Composition of ($E, 2$)-summing operators

by
Andreas Defant (Oldenburg) and MieczysŁaw MastyŁo (Poznań)

To Professor Aleksander Petczyński on his 70th birthday

Abstract

The Banach operator ideal of ($q, 2$)-summing operators plays a fundamental role within the theory of s-number and eigenvalue distribution of Riesz operators in Banach spaces. A key result in this context is a composition formula for such operators due to H. König, J. R. Retherford and N. Tomczak-Jaegermann. Based on abstract interpolation theory, we prove a variant of this result for $(E, 2)$-summing operators, E a symmetric Banach sequence space.

1. Introduction and preliminaries. The theory of ($q, 2$)-summing operators today is considered to be at the heart of modern Banach space theory with many deep applications to various parts of analysis. For a Banach sequence space E containing ℓ_{2}, the Banach operator ideal of $(E, 2)$ summing operators consists of all (bounded linear) operators T between Banach spaces for which $\left\{\left\|T\left(x_{n}\right)\right\|\right\} \in E$ for all weakly 2 -summable sequences $\left\{x_{n}\right\}$. Mainly basing on interpolation theory, several key results within the theory of ($q, 2$)-summing operators and its applications have recently been extended to the more general case of ($E, 2$)-summing operators (see [4]-[6]).

In this article we present a variant for ($E, 2$)-summing operators of a striking composition formula due to H. König, J. R. Retherford and N . Tomczak-Jaegermann [9], which in its original formulation says that the composition $T_{N} \circ \ldots \circ T_{1}$ of $\left(q_{k}, 2\right)$-summing operators T_{k} between Banach spaces is 2 -summing provided that $1 / q_{1}+\ldots+1 / q_{N}>1 / 2$. By completely different methods a special case of this multiplication formula was obtained earlier by B. Maurey and A. Pełczyński [14].
A. Pietsch [17] recovered the composition formula by taking advantage of the intimate relationship between ($p, 2$)-summing norms and approximation numbers of operators in Banach spaces (for elaborations of this proof see [18, 2.7.7] and [8, 2.a.12]). Our approach to a variant for ($E, 2$)-summing

2000 Mathematics Subject Classification: Primary 47B10, 47L20; Secondary 46B70, 47B06.

Research of M. Mastyło was supported by KBN Grant 2 PO3A 04218.
operators, where E is a symmetric Banach sequence which is an interpolation space with respect to the couple $\left(\ell_{2}, \ell_{\infty}\right)$, combines Pietsch's ideas with abstract interpolation theory.

Before we sketch the content of our paper in more detail we fix some basic preliminaries about sequence spaces, s-numbers, and interpolation.

We shall use standard notation and notions from Banach space theory, as presented, e.g. in [7], [11] and [12]. In particular, for all information needed on p-convexity and p-concavity of Banach lattices/sequence spaces we refer to [11] and [12] (for the notion of 2-convexity see also end of Section 2). If a quasi-normed space $\left(E,\|\cdot\|_{E}\right)$ is a vector subspace of the space $\omega:=\mathbb{R}^{\mathbb{N}}$ of all real sequences, and its quasi-norm satisfies (i) if $x \in E, y \in \omega,|y| \leq|x|$, then $y \in E$ and $\|y\|_{E} \leq\|x\|_{E}$, then E is said to be a quasi-normed sequence space. If E also satisfies (ii) if $x=\left\{x_{n}\right\} \in E$, then $x^{*} \in E$ and $\|x\|_{E}=$ $\left\|x^{*}\right\|_{E}$, where $x^{*}=\left\{x_{n}^{*}\right\}$ is the non-increasing rearrangement of x, then E is called a symmetric quasi-normed sequence space (resp., a symmetric (quasi-) Banach sequence space, whenever E is a (quasi-)Banach space). Note that if E is a separable Banach sequence space, then the sequences e_{n} form an unconditional basis in E; here and throughout the paper, $\left\{e_{n}\right\}$ denotes the standard unit vector basis in c_{0}.

The Köthe dual E^{\prime} of a Banach sequence space E is as usual defined by

$$
E^{\prime}:=\left\{x=\left\{x_{n}\right\} \in \omega ; \sum_{n=1}^{\infty}\left|x_{n} y_{n}\right|<\infty \text { for all } y=\left\{y_{n}\right\} \in E\right\}
$$

which equipped with the norm $\|x\|:=\sup \left\{\sum_{n=1}^{\infty}\left|x_{n} y_{n}\right| ;\|y\|_{E} \leq 1\right\}$ forms a Banach sequence space (symmetric provided so is E). The fundamental function λ_{E} of a quasi-Banach sequence space E is given by

$$
\lambda_{E}(n):=\left\|\sum_{k=1}^{n} e_{k}\right\|_{E}, \quad n \in \mathbb{N} .
$$

For two Banach sequence spaces E and F, the space $M(E, F)$ of multipliers from E into F consists of all scalar sequences $x=\left\{x_{n}\right\}$ such that the associated multiplication operator $\left\{y_{n}\right\} \mapsto\left\{x_{n} y_{n}\right\}$ is defined and bounded from E into F. The space $M(E, F)$ is a Banach sequence space (symmetric provided so are E and F) equipped with the norm

$$
\|x\|:=\sup \left\{\|x y\|_{F} ;\|y\|_{E} \leq 1\right\}
$$

We note that if E is a Banach sequence space, then $M\left(E, \ell_{1}\right)=E^{\prime}$ isometrically.

For all information on Banach operator ideals and s-numbers we refer to [7], [8], [16], [18] and [20]. As usual $\mathcal{L}(X, Y)$ denotes the Banach space of all (bounded linear) operators from X into Y endowed with the operator norm.

Recall that for an operator $T \in \mathcal{L}(X, Y)$ the nth approximation number is

$$
a_{n}(T):=\inf \{\|T-R\| ; R \in \mathcal{L}(X, Y), \operatorname{rank} R<n\}
$$

and the nth Weyl number is

$$
x_{n}(T):=\sup \left\{a_{n}(T S) ; S \in \mathcal{L}\left(\ell_{2}, X\right) \text { with }\|S\| \leq 1\right\}
$$

Clearly, these sequences are non-increasing with $x_{n}(T) \leq a_{n}(T)$ and $x_{1}(T)=$ $a_{1}(T)=\|T\|$, and they are equal whenever T is defined on a Hilbert space. If E is a quasi-normed sequence space contained in ℓ_{∞}, and if s stands for the approximation numbers or Weyl numbers, or more generally if s is an s-number function (for the definition see, e.g., [18, 2.2.1]), then $\mathcal{L}_{E}^{s}(X, Y)$ denotes the set of all operators $T \in \mathcal{L}(X, Y)$ such that $\left\{s_{n}(T)\right\} \in E$. It can be easily seen that the functional

$$
s_{E}(T):=\left\|\left\{s_{n}(T)\right\}\right\|_{E} \quad \text { for } T \in \mathcal{L}_{E}^{s}(X, Y)
$$

defines a quasi-norm under which $\mathcal{L}_{E}^{s}(X, Y)$ is a quasi-Banach space whenever E is a maximal symmetric quasi-Banach sequence space (i.e., the unit ball $B_{E}:=\left\{x ;\|x\|_{E} \leq 1\right\}$ of E is a closed subset of ω equipped with the topology of pointwise convergence).

Finally, for details and basic results on interpolation theory we refer to [1] or [2]. We recall that a mapping \mathcal{F} from the category of all couples of Banach spaces into the category of all Banach spaces is said to be an interpolation functor if for every Banach couple $\bar{X}:=\left(X_{0}, X_{1}\right)$, the Banach space $\mathcal{F}(\bar{X})$ is intermediate with respect to \bar{X} (which means $X_{0} \cap X_{1} \hookrightarrow \mathcal{F}(\bar{X}) \hookrightarrow X_{0}+X_{1}$), and moreover $T: \mathcal{F}(\bar{X}) \rightarrow \mathcal{F}(\bar{Y})$ is bounded for all operators $T: \bar{X} \rightarrow \bar{Y}$ between couples (meaning that $T: X_{0}+X_{1} \rightarrow Y_{0}+Y_{1}$ is linear with bounded restrictions from X_{j} into Y_{j}). By the closed graph theorem, for any couples \bar{X} and \bar{Y},

$$
\|T\|_{\mathcal{F}\left(X_{0}, X_{1}\right) \rightarrow \mathcal{F}\left(Y_{0}, Y_{1}\right)} \leq C\|T\|_{\bar{X} \rightarrow \bar{Y}}:=C \max \left\{\|T\|_{X_{0} \rightarrow Y_{0}},\|T\|_{X_{1} \rightarrow Y_{1}}\right\}
$$

If C may be chosen independently of \bar{X} and \bar{Y}, we say that \mathcal{F} is a C exact interpolation functor; and \mathcal{F} is said to be exact whenever $C=1$. An intermediate space X of the couple \bar{X} is said to be an interpolation space with respect to this couple whenever X can be realized as $\mathcal{F}(\bar{X})$ for some interpolation functor \mathcal{F}. The definition of C-exact and exact interpolation spaces is obvious.

As already mentioned we follow Pietsch's route to prove our extension of the composition formula of König, Retherford and Tomczak-Jaegermann, which can be divided into three parts of independent interest, and each of our three sections is devoted to one of these parts. In Section 2 we estimate the ($E, 2$)-summing norm of finite rank operators between Banach spaces under the assumption that E is a symmetric Banach sequence which is an interpolation space with respect to the couple $\left(\ell_{2}, \ell_{\infty}\right)$. It is shown that
there exists a constant $C>0$ such that $\pi_{E, 2}\left(\mathrm{id}_{X}\right) \leq C \lambda_{E}(n)$ for every Banach space X with $\operatorname{dim} X=n$. A key result in the theory of s-numbers states that for $2 \leq p<\infty$ each ($p, 2$)-summing operator T has its Weyl numbers in the Lorentz space $\ell_{p, 1}$, and conversely each operator with Weyl numbers in the Marcinkiewicz space $\ell_{p, \infty}$ is $(p, 2)$-summing. In Section 3 the estimate from Section 2 is used to prove an analogue of these inclusions for $(E, 2)$-summing operators. Finally, in Section 4 we combine this relationship with a straightforward multiplication formula for s-number ideals in order to obtain the desired composition theorem for $(E, 2)$-summing operators in terms of appropriate indices of the sequence space E.
2. ($E, 2$)-summing norms of finite rank operators. The following definition is a natural extension of the notion of absolutely (q, p)-summing operators: Let E be a Banach sequence space which contains ℓ_{p} for some $1 \leq p \leq \infty$. Then an operator $T: X \rightarrow Y$ between Banach spaces X and Y is called (E, p)-summing if there exists a constant $C>0$ such that for any weakly p-summable sequence $\left\{x_{n}\right\}$ (i.e., the scalar sequences $\left\{x^{*}\left(x_{n}\right)\right\}$ are in ℓ_{p} for every $x^{*} \in X^{*}$)

$$
\left\|\left\{\left\|T x_{n}\right\|_{Y}\right\}\right\|_{E} \leq C \sup _{\left\|x^{*}\right\|_{X^{*}} \leq 1}\left(\sum_{n=1}^{\infty}\left|x^{*}\left(x_{n}\right)\right|^{p}\right)^{1 / p}
$$

We write $\pi_{E, p}(T)$ for the smallest constant C with the above property. The Banach space of all (E, p)-summing operators between Banach spaces X and Y is denoted by $\Pi_{E, p}(X, Y)$. If $\left\|e_{n}\right\|_{E}=1$ for all n, then $\left(\Pi_{E, p}, \pi_{E, p}\right)$ is a Banach operator ideal, in particular for $E=\ell_{q}(q \geq p)$ we obtain the well known ideal $\left(\Pi_{q, p}, \pi_{q, p}\right)$ of all (q, p)-summing operators. For an Orlicz sequence space ℓ_{φ}, we write $\Pi_{\varphi, p}$ and $\pi_{\varphi, p}$ instead of $\Pi_{\ell_{\varphi}, p}$ and $\pi_{\ell_{\varphi}, p}$, respectively (for the theory of Orlicz functions and Orlicz spaces we refer to [11] and [12]). Recall that if φ is an Orlicz function (i.e., $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a continuous and convex function with $\left.\varphi^{-1}(\{0\})=\{0\}\right)$, then the Orlicz sequence space ℓ_{φ} consists of all real sequences $x=\left\{x_{n}\right\} \in \omega$ such that $\sum_{n=1}^{\infty} \varphi\left(\left|x_{n}\right| / \varepsilon\right)<\infty$ for some $\varepsilon>0$. It is well known that ℓ_{φ} equipped with the norm

$$
\|x\|:=\inf \left\{\varepsilon>0 ; \sum_{n=1}^{\infty} \varphi\left(\left|x_{n}\right| / \varepsilon\right) \leq 1\right\}
$$

is a symmetric Banach sequence space.
We note an obvious fact, useful in what follows, that an operator T : $X \rightarrow Y$ is $(E, 2)$-summing if and only if

$$
\pi_{E, 2}(T)=\sup \left\{\pi_{E, 2}(T S) ; S \in \mathcal{L}\left(\ell_{2}, X\right),\|S\| \leq 1\right\}
$$

We refer to [4] and [5] for non-trivial examples of (E, p)-summing opera-
tors. We present new simple examples involving symmetric Banach function spaces on finite non-atomic measure spaces (for the theory of these spaces see, e.g., [10] and [12]). We recall that the fundamental function ψ_{X} of a symmetric Banach function space X on a non-atomic measure space $(\Omega, \mu):=(\Omega, \Sigma, \mu)$ is defined by $\psi_{X}(t):=\left\|\chi_{A}\right\|_{X}$ for any $0 \leq t<\mu(\Omega)$ with $t=\mu(A), A \in \Sigma$.

Proposition 2.1. Let X be a symmetric Banach function space defined on a non-atomic finite measure space (Ω, μ) which does not coincide with $L_{\infty}:=L_{\infty}(\mu)$. Then the inclusion map id : $L_{\infty} \hookrightarrow X$ is ($\left.\ell_{\varphi}, 1\right)$-summing, where φ is any Orlicz function such that $\varphi^{-1} \asymp \psi_{X}$ on $(0, \mu(\Omega))$. In particular, id : $L_{\infty} \hookrightarrow X$ is $\left(M\left(\ell_{q}, \ell_{\varphi}\right), p\right)$-summing with $1 / p+1 / q=1$.

Proof. It is well known that for any symmetric Banach function space X we have $\Lambda(X) \hookrightarrow X$ (with norm ≤ 1), where $\Lambda(X)$ is the Lorentz symmetric function space equipped with the norm

$$
\|x\|_{\Lambda(X)}:=\int_{0}^{\mu(\Omega)} x^{*}(s) d \psi_{X}(s)
$$

We put $\psi:=\psi_{X}$. It is well known (see [10, formula, (5.4), p. 111]) that

$$
\|x\|_{\Lambda(X)}=\int_{0}^{\infty} \psi\left(\mu_{x}(s)\right) d s
$$

where $\mu_{x}(s):=\mu(\{\omega \in \Omega ;|x(\omega)|>s\})$ for $s>0$. Let $x_{1}, \ldots, x_{n} \in L_{\infty}$. Then (see, e.g., [7, p. 41])

$$
\sup _{\left\|x^{*}\right\|_{L_{\infty}^{*}} \leq 1} \sum_{k=1}^{n}\left|x^{*}\left(x_{k}\right)\right|=\left\|\sum_{k=1}^{n}\left|x_{k}\right|\right\|_{L_{\infty}} .
$$

Assume that $\left\|\sum_{k=1}^{n}\left|x_{k}\right|\right\|_{L_{\infty}} \leq 1$. Hence $\mu_{x_{k}}(s)=0$ for any $s>1$. Combining the above remarks with Jensen's inequality and the fact that $\varphi(\psi(t)) \asymp t$ on $(0, \mu(\Omega))$ shows that there exists a constant $C>0$ such that

$$
\begin{aligned}
\sum_{k=1}^{n} \varphi\left(\left\|x_{k}\right\|_{X}\right) & \leq \sum_{k=1}^{n} \varphi\left(\left\|x_{k}\right\|_{\Lambda(X)}\right)=\sum_{k=1}^{n} \varphi\left(\int_{0}^{1} \psi\left(\mu_{x_{k}}(s)\right) d s\right) \\
& \leq \sum_{k=1}^{n} \int_{0}^{1} \varphi\left(\psi\left(\mu_{x_{k}}(s)\right)\right) d s \leq C \sum_{k=1}^{n} \int_{0}^{1} \mu_{x_{k}}(s) d s \\
& =C \int_{\Omega} \sum_{k=1}^{n}\left|x_{k}\right| d \mu \leq C \mu(\Omega)\left\|\sum_{k=1}^{n}\left|x_{k}\right|\right\|_{L_{\infty}}
\end{aligned}
$$

This yields as desired id $\in \Pi_{\varphi, 1}\left(L_{\infty}, X\right)$ with $\pi_{\varphi, 1}(\mathrm{id}) \leq \max \{1, C \mu(\Omega)\}$. To conclude the proof it is enough to apply [4, Lemma 3.4].

The following interpolative estimate for the $(E, 2)$-summing norm of finite rank operators is crucial in what follows.

Theorem 2.2. Assume that E is a symmetric Banach sequence space, and moreover E is a C-exact interpolation space with respect to the couple $\left(E_{1}, E_{2}\right)$, where both E_{j} are symmetric Banach sequence spaces which contain ℓ_{2}. Then for every operator T between Banach spaces with $\operatorname{rank} T \leq n$,

$$
\pi_{E, 2}(T) \leq C \lambda_{E}(n)\|T\|
$$

provided $\pi_{E_{j}, 2}(T) \leq \lambda_{E_{j}}(n)\|T\|$ for $j=1,2$.
The proof of this result needs two lemmas, both based on interpolation. Following [15] the characteristic function $\varphi_{\mathcal{F}}: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$of an exact interpolation functor \mathcal{F} is defined by

$$
\varphi_{\mathcal{F}}(s, t) \mathbb{R}:=\mathcal{F}(s \mathbb{R}, t \mathbb{R}), \quad s, t>0
$$

where $\alpha \mathbb{R}$ with $\alpha>0$ is \mathbb{R} equipped with the norm $\|x\|_{\alpha \mathbb{R}}:=\alpha\|x\|$. Note that $\varphi_{\mathcal{F}}$ is homogeneous of degree one, that is, $\varphi_{\mathcal{F}}(\alpha s, \alpha t)=\alpha \varphi_{\mathcal{F}}(s, t)$ for any $\alpha>0$, and $\varphi_{\mathcal{F}}(\cdot, \cdot)$ is non-decreasing in each variable. Further for any Banach couple $\bar{X}=\left(X_{0}, X_{1}\right)$ one has

$$
\begin{equation*}
\|x\|_{\mathcal{F}(\bar{X})} \leq \varphi_{\mathcal{F}}\left(\|x\|_{X_{0}},\|x\|_{X_{1}}\right) \tag{1}
\end{equation*}
$$

for every $0 \neq x \in X_{0} \cap X_{1}$. For a fixed Banach space A which is intermediate with respect to the Banach couple \bar{A}, define the exact interpolation functor $H_{A}^{\bar{A}}: \bar{X} \mapsto\left(H_{A}^{\bar{A}}(\bar{X}),\|\cdot\|\right)$, where the space $H_{A}^{\bar{A}}(\bar{X})$ consists of all $x \in X_{0}+X_{1}$ such that

$$
\|x\|:=\sup \left\{\|T x\|_{A} ;\|T\|_{\bar{X} \rightarrow \bar{A}} \leq 1\right\}<\infty
$$

We need the well known fact (see, e.g., $[1,2.5 .1]$) that for any C-exact interpolation space A with respect to $\bar{A}=\left(A_{0}, A_{1}\right)$ the following continuous inclusions hold (with norms C and 1, respectively):

$$
\begin{equation*}
A \stackrel{C}{\hookrightarrow} H_{A}^{\bar{A}}\left(A_{0}, A_{1}\right) \stackrel{1}{\hookrightarrow} A . \tag{2}
\end{equation*}
$$

Lemma 2.3. Let E be a Banach space which is intermediate with respect to the Banach couple $\bar{E}=\left(E_{0}, E_{1}\right)$.
(i) If $\varphi_{\mathcal{F}}$ is the characteristic function of the maximal functor $\mathcal{F}=H_{E}^{\bar{E}}$, then for any $s, t>0$,

$$
\varphi_{\mathcal{F}}(s, t)=\psi_{E}(s, t):=\sup \left\{\|x\|_{E} ; x \in E_{0} \cap E_{1},\|x\|_{E_{0}} \leq s,\|x\|_{E_{1}} \leq t\right\}
$$

(ii) If \bar{E} is a couple of symmetric Banach sequence spaces and E is a symmetric Banach sequence space which is a C-exact interpolation space with respect \bar{E}, then for each n,

$$
\lambda_{E}(n) \leq \psi_{E}\left(\lambda_{E_{0}}(n), \lambda_{E_{1}}(n)\right) \leq C \lambda_{E}(n)
$$

Proof. (i) Fix $s, t>0$ and put $\bar{X}:=(s \mathbb{R}, t \mathbb{R})$. Note first that for $T: \bar{X} \rightarrow$ \bar{E} and $x \in E_{0} \cap E_{1}$ with $T 1=x$, we get $\|T\|_{\bar{X} \rightarrow \bar{E}}=\max \left\{\|x\|_{E_{0}} / s,\|x\|_{E_{1}} / t\right\}$. Hence as desired

$$
\begin{aligned}
\varphi_{\mathcal{F}}(s, t)=\|1\|_{\mathcal{F}(\bar{X})} & =\sup \left\{\|T 1\|_{E} ;\|T\|_{\bar{X} \rightarrow \bar{E}} \leq 1\right\} \\
& =\sup \left\{\|x\|_{E} ; x \in E_{0} \cap E_{1},\|x\|_{E_{0}} \leq s,\|x\|_{E_{1}} \leq t\right\} .
\end{aligned}
$$

The proof of (ii) is a minor modification of a similar result for the case of symmetric spaces on \mathbb{R}_{+}presented in [13]. Put $\mathcal{F}:=H_{E}^{\bar{E}}$. Combining (i) with (1) and (2), we infer for every n that

$$
\lambda_{E}(n) \leq \psi_{E}\left(\lambda_{E_{0}}(n), \lambda_{E_{1}}(n)\right) .
$$

To prove the reverse inequality fix $n \in \mathbb{N}$ and $y \in E_{0} \cap E_{1}$, and define the rank one operator $T: \bar{E} \rightarrow \bar{E}$ by

$$
T:=x^{*} \otimes y,
$$

where $x^{*}(x):=\sum_{k=1}^{n} \xi_{k}$ for $x=\left\{\xi_{k}\right\} \in E_{0}+E_{1}$. Clearly, $\|T\|_{E \rightarrow E}=$ $\lambda_{E^{\prime}}(n)\|y\|_{E}$ and $\|T\|_{E_{j} \rightarrow E_{j}}=\lambda_{E_{j}^{\prime}}(n)\|y\|_{E_{j}}, j=0,1$. This yields, by the interpolation property,

$$
\lambda_{E^{\prime}}(n)\|y\|_{E} \leq C \max \left\{\lambda_{E_{0}^{\prime}}(n)\|y\|_{E_{0}}, \lambda_{E_{1}^{\prime}}(n)\|y\|_{E_{1}}\right\},
$$

which, since $\lambda_{E}(n) \lambda_{E^{\prime}}(n)=n$ (see [11, 3.a.6]), gives $\|y\|_{E} \leq C \lambda_{E}(n) / n$ whenever $\|y\|_{E_{j}} \leq \lambda_{E_{j}}(n) / n, j=0,1$. Hence

$$
\psi_{E}\left(\lambda_{E_{0}}(n) / n, \lambda_{E_{1}}(n) / n\right) \leq C \lambda_{E}(n) / n,
$$

which completes the proof since ψ_{E} is positively homogeneous.
In the classical ℓ_{p}-case the second lemma needed is due to König [8]; for its extension to ($E, 2$)-summing operators see [4, 6.2]. Henceforth, \hookrightarrow denotes a continuous inclusion.

Lemma 2.4. Let \mathcal{F} be an exact interpolation functor and let $\left(E_{0}, E_{1}\right)$ be a couple of Banach sequence spaces which both contain ℓ_{2}. Then for any Banach spaces X, Y,

$$
\mathcal{F}\left(\Pi_{E_{0}, 2}(X, Y), \Pi_{E_{1}, 2}(X, Y)\right) \hookrightarrow \Pi_{\mathcal{F}\left(E_{0}, E_{1}\right), 2}(X, Y) .
$$

Proof of Theorem 2.2. Let $T \in \mathcal{L}(X, Y)$ be of rank n. Put $\mathcal{F}:=H_{E}^{\left(E_{1}, E_{2}\right)}$. Since E is a C-exact interpolation space with respect to (E_{1}, E_{2}), by (2) we have $E \stackrel{C}{\hookrightarrow} \mathcal{F}\left(E_{1}, E_{2}\right) \stackrel{1}{\hookrightarrow} E$. Hence by applying Lemma 2.3, estimate (1) and Lemma 2.2, we obtain

$$
\begin{aligned}
\pi_{E, 2}(T) & \left.\leq \pi_{\mathcal{F}\left(E_{1}, E_{2}\right), 2}(T) \leq\|T\|_{\mathcal{F}\left(\Pi_{E_{1}, 2}(X, Y), \Pi_{E_{2}, 2}\right.}(X, Y)\right) \\
& \leq \varphi_{\mathcal{F}}\left(\lambda_{E_{1}}(n), \lambda_{E_{2}}(n)\right)\|T\|=\psi_{E}\left(\lambda_{E_{1}}(n), \lambda_{E_{2}}(n)\right)\|T\| \\
& \leq C \lambda_{E}(n)\|T\| .
\end{aligned}
$$

The following estimate will be of special interest.

Corollary 2.5. Let E be a symmetric Banach sequence space which is an interpolation space with respect to $\left(\ell_{2}, \ell_{\infty}\right)$. Then there is a constant C depending on E such that
(i) For any operator T with $\operatorname{rank} T \leq n$,

$$
\pi_{E, 2}(T) \leq C \lambda_{E}(n)\|T\|
$$

(ii) For the identity map id_{X} on an n-dimensional Banach space X,

$$
C^{-1} \lambda_{E}(n) \leq \pi_{E, 2}\left(\operatorname{id}_{X}\right) \leq C \lambda_{E}(n)
$$

Proof. (i) Take T of rank n. Then it is well known that $\pi_{\ell_{2}, 2}\left(\mathrm{id}_{X}\right)=$ $\pi_{2}\left(\operatorname{id}_{X}\right) \leq n^{1 / 2}\left\|\operatorname{id}_{X}\right\|=\lambda_{\ell_{2}}(n)\left\|\operatorname{id}_{X}\right\|$ (see, e.g., [8, 2.a.2 1.11]) and trivially $\pi_{\ell_{\infty}, 2}\left(\mathrm{id}_{X}\right)=\left\|\mathrm{id}_{X}\right\|=\lambda_{\ell_{\infty}}(n)\left\|\mathrm{id}_{X}\right\|$. Hence the desired result is an immediate consequence of the preceding theorem and the fact that there exists a constant $C>0$ such that E is a C-exact interpolation space with respect to $\left(\ell_{2}, \ell_{\infty}\right)$.
(ii) The upper estimate in the second inequality follows by (i). For the lower bound we may assume that $n>1$. Take $k \in \mathbb{N}$ so that $2 k \leq n \leq 2 k+1$. Then by the Dvoretzky-Rogers Lemma (see [7, Lemma 1.3]) there exist k vectors $x_{1}, \ldots, x_{k} \in X$ in the unit ball of X, each of norm $\left\|x_{j}\right\|_{X} \geq 1 / 2$, such that

$$
\sup _{\left\|x^{*}\right\|_{X^{*}} \leq 1}\left(\sum_{j=1}^{k}\left|x^{*}\left(x_{j}\right)\right|^{2}\right)^{1 / 2} \leq 1
$$

Hence

$$
\frac{1}{2} \lambda_{E}(k) \leq\left\|\sum_{j=1}^{k}\right\| \operatorname{id}_{X}\left(x_{j}\right)\left\|_{X} e_{j}\right\|_{E} \leq \pi_{E, 2}\left(\operatorname{id}_{X}\right)
$$

Since $k \mapsto \lambda_{E}(k) / k$ is a non-increasing function, $\lambda_{E}(n) / 6 \leq \pi_{E, 2}\left(\mathrm{id}_{X}\right)$.
Implicitly and in a quite different way this result has been proved in [4, 6.4]-however, in [4] it was stated for the smaller class of all E's which are 2-convex although an analysis of the proof shows that in fact the formulation given here holds true. Recall that a Banach sequence space E is 2 -convex (or equivalently, the dual of E has cotype 2 , see [12, 1.f.16]) if there is a constant $C>0$ such that for each choice of finitely many $x_{1}, \ldots, x_{n} \in E$,

$$
\left\|\left(\sum_{k=1}^{n}\left|x_{k}\right|^{2}\right)^{1 / 2}\right\| \leq C\left(\sum_{k=1}^{n}\left\|x_{k}\right\|^{2}\right)^{1 / 2}
$$

It was shown in [4, Lemma 4.3] that each 2-convex maximal and symmetric Banach sequence space E is an exact interpolation space with respect to the couple $\left(\ell_{2}, \ell_{\infty}\right)$. We note that there is a quite large class of symmetric sequence spaces which are exact interpolation spaces with respect to $\left(\ell_{2}, \ell_{\infty}\right)$, but fail to be 2-convex. For example the real interpolation spaces
$\left(\ell_{2}, \ell_{\infty}\right)_{\theta, q}=\ell_{p, q}$ with $1 / p=(1-\theta) / 2,0<\theta<1,1 \leq q<\infty$ contain order isomorphic copies of ℓ_{q} (see, e.g., [11, Prop. 4.e.3]). Thus these spaces are not 2-convex for any $1 \leq q<2$.
3. (E, 2)-summing operators and Weyl numbers. Let $w=\left\{w_{n}\right\}$ be a weight sequence (i.e., $w_{n}>0$ for all n). For $0<p<\infty$ the Lorentz space $d(w, p)$ is given by

$$
d(w, p):=\left\{x=\left\{x_{n}\right\} \in \omega ;\|x\|:=\left(\sum_{n=1}^{\infty}\left(x_{n}^{*}\right)^{p} w_{n}\right)^{1 / p}<\infty\right\}
$$

If $0<p, q<\infty$ and $w=\left\{n^{1 / p-1 / q}\right\}$, then as usual $d(w, p)$ is denoted by $\ell_{p, q}$. It is well known that if w is a non-increasing sequence, then $d(w, p)$ is a maximal symmetric quasi-Banach sequence space (Banach whenever $1 \leq p<\infty)$. If E is a symmetric Banach sequence space with the fundamental function λ_{E}, then the Lorentz space $d(w, 1)$ with $w=\left\{\lambda_{E}(n) / n\right\}$ is denoted by $\lambda(E)$. For a positive non-decreasing function $\psi: \mathbb{N} \rightarrow \mathbb{R}_{+}$ satisfying $\psi(2 n) \leq C \psi(n)$ for some $C>0$ and all $n \in \mathbb{N}, m_{\psi}$ stands for the Marcinkiewicz sequence space of all real sequences x for which $\left\{\psi(n) x_{n}^{*}\right\}$ $\in \ell_{\infty}$; equipped with $\|x\|:=\sup _{n \geq 1} \psi(n) x_{n}^{*}$, it forms a maximal symmetric quasi-Banach sequence space. In the case when $\psi(n)=n^{1 / p}, 0<p<\infty$, we write $\ell_{p, \infty}$ for m_{ψ}. If E is a symmetric Banach sequence space with the fundamental function λ_{E}, then we write $m(E)$ for the Marcinkiewicz space m_{ψ} defined by $\psi=\lambda_{E}$.

As pointed out in the introduction we now prove an extension of one of the key results of the theory of asymptotic s-number/eigenvalue distribution of power compact operators in Banach spaces, namely the inclusions $\mathcal{L}_{p, 1}^{x} \hookrightarrow$ $\Pi_{p, 2} \hookrightarrow \mathcal{L}_{p, \infty}^{x}, p \geq 2$ (see, e.g., [18, 2.7.4] and [8, 2.a.11]).

Theorem 3.1. Let E be a symmetric Banach sequence such that $\ell_{2} \hookrightarrow E$.
(i) If H is a Hilbert space, then $\Pi_{E, 2}(H, Y) \hookrightarrow \mathcal{L}_{E}^{a}(H, Y)$ for every Banach space Y. In particular, $\Pi_{E, 2} \hookrightarrow \mathcal{L}_{m(E)}^{x}$.
(ii) If E is an interpolation space with respect to the couple $\left(\ell_{2}, \ell_{\infty}\right)$, then

$$
\mathcal{L}_{\lambda(E)}^{x} \hookrightarrow \Pi_{E, 2}
$$

Proof. Generalizing an inequality of König (see, e.g., [8, 2.a.3]) it was stated in $[4,3.6]$ (and proved in [6, Proposition 1]) that (i) holds.
(ii) Assume without loss of generality that the fundamental function $\lambda:=\lambda_{E}$ of E satisfies $\lambda(1)=1$, and note that λ is non-decreasing and $\lambda(2 n) \leq 2 \lambda(n)$ for all $n \in \mathbb{N}$. Then for $x=\left\{x_{n}\right\} \in \lambda(E)$,

$$
\|x\|_{\lambda(E)}=\sum_{n=1}^{\infty} x_{n}^{*} \frac{\lambda(n)}{n}=x_{1}^{*}+\sum_{k=0}^{\infty}\left(\sum_{2^{k}<n \leq 2^{k+1}} x_{n}^{*} \frac{\lambda(n)}{n}\right)
$$

$$
\begin{aligned}
& \geq x_{1}^{*}+\sum_{k=0}^{\infty} \lambda\left(2^{k}\right) x_{2^{k+1}}^{*}\left(\sum_{2^{k}<n \leq 2^{k+1}} \frac{1}{n}\right) \\
& \geq x_{1}^{*}+4^{-1} \sum_{k=0}^{\infty} x_{2^{k+1}}^{*} \lambda\left(2^{k+1}\right) \geq 4^{-1} \sum_{k=1}^{\infty} x_{2^{k}}^{*} \lambda\left(2^{k}\right)
\end{aligned}
$$

Fix $T \in \mathcal{L}_{\lambda(E)}^{a}(X, Y)$ and choose $S_{k}: X \rightarrow Y$ with rank $S_{k}<2^{k}$ such that $\left\|T-S_{k}\right\| \leq 2 a_{2^{k}}(T), k=0,1, \ldots$, where $T_{0}:=0$. Put $T_{k}=S_{k+1}-S_{k}$. Combining the above inequalities, we obtain

$$
T=\sum_{k=0}^{\infty} T_{k} \quad \text { with } \operatorname{rank} T_{k} \leq 2^{k} \text { and }\left\{\lambda\left(2^{k}\right)\left\|T_{k}\right\|\right\} \in \ell_{1}
$$

Now by applying Theorem 2.1, we get $\left\{\pi_{E, 2}\left(T_{k}\right)\right\} \in \ell_{1}$. In consequence $T \in$ $\Pi_{E, 2}(X, Y)$, by the completeness of $\Pi_{E, 2}(X, Y)$. Finally, if $T \in \mathcal{L}_{\lambda(E)}^{x}(X, Y)$, then for any $S \in \mathcal{L}\left(\ell_{2}, X\right)$, we have

$$
T S \in \mathcal{L}_{\lambda(E)}^{x}\left(\ell_{2}, Y\right)=\mathcal{L}_{\lambda(E)}^{a}\left(\ell_{2}, Y\right) \hookrightarrow \Pi_{E, 2}\left(\ell_{2}, Y\right)
$$

Since

$$
\pi_{E, 2}(T)=\sup \left\{\pi_{E, 2}(T S) ; S \in \mathcal{L}\left(\ell_{2}, X\right),\|S\| \leq 1\right\}
$$

we obtain $T \in \Pi_{E, 2}(X, Y)$.
REmARK 3.2. We note that for a large class of symmetric Banach sequence spaces E which are interpolation spaces with respect to $\left(\ell_{2}, \ell_{\infty}\right)$ the continuous inclusion $\Pi_{E, 2} \hookrightarrow \mathcal{L}_{m(E)}^{x}$ is optimal. In fact, let F be any 2-concave symmetric Banach sequence space and let $E:=M\left(\ell_{2}, F\right)$ be a symmetric Banach sequence space of all multipliers from ℓ_{2} into F. Then E is 2 -convex, and thus an interpolation space with respect to $\left(\ell_{2}, \ell_{\infty}\right)$ (see [4, Lemma 4.3]). Let id : $F \hookrightarrow \ell_{2}$ denote the inclusion map. Applying [4, 3.2 and 4.1] we conclude that id $\in \Pi_{E, 2}\left(F, \ell_{2}\right)$. Further, we have $\lambda_{E}(n) \asymp \lambda_{F}(n) / \sqrt{n}$ by [5, Proposition 3.5]. This easily implies that

$$
x_{n}\left(\mathrm{id}: F \hookrightarrow \ell_{2}\right) \asymp 1 / \lambda_{E}(n) .
$$

4. Composition theorem for $(E, 2)$-summing operators. In this section we present the composition theorem for $(E, 2)$-summing operators. Recall that an operator $T \in \mathcal{L}(X, Y)$ belongs to the product $\mathcal{B} \circ \mathcal{A}$ of two quasi-Banach operator ideals (\mathcal{A}, α) and (\mathcal{B}, β) if T can be written in the form $T=V U$, where $U \in \mathcal{A}(X, Z)$ and $V \in \mathcal{B}(Z, Y)$ with a suitable Banach space Z. Clearly, $\mathcal{B} \circ \mathcal{A}$ is an operator ideal which, if endowed with the quasi-norm

$$
\|T\|_{\mathcal{B} \circ \mathcal{A}}:=\inf \{\alpha(U) \beta(V) ; T=V U, U \in \mathcal{A}(X, Z), V \in \mathcal{B}(Z, Y)\}
$$

forms a quasi-normed Banach operator ideal (see [16, 7.1.2]). In what follows, if E, F and G are symmetric quasi-Banach sequence spaces, and the map B given by $B(x, y):=\left\{x_{n}^{*} y_{n}^{*}\right\}$ is defined and bounded from $E \times F$ into G (i.e., $\|B(x, y)\|_{G} \leq C\|x\|_{E}\|y\|_{F}$ for some $C>0$), then we write $E * F \hookrightarrow G$. Recall that an s-function s is called multiplicative if $s_{m+n-1}(V U) \leq s_{m}(U) s_{n}(V)$ for any $U \in \mathcal{L}(X, Z), V \in \mathcal{L}(Z, Y)$ and $m, n \in \mathbb{N}$. We need the following easy technical observation.

Proposition 4.1. Let E, F and G be maximal symmetric quasi-Banach sequence spaces such that $E * F \hookrightarrow G$, and let s be any multiplicative function. Then $\mathcal{L}_{E}^{s} \circ \mathcal{L}_{F}^{s} \hookrightarrow \mathcal{L}_{G}^{s}$.

Proof. Let us first remark the following: If $x \in \omega$ is such that $\left\{x_{2 n-1}^{*}\right\} \in G$, then $x \in G$ and $\|x\|_{G} \leq 2 C_{G}\left\|\left\{x_{2 n-1}^{*}\right\}\right\|_{G}$, where C_{G} is the constant from the quasi-triangle inequality of G. Indeed, we have $x^{*}=y+z$ with $y=$ $\sum_{n} x_{2 n-1}^{*} e_{2 n-1}$ and $z=\sum_{n} x_{2 n}^{*} e_{2 n}$ in ω. Since $y^{*}=\left\{x_{2 n-1}^{*}\right\} \in G$ and $z^{*} \leq y^{*}$, we get $z^{*} \in G$ and also $z \in G$ with $\|z\|_{G} \leq\|y\|_{G}$. But then $x \in G$ and

$$
\|x\|_{G}=\left\|x^{*}\right\|_{G} \leq 2 C_{G}\|y\|_{G}=2 C_{G}\left\|y^{*}\right\|_{G}=\left\|\left\{x_{2 n-1}^{*}\right\}\right\|_{G}
$$

Let now $T \in \mathcal{L}_{E}^{s} \circ \mathcal{L}_{F}^{s}(X, Y)$, hence T has a factorization $T=V U$ through a Banach space Z with $U \in \mathcal{L}_{F}^{s}(X, Z)$ and $V \in \mathcal{L}_{E}^{s}(Z, Y)$. According to our remark we now show that $\left\{s_{2 n-1}(T)\right\} \in G$. Since $s_{2 n-1}(V U) \leq s_{n}(U) s_{n}(V)$ for any n, by the multiplicity of s, and by assumption $E * F \hookrightarrow G$ with constant C, we obtain $\left\{s_{2 n-1}(T)\right\} \in G$ and

$$
s_{G}(T) \leq 2 C_{G}\left\|\left\{s_{2 n-1}(T)\right\}\right\|_{G} \leq 2 C_{G} C\left\|\left\{s_{n}(U)\right\}\right\|_{E}\left\|\left\{s_{n}(V)\right\}\right\|_{F} .
$$

The proof is completed by taking the infimum over all possible factorizations of T.

As announced we now prove several composition formulas for $(E, 2)$ summing operators.

Proposition 4.2. Suppose that E, F and G are symmetric Banach sequence spaces such that E and F both contain ℓ_{2}, and G is an interpolation space with respect to $\left(\ell_{2}, \ell_{\infty}\right)$. If $\left\{\lambda_{G}\left(2^{n}\right) / \lambda_{E}\left(2^{n}\right) \cdot \lambda_{F}\left(2^{n}\right)\right\} \in \ell_{1}$, then

$$
\Pi_{E, 2} \circ \Pi_{F, 2} \hookrightarrow \Pi_{G, 2} .
$$

Proof. Since $m(E) * m(F) \hookrightarrow m_{\psi}$ with $\psi(n)=\lambda_{E}(n) \lambda_{F}(n)$ for $n \in \mathbb{N}$, it follows by Theorem 3.1 and the preceding proposition that

$$
\Pi_{E, 2} \circ \Pi_{F, 2} \hookrightarrow \mathcal{L}_{m(E)}^{x} \circ \mathcal{L}_{m(F)}^{x} \hookrightarrow \mathcal{L}_{m_{\psi}}^{x} .
$$

It is easy to see that $\left\{x_{n}\right\} \in \lambda(G)$ with $\left\|\left\{x_{n}\right\}\right\|_{\lambda(G)} \prec\left\|\left\{x_{2^{n}}^{*} \lambda_{G}\left(2^{n}\right)\right\}\right\|_{\ell_{1}}$ whenever $\left\{x_{2^{n}}^{*} \lambda_{G}\left(2^{n}\right)\right\} \in \ell_{1}$. Combining this with the assumption, we conclude that $\mathcal{L}_{m_{\psi}}^{x} \hookrightarrow \mathcal{L}_{\lambda(G)}^{x}$. In consequence, Theorem 3.1 applies and the proof is complete.

In order to formulate a more comfortable version we introduce two types of indices for symmetric Banach sequence spaces. For a symmetric Banach sequence space E with fundamental function λ_{E} define the indices α_{E} and β_{E} as follows:
$\alpha_{E}:=\sup \left\{\alpha>0 ; \inf _{n \in \mathbb{N}} \frac{\lambda_{E}(n)}{n^{\alpha}}>0\right\}, \quad \beta_{E}:=\inf \left\{\beta>0 ; \sup _{n \in \mathbb{N}} \frac{\lambda_{E}(n)}{n^{\beta}}<\infty\right\}$.
The following is our main result.
Theorem 4.3. Assume that E_{1}, \ldots, E_{N} and F are symmetric Banach sequence spaces such that all E_{j} contain ℓ_{2}, and F is an interpolation space with respect to $\left(\ell_{2}, \ell_{\infty}\right)$. If $\alpha_{E_{1}}+\ldots+\alpha_{E_{N}}>\beta_{F}$, then

$$
\Pi_{E_{N}, 2} \circ \ldots \circ \Pi_{E_{1}, 2} \hookrightarrow \Pi_{F, 2}
$$

Proof. By the preceding proposition we check that

$$
\left\{\lambda_{F}\left(2^{n}\right) / \lambda_{E_{1}}\left(2^{n}\right) \cdot \ldots \cdot \lambda_{E_{N}}\left(2^{n}\right)\right\} \in \ell_{1}
$$

To see this take $\varepsilon>0$ such that $\delta:=\alpha_{E_{1}}+\ldots+\alpha_{E_{N}}-\beta_{F}-2 \varepsilon N>0$. By the definition of $\alpha_{E_{j}}$ and β_{F} we have, for all $j=1, \ldots, N$,

$$
\lambda_{F}(n) \prec n^{\beta_{F}+N \varepsilon}, \quad n^{\alpha_{E_{j}}-\varepsilon} \prec \lambda_{E_{j}}(n) .
$$

Altogether we conclude as desired that

$$
\sum_{n} \frac{\lambda_{F}\left(2^{n}\right)}{\lambda_{E_{1}}\left(2^{n}\right) \cdot \ldots \cdot \lambda_{E_{N}}\left(2^{n}\right)} \prec \sum_{n} \frac{1}{2^{\delta n}}<\infty
$$

Obviously, the preceding result recovers the classical ℓ_{p}-case, which is due to König, Retherford and Tomczak-Jaegermann. To show that our result really leads to new applications we add the following

ExAmple 4.4. Let $0<\alpha<1,0<\beta<\infty, 1 \leq p<\infty$,

$$
w=\left\{n^{-\alpha}(1+\log n)^{-\beta}\right\}
$$

and let φ be an Orlicz function. Then
(i) $\lambda_{E}(n) \asymp n^{(1-\alpha) / p} /(1+\log n)^{\beta / p}$, and hence $\alpha_{E}=(1-\alpha) / p$ with $E:=d(w, p)$.
(ii) If $2 \leq p<\infty$, then $d(w, p)$ is 2 -convex, and hence an exact interpolation space with respect to the couple $\left(\ell_{2}, \ell_{\infty}\right)$.
(iii) $\lambda_{\ell_{\varphi}}(n)=1 / \varphi^{-1}(1 / n)$ and ℓ_{φ} is 2 -convex provided that the function $t \mapsto \varphi(\sqrt{t})$ is equivalent to a convex function.

Proof. (i) Approximating the Riemann sums of $\int_{1}^{n} t^{-\alpha}(1+\log t)^{-\beta} d t$, we conclude that

$$
n^{1-\alpha}(1+\log n)^{-\beta} \asymp \sum_{k=1}^{n} k^{-\alpha}(1+\log k)^{-\beta}
$$

In particular, this yields $\lambda_{E}(n) \asymp n^{(1-\alpha) / p} /(1+\log n)^{\beta / p}$.
(ii) It is easy to see that any Lorentz space $d(w, p)$ is p-convex, and thus it is also 2-convex whenever $2 \leq p<\infty$. Finally (iii) is an easy exercise.

In the case $F=\ell_{2}$ the theorem allows the following improvement.
Corollary 4.5. Assume that E_{1}, \ldots, E_{N} are symmetric sequence $B a$ nach spaces which all contain ℓ_{2}, and let $T_{j}: X_{j-1} \rightarrow X_{j}$ be $\left(E_{j}, 2\right)$-summing operators between Banach spaces, $j=1, \ldots, N$. Then $T_{N} \circ \ldots \circ T_{1}$ is a 2 -summing compact operator whenever $\alpha_{E_{1}}+\ldots+\alpha_{E_{N}}>1 / 2$.

Proof. For $F=\ell_{2}$, we have $\beta_{F}=1 / 2$. Thus $T:=T_{N} \circ \ldots \circ T_{1} \in$ $\Pi_{2}\left(X_{0}, X_{N}\right)$ by Theorem 4.3. To prove that T is compact we need only show that

$$
\lim _{n \rightarrow \infty} n^{1 / 2} x_{n}(T)=0
$$

(see [18, Theorem 2.10.8]). To see this note that similarly to the proof of Proposition 4.1, we obtain

$$
\Pi_{E_{N}, 2} \circ \ldots \circ \Pi_{E_{1}, 2} \hookrightarrow \mathcal{L}_{m_{\psi}}^{x}
$$

with $\psi(n):=\lambda_{E_{1}}(n) \cdot \ldots \cdot \lambda_{E_{N}}(n)$ for any $n \in \mathbb{N}$, hence $x_{n}(T) \prec 1 / \psi(n)$. Now fix $\varepsilon>0$ so that

$$
\delta:=\alpha_{E_{1}}+\ldots+\alpha_{E_{N}}-\varepsilon N-1 / 2>0
$$

and note that $n^{a_{E_{j}}-\varepsilon} \prec \lambda_{E_{j}}(n)$ for all $j=1, \ldots, N$. Combining these inequalities yields $n^{1 / 2} x_{n}(T) \prec 1 / n^{\delta}$, which clearly gives our conclusion.

We finish with a result on powers of the Banach operator ideal $\Pi_{E, 2}$ (cf. [17, Theorem 7] for $E=\ell_{p}$ with $2<p<\infty$). Recall that an operator $T \in \mathcal{L}(X, Y)$ is nuclear, $T \in \mathcal{N}(X, Y)$, if there are sequences $\left\{x_{n}^{*}\right\} \subset X^{*}$, $\left\{y_{n}\right\} \subset Y$ with

$$
T=\sum_{n=1}^{\infty} x_{n}^{*} \otimes y_{n}, \quad \sum_{n=1}^{\infty}\left\|x_{n}^{*}\right\|\left\|y_{n}\right\|<\infty
$$

Corollary 4.6. Assume that E is a symmetric Banach sequence space which contains ℓ_{2}, and $\alpha_{E}>1 / 2 n$ for a positive integer n. Then $\Pi_{E, 2}^{2 n} \hookrightarrow \mathcal{N}$, where \mathcal{N} denotes the Banach ideal of nuclear operators.

Proof. The previous corollary yields $\Pi_{E, 2}^{n} \hookrightarrow \Pi_{2}$. To finish the proof we need only recall the well known fact that the composition of two 2 -summing operators is nuclear (see, e.g., [7, Theorem 5.31]).

It is well known that each nuclear operator has 2-summable eigenvalues. We note that it is an open problem whether the eigenvalues of nuclear operators on Banach spaces of nontrivial type are better than 2-summable. It is known (see [8, p. 110]) that if X is a Banach space such that

$$
\mathcal{L}\left(\ell_{1}, X\right)=\Pi_{s, 2}\left(\ell_{1}, X\right)
$$

for some $2<s<\infty$, then for each nuclear operator $T: X \rightarrow X$ the sequence of its eigenvalues belongs to ℓ_{r} for some $1<r<2$.

Combining the following proposition with the inequality connecting eigenvalues and Weyl numbers due to Weyl (for $E=\ell_{p}$) and König (general case, see [8, 2a.8]) yields further information on eigenvalues of nuclear operators. We leave the details to the interested reader.

Proposition 4.7. Let X be a Banach space such that $\mathcal{L}\left(\ell_{1}, X\right)=$ $\Pi_{E, 2}\left(\ell_{1}, X\right)$ for some symmetric Banach sequence space E with $\ell_{2} \hookrightarrow E$. Then the sequence of Weyl numbers of any nuclear operator T on X satisfies $\left\{n^{1 / 2} x_{n}(T)\right\} \in E$.

Proof. It is well known that any nuclear operator $T: X \rightarrow X$ has a factorization

$$
T: X \xrightarrow{R} \ell_{\infty} \xrightarrow{D} \ell_{1} \xrightarrow{S} X
$$

with D being a diagonal operator. Clearly, D has a factorization

$$
D: \ell_{\infty} \xrightarrow{D_{1}} \ell_{2} \xrightarrow{D_{2}} \ell_{1}
$$

where both D_{1} and D_{2} are diagonal operators. Since D_{1} is 2 -summing, $T=U V$ with $V \in \Pi_{2}\left(X, \ell_{2}\right)$ and $U \in \Pi_{E, 2}\left(\ell_{2}, X\right)$. Combining these remarks with Theorem 3.1 and Proposition 4.1 we obtain the desired result.

We conclude the paper with the following corollary:
Corollary 4.8. Let φ be an Orlicz function such that the function $t \mapsto \varphi(\sqrt{t})$ is equivalent to a concave function on \mathbb{R}_{+}and let φ be supermultiplicative (i.e., there exists $C>0$ such that $\varphi(s t) \geq C \varphi(s) \varphi(t)$ for all $s, t>0)$. Then the sequence of Weyl numbers of any nuclear operator T on the Orlicz space ℓ_{φ} satisfies the condition

$$
\left\{n^{1 / 2} x_{n}(T)\right\} \in M\left(\ell_{2}, \ell_{\phi}\right)
$$

where ϕ is any Orlicz function such that $\phi^{-1}(t) \asymp t^{3 / 2} \varphi^{-1}(1 / t)$.
Proof. It is shown in [3] that under the above assumptions we have $\mathcal{L}\left(\ell_{1}, \ell_{\varphi}\right)=\Pi_{\phi, 1}\left(\ell_{1}, \ell_{\varphi}\right)$. By applying [5, Lemma 3.4], we obtain

$$
\mathcal{L}\left(\ell_{1}, \ell_{\varphi}\right)=\Pi_{E, 2}\left(\ell_{1}, \ell_{\varphi}\right)
$$

with $E=M\left(\ell_{2}, \ell_{\phi}\right)$. The claim now follows by Proposition 4.7. ■

References

[1] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976.
[2] Yu. A. Brudnyı̆ and N. Ya. Krugljak, Interpolation Functors and Interpolation Spaces I, North-Holland, Amsterdam, 1991.
[3] J. Cerdà and M. Mastyło, The type and cotype of Calderón-Lozanovskiŭ spaces, Bull. Polish Acad. Sci. Math. 47 (1999), 105-117.
[4] A. Defant, M. Mastyło and C. Michels, Summing inclusion maps between symmetric sequence spaces, Trans. Amer. Math. Soc. 354 (2002), 4473-4492.
[5] -, —, —, Summing inclusion maps between symmetric sequence spaces, a survey, in: Recent Progress in Functional Analysis (Valencia, 2000), North-Holland Math. Stud. 189, North-Holland, Amsterdam, 2001, 43-60.
[6] -, —, -, Orlicz norm estimates for eigenvalues of matrices, Israel J. Math. 132 (2002), 45-59.
[7] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Univ. Pres, 1995.
[8] H. König, Eigenvalue Distributions of Compact Operators, Birkhäuser, 1986.
[9] H. König, J. R. Retherford and N. Tomczak-Jaegermann, On the eigenvalues of ($p, 2$)-summing operators and constants associated to normed spaces, J. Funct. Anal. 37 (1980), 149-168.
[10] S. G. Kreĭn, Yu. I. Petunin and E. M. Semenov, Interpolation of Linear Operators, Transl. Math. Monogr. 54, Amer. Math. Soc., 1980.
[11] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, 1979.
[12] -, —, Classical Banach Spaces II. Function Spaces, Springer, 1979.
[13] L. Maligranda and M. Mastyło, Notes on non-interpolation spaces, J. Approx. Theory 56 (1989), 333-347.
[14] B. Maurey and A. Pełczyński, A criterion for compositions of (p, q)-absolutely summing operators to be compact, Studia Math. 54 (1976), 751-754.
[15] V. I. Ovchinnikov, The methods of orbits in interpolation theory, Math. Rep. 1 (1984), 349-516.
[16] A. Pietsch, Operator Ideals, North-Holland, 1980.
[17] -, Weyl numbers and eigenvalues of operators in Banach spaces, Math. Ann. 247 (1980), 149-168.
[18] -, Eigenvalues and s-numbers, Cambridge Univ. Press, 1987.
[19] G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conf. Ser. in Math. 60, Amer. Math. Soc., 1986.
[20] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Longman Sci. Tech., 1989.

Fachberich Mathematik
Carl von Ossietzky Universität
Postfach 2503
D-26111 Oldenburg, Germany
E-mail: defant@mathematik.uni-oldenburg.de

Faculty of Mathematics and Computer Science Adam Mickiewicz University and
Institute of Mathematics Polish Academy of Sciences
(Poznań branch)
Umultowska 87
61-614 Poznań, Poland
E-mail: mastylo@amu.edu.pl

