Pi_{E,2}(X,Y)$, by the completeness of $\Pi_{E,2}(X,Y)$. Finally, if $T \in \mathcal{L}^x_{\lambda(E)}(X,Y)$, then for any $S \in \mathcal{L}(\ell_2, X)$, we have

$$TS \in \mathcal{L}^{x}_{\lambda(E)}(\ell_{2}, Y) = \mathcal{L}^{a}_{\lambda(E)}(\ell_{2}, Y) \hookrightarrow \Pi_{E,2}(\ell_{2}, Y).$$

Since

$$\pi_{E,2}(T) = \sup\{\pi_{E,2}(TS); S \in \mathcal{L}(\ell_2, X), \|S\| \le 1\},\$$

we obtain $T \in \Pi_{E,2}(X,Y)$.

REMARK 3.2. We note that for a large class of symmetric Banach sequence spaces E which are interpolation spaces with respect to (ℓ_2, ℓ_∞) the continuous inclusion $\Pi_{E,2} \hookrightarrow \mathcal{L}^x_{m(E)}$ is optimal. In fact, let F be any 2-concave symmetric Banach sequence space and let $E := M(\ell_2, F)$ be a symmetric Banach sequence space of all multipliers from ℓ_2 into F. Then Eis 2-convex, and thus an interpolation space with respect to (ℓ_2, ℓ_∞) (see [4, Lemma 4.3]). Let id : $F \hookrightarrow \ell_2$ denote the inclusion map. Applying [4, 3.2 and 4.1] we conclude that id $\in \Pi_{E,2}(F, \ell_2)$. Further, we have $\lambda_E(n) \asymp \lambda_F(n)/\sqrt{n}$ by [5, Proposition 3.5]. This easily implies that

$$x_n(\mathrm{id}: F \hookrightarrow \ell_2) \asymp 1/\lambda_E(n).$$

4. Composition theorem for (E, 2)-summing operators. In this section we present the composition theorem for (E, 2)-summing operators. Recall that an operator $T \in \mathcal{L}(X, Y)$ belongs to the product $\mathcal{B} \circ \mathcal{A}$ of two quasi-Banach operator ideals (\mathcal{A}, α) and (\mathcal{B}, β) if T can be written in the form T = VU, where $U \in \mathcal{A}(X, Z)$ and $V \in \mathcal{B}(Z, Y)$ with a suitable Banach space Z. Clearly, $\mathcal{B} \circ \mathcal{A}$ is an operator ideal which, if endowed with the quasi-norm

$$||T||_{\mathcal{B}\circ\mathcal{A}} := \inf\{\alpha(U)\beta(V); T = VU, U \in \mathcal{A}(X, Z), V \in \mathcal{B}(Z, Y)\},\$$

60

forms a quasi-normed Banach operator ideal (see [16, 7.1.2]). In what follows, if E, F and G are symmetric quasi-Banach sequence spaces, and the map Bgiven by $B(x, y) := \{x_n^* y_n^*\}$ is defined and bounded from $E \times F$ into G (i.e., $||B(x, y)||_G \leq C ||x||_E ||y||_F$ for some C > 0), then we write $E * F \hookrightarrow G$. Recall that an s-function s is called *multiplicative* if $s_{m+n-1}(VU) \leq s_m(U)s_n(V)$ for any $U \in \mathcal{L}(X, Z), V \in \mathcal{L}(Z, Y)$ and $m, n \in \mathbb{N}$. We need the following easy technical observation.

PROPOSITION 4.1. Let E, F and G be maximal symmetric quasi-Banach sequence spaces such that $E * F \hookrightarrow G$, and let s be any multiplicative function. Then $\mathcal{L}_E^s \circ \mathcal{L}_F^s \hookrightarrow \mathcal{L}_G^s$.

Proof. Let us first remark the following: If $x \in \omega$ is such that $\{x_{2n-1}^*\} \in G$, then $x \in G$ and $||x||_G \leq 2C_G ||\{x_{2n-1}^*\}||_G$, where C_G is the constant from the quasi-triangle inequality of G. Indeed, we have $x^* = y + z$ with $y = \sum_n x_{2n-1}^* e_{2n-1}$ and $z = \sum_n x_{2n}^* e_{2n}$ in ω . Since $y^* = \{x_{2n-1}^*\} \in G$ and $z^* \leq y^*$, we get $z^* \in G$ and also $z \in G$ with $||z||_G \leq ||y||_G$. But then $x \in G$ and

$$||x||_G = ||x^*||_G \le 2C_G ||y||_G = 2C_G ||y^*||_G = ||\{x^*_{2n-1}\}||_G.$$

Let now $T \in \mathcal{L}_E^s \circ \mathcal{L}_F^s(X, Y)$, hence T has a factorization T = VU through a Banach space Z with $U \in \mathcal{L}_F^s(X, Z)$ and $V \in \mathcal{L}_E^s(Z, Y)$. According to our remark we now show that $\{s_{2n-1}(T)\} \in G$. Since $s_{2n-1}(VU) \leq s_n(U)s_n(V)$ for any n, by the multiplicity of s, and by assumption $E * F \hookrightarrow G$ with constant C, we obtain $\{s_{2n-1}(T)\} \in G$ and

$$s_G(T) \le 2C_G \|\{s_{2n-1}(T)\}\|_G \le 2C_G C \|\{s_n(U)\}\|_E \|\{s_n(V)\}\|_F.$$

The proof is completed by taking the infimum over all possible factorizations of T. \blacksquare

As announced we now prove several composition formulas for (E, 2)-summing operators.

PROPOSITION 4.2. Suppose that E, F and G are symmetric Banach sequence spaces such that E and F both contain ℓ_2 , and G is an interpolation space with respect to (ℓ_2, ℓ_∞) . If $\{\lambda_G(2^n)/\lambda_E(2^n) \cdot \lambda_F(2^n)\} \in \ell_1$, then

$$\Pi_{E,2} \circ \Pi_{F,2} \hookrightarrow \Pi_{G,2}.$$

Proof. Since $m(E) * m(F) \hookrightarrow m_{\psi}$ with $\psi(n) = \lambda_E(n)\lambda_F(n)$ for $n \in \mathbb{N}$, it follows by Theorem 3.1 and the preceding proposition that

$$\Pi_{E,2} \circ \Pi_{F,2} \hookrightarrow \mathcal{L}^x_{m(E)} \circ \mathcal{L}^x_{m(F)} \hookrightarrow \mathcal{L}^x_{m_{\psi}}$$

It is easy to see that $\{x_n\} \in \lambda(G)$ with $\|\{x_n\}\|_{\lambda(G)} \prec \|\{x_{2^n}\lambda_G(2^n)\}\|_{\ell_1}$ whenever $\{x_{2^n}\lambda_G(2^n)\} \in \ell_1$. Combining this with the assumption, we conclude that $\mathcal{L}^x_{m_{\psi}} \hookrightarrow \mathcal{L}^x_{\lambda(G)}$. In consequence, Theorem 3.1 applies and the proof is complete. \blacksquare In order to formulate a more comfortable version we introduce two types of indices for symmetric Banach sequence spaces. For a symmetric Banach sequence space E with fundamental function λ_E define the indices α_E and β_E as follows:

$$\alpha_E := \sup\left\{\alpha > 0; \inf_{n \in \mathbb{N}} \frac{\lambda_E(n)}{n^{\alpha}} > 0\right\}, \quad \beta_E := \inf\left\{\beta > 0; \sup_{n \in \mathbb{N}} \frac{\lambda_E(n)}{n^{\beta}} < \infty\right\}.$$

The following is our main result.

THEOREM 4.3. Assume that E_1, \ldots, E_N and F are symmetric Banach sequence spaces such that all E_j contain ℓ_2 , and F is an interpolation space with respect to (ℓ_2, ℓ_∞) . If $\alpha_{E_1} + \ldots + \alpha_{E_N} > \beta_F$, then

$$\Pi_{E_N,2} \circ \ldots \circ \Pi_{E_1,2} \hookrightarrow \Pi_{F,2}$$

Proof. By the preceding proposition we check that

$$\{\lambda_F(2^n)/\lambda_{E_1}(2^n)\cdot\ldots\cdot\lambda_{E_N}(2^n)\}\in\ell_1.$$

To see this take $\varepsilon > 0$ such that $\delta := \alpha_{E_1} + \ldots + \alpha_{E_N} - \beta_F - 2\varepsilon N > 0$. By the definition of α_{E_i} and β_F we have, for all $j = 1, \ldots, N$,

$$\lambda_F(n) \prec n^{\beta_F + N\varepsilon}, \quad n^{\alpha_{E_j} - \varepsilon} \prec \lambda_{E_j}(n).$$

Altogether we conclude as desired that

$$\sum_{n} \frac{\lambda_F(2^n)}{\lambda_{E_1}(2^n) \cdot \ldots \cdot \lambda_{E_N}(2^n)} \prec \sum_{n} \frac{1}{2^{\delta n}} < \infty. \bullet$$

Obviously, the preceding result recovers the classical ℓ_p -case, which is due to König, Retherford and Tomczak-Jaegermann. To show that our result really leads to new applications we add the following

EXAMPLE 4.4. Let $0 < \alpha < 1$, $0 < \beta < \infty$, $1 \le p < \infty$, $w = \{n^{-\alpha}(1 + \log n)^{-\beta}\},\$

and let φ be an Orlicz function. Then

(i) $\lambda_E(n) \simeq n^{(1-\alpha)/p}/(1+\log n)^{\beta/p}$, and hence $\alpha_E = (1-\alpha)/p$ with E := d(w,p).

(ii) If $2 \le p < \infty$, then d(w, p) is 2-convex, and hence an exact interpolation space with respect to the couple (ℓ_2, ℓ_∞) .

(iii) $\lambda_{\ell_{\varphi}}(n) = 1/\varphi^{-1}(1/n)$ and ℓ_{φ} is 2-convex provided that the function $t \mapsto \varphi(\sqrt{t})$ is equivalent to a convex function.

Proof. (i) Approximating the Riemann sums of $\int_1^n t^{-\alpha} (1 + \log t)^{-\beta} dt$, we conclude that

$$n^{1-\alpha}(1+\log n)^{-\beta} \approx \sum_{k=1}^{n} k^{-\alpha}(1+\log k)^{-\beta}.$$

In particular, this yields $\lambda_E(n) \simeq n^{(1-\alpha)/p}/(1+\log n)^{\beta/p}$.

(ii) It is easy to see that any Lorentz space d(w, p) is *p*-convex, and thus it is also 2-convex whenever $2 \le p < \infty$. Finally (iii) is an easy exercise.

In the case $F = \ell_2$ the theorem allows the following improvement.

COROLLARY 4.5. Assume that E_1, \ldots, E_N are symmetric sequence Banach spaces which all contain ℓ_2 , and let $T_j : X_{j-1} \to X_j$ be $(E_j, 2)$ -summing operators between Banach spaces, $j = 1, \ldots, N$. Then $T_N \circ \ldots \circ T_1$ is a 2-summing compact operator whenever $\alpha_{E_1} + \ldots + \alpha_{E_N} > 1/2$.

Proof. For $F = \ell_2$, we have $\beta_F = 1/2$. Thus $T := T_N \circ \ldots \circ T_1 \in \Pi_2(X_0, X_N)$ by Theorem 4.3. To prove that T is compact we need only show that

$$\lim_{n \to \infty} n^{1/2} x_n(T) = 0$$

(see [18, Theorem 2.10.8]). To see this note that similarly to the proof of Proposition 4.1, we obtain

$$\Pi_{E_N,2} \circ \ldots \circ \Pi_{E_1,2} \hookrightarrow \mathcal{L}^x_{m_y}$$

with $\psi(n) := \lambda_{E_1}(n) \cdot \ldots \cdot \lambda_{E_N}(n)$ for any $n \in \mathbb{N}$, hence $x_n(T) \prec 1/\psi(n)$. Now fix $\varepsilon > 0$ so that

$$\delta := \alpha_{E_1} + \ldots + \alpha_{E_N} - \varepsilon N - 1/2 > 0,$$

and note that $n^{a_{E_j}-\varepsilon} \prec \lambda_{E_j}(n)$ for all $j = 1, \ldots, N$. Combining these inequalities yields $n^{1/2}x_n(T) \prec 1/n^{\delta}$, which clearly gives our conclusion.

We finish with a result on powers of the Banach operator ideal $\Pi_{E,2}$ (cf. [17, Theorem 7] for $E = \ell_p$ with 2). Recall that an operator $<math>T \in \mathcal{L}(X,Y)$ is *nuclear*, $T \in \mathcal{N}(X,Y)$, if there are sequences $\{x_n^*\} \subset X^*$, $\{y_n\} \subset Y$ with

$$T = \sum_{n=1}^{\infty} x_n^* \otimes y_n, \quad \sum_{n=1}^{\infty} \|x_n^*\| \|y_n\| < \infty.$$

COROLLARY 4.6. Assume that E is a symmetric Banach sequence space which contains ℓ_2 , and $\alpha_E > 1/2n$ for a positive integer n. Then $\Pi_{E,2}^{2n} \hookrightarrow \mathcal{N}$, where \mathcal{N} denotes the Banach ideal of nuclear operators.

Proof. The previous corollary yields $\Pi_{E,2}^n \hookrightarrow \Pi_2$. To finish the proof we need only recall the well known fact that the composition of two 2-summing operators is nuclear (see, e.g., [7, Theorem 5.31]).

It is well known that each nuclear operator has 2-summable eigenvalues. We note that it is an open problem whether the eigenvalues of nuclear operators on Banach spaces of nontrivial type are better than 2-summable. It is known (see [8, p. 110]) that if X is a Banach space such that

$$\mathcal{L}(\ell_1, X) = \Pi_{s,2}(\ell_1, X)$$

for some $2 < s < \infty$, then for each nuclear operator $T : X \to X$ the sequence of its eigenvalues belongs to ℓ_r for some 1 < r < 2.

Combining the following proposition with the inequality connecting eigenvalues and Weyl numbers due to Weyl (for $E = \ell_p$) and König (general case, see [8, 2a.8]) yields further information on eigenvalues of nuclear operators. We leave the details to the interested reader.

PROPOSITION 4.7. Let X be a Banach space such that $\mathcal{L}(\ell_1, X) = \prod_{E,2}(\ell_1, X)$ for some symmetric Banach sequence space E with $\ell_2 \hookrightarrow E$. Then the sequence of Weyl numbers of any nuclear operator T on X satisfies $\{n^{1/2}x_n(T)\} \in E$.

Proof. It is well known that any nuclear operator $T: X \to X$ has a factorization

$$T: X \xrightarrow{R} \ell_{\infty} \xrightarrow{D} \ell_1 \xrightarrow{S} X$$

with D being a diagonal operator. Clearly, D has a factorization

$$D: \ell_{\infty} \xrightarrow{D_1} \ell_2 \xrightarrow{D_2} \ell_1,$$

where both D_1 and D_2 are diagonal operators. Since D_1 is 2-summing, T = UV with $V \in \Pi_2(X, \ell_2)$ and $U \in \Pi_{E,2}(\ell_2, X)$. Combining these remarks with Theorem 3.1 and Proposition 4.1 we obtain the desired result.

We conclude the paper with the following corollary:

COROLLARY 4.8. Let φ be an Orlicz function such that the function $t \mapsto \varphi(\sqrt{t})$ is equivalent to a concave function on \mathbb{R}_+ and let φ be supermultiplicative (i.e., there exists C > 0 such that $\varphi(st) \geq C\varphi(s)\varphi(t)$ for all s, t > 0). Then the sequence of Weyl numbers of any nuclear operator T on the Orlicz space ℓ_{φ} satisfies the condition

$$\{n^{1/2}x_n(T)\} \in M(\ell_2, \ell_{\phi}),\$$

where ϕ is any Orlicz function such that $\phi^{-1}(t) \simeq t^{3/2} \varphi^{-1}(1/t)$.

Proof. It is shown in [3] that under the above assumptions we have $\mathcal{L}(\ell_1, \ell_{\varphi}) = \prod_{\phi, 1}(\ell_1, \ell_{\varphi})$. By applying [5, Lemma 3.4], we obtain

$$\mathcal{L}(\ell_1, \ell_{\varphi}) = \Pi_{E,2}(\ell_1, \ell_{\varphi})$$

with $E = M(\ell_2, \ell_{\phi})$. The claim now follows by Proposition 4.7.

References

- J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976.
- [2] Yu. A. Brudnyĭ and N. Ya. Krugljak, Interpolation Functors and Interpolation Spaces I, North-Holland, Amsterdam, 1991.

- J. Cerdà and M. Mastyło, The type and cotype of Calderón-Lozanovskii spaces, Bull. Polish Acad. Sci. Math. 47 (1999), 105–117.
- [4] A. Defant, M. Mastylo and C. Michels, Summing inclusion maps between symmetric sequence spaces, Trans. Amer. Math. Soc. 354 (2002), 4473–4492.
- [5] —, —, *Summing inclusion maps between symmetric sequence spaces, a survey,* in: Recent Progress in Functional Analysis (Valencia, 2000), North-Holland Math. Stud. 189, North-Holland, Amsterdam, 2001, 43–60.
- [6] —, —, —, Orlicz norm estimates for eigenvalues of matrices, Israel J. Math. 132 (2002), 45–59.
- [7] J. Diestel, H. Jarchow and A. Tonge, *Absolutely Summing Operators*, Cambridge Univ. Pres, 1995.
- [8] H. König, Eigenvalue Distributions of Compact Operators, Birkhäuser, 1986.
- H. König, J. R. Retherford and N. Tomczak-Jaegermann, On the eigenvalues of (p, 2)-summing operators and constants associated to normed spaces, J. Funct. Anal. 37 (1980), 149–168.
- [10] S. G. Kreĭn, Yu. I. Petunin and E. M. Semenov, Interpolation of Linear Operators, Transl. Math. Monogr. 54, Amer. Math. Soc., 1980.
- [11] J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces I. Sequence Spaces*, Springer, 1979.
- [12] —, —, Classical Banach Spaces II. Function Spaces, Springer, 1979.
- [13] L. Maligranda and M. Mastyło, Notes on non-interpolation spaces, J. Approx. Theory 56 (1989), 333–347.
- [14] B. Maurey and A. Pełczyński, A criterion for compositions of (p, q)-absolutely summing operators to be compact, Studia Math. 54 (1976), 751–754.
- [15] V. I. Ovchinnikov, The methods of orbits in interpolation theory, Math. Rep. 1 (1984), 349–516.
- [16] A. Pietsch, *Operator Ideals*, North-Holland, 1980.
- [17] —, Weyl numbers and eigenvalues of operators in Banach spaces, Math. Ann. 247 (1980), 149–168.
- [18] —, Eigenvalues and s-numbers, Cambridge Univ. Press, 1987.
- [19] G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conf. Ser. in Math. 60, Amer. Math. Soc., 1986.
- [20] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Longman Sci. Tech., 1989.

Fachberich MathematikFaculty of MathematicsCarl von Ossietzky Universitätand Computer SciencePostfach 2503Adam Mickiewicz UniversityD-26111 Oldenburg, GermanyandE-mail: defant@mathematik.uni-oldenburg.deInstitute of MathematicsPolish Academy of Sciences(Poznań branch)Umultowska 87

61-614 Poznań, Poland E-mail: mastylo@amu.edu.pl

Received July 8, 2002 Revised version May 23, 2003

(4985)