The spectrally bounded linear maps on operator algebras

by
Jianlian Cui (Beijing, Taiyuan and Linfen) and Jinchuan Hou (Linfen and Taiyuan)

Abstract

We show that every spectrally bounded linear map Φ from a Banach algebra onto a standard operator algebra acting on a complex Banach space is squarezero preserving. This result is used to show that if Φ_{2} is spectrally bounded, then Φ is a homomorphism multiplied by a nonzero complex number. As another application to the Hilbert space case, a classification theorem is obtained which states that every spectrally bounded linear bijection Φ from $\mathcal{B}(H)$ onto $\mathcal{B}(K)$, where H and K are infinite-dimensional complex Hilbert spaces, is either an isomorphism or an anti-isomorphism multiplied by a nonzero complex number. If Φ is not injective, then Φ vanishes at all compact operators.

1. Introduction. Over the past decades, there has been a considerable interest in the study of linear maps on operator algebras that preserve certain properties of operators. In particular, a problem how to characterize linear maps that preserve the spectrum of each operator has attracted the attention of many mathematicians. In [11], Jafarian and Sourour proved that a surjective linear map preserving spectrum from $\mathcal{B}(X)$ onto $\mathcal{B}(Y)$, where X and Y are Banach spaces, is either an isomorphism or an anti-isomorphism. Aupetit and Mouton [3] extended this result to primitive Banach algebras with minimal ideals. It is shown in [13] that every point spectrum preserving and surjective linear map on $\mathcal{B}(X)$ is an automorphism. Brešar and Šemrl [5] proved that a linear surjective map preserving spectral radius on $\mathcal{B}(X)$ is either an automorphism or an anti-automorphism multiplied by a scalar with modulus 1. For some other papers concerning this type of linear preservers, see $[1,2,4,6-8,10-11,13,16-18]$.

A natural and interesting question is to ask how to classify the surjective linear maps Φ on $\mathcal{B}(X)$ which are spectrally bounded, i.e., there exists a positive constant M such that $r(\Phi(T)) \leq M r(T)$ for every $T \in \mathcal{B}(X)$, where $r(T)$ denotes the spectral radius of T. In the case that $M=1$ we say that Φ

[^0]is spectral radius nonincreasing. Note that the study of spectrally bounded linear maps can be reduced to that of the spectral radius nonincreasing ones. Indeed, let $\Psi=(1 / M) \Phi$; then $r(\Psi(T))=(1 / M) r(\Phi(T)) \leq r(T)$, that is, Ψ is spectral radius nonincreasing.

A related reference is [14], where Šemrl proved that a unital bijective linear map on $\mathcal{B}(H)$ with H infinite-dimensional is spectrally bounded if and only if it is either an automorphism or an anti-automorphism. One of our main purposes in this note is to improve Šemrl's result above by omitting the assumption that Φ is unital.

When the Hilbert space H is finite-dimensional, together with the discussion of Šemrl [14, Remark 4], one can easily check that a bijective linear map Φ on $\mathcal{B}(H)$ is spectrally bounded if and only if Φ has the form $\Phi(T)=c \varphi(T)+(\Phi(I)-c I) \operatorname{tr} T / n$ for every $T \in \mathcal{B}(H)$, where φ is either an automorphism or an anti-automorphism of $\mathcal{B}(H), c$ is a nonzero complex number and $n=\operatorname{dim} H$. So when we discuss the spectrally bounded linear maps, we may always assume that the Hilbert space H is infinitedimensional.

Now we describe the main results of this note. In Section 2, we prove in a quite general framework that a spectrally bounded linear map from a unital complex Banach algebra onto a standard operator algebra acting on a complex Banach space preserves square-zero elements (see Theorem 2.1), which generalizes the first step of the proof of Šemrl's result in [14] mentioned above. This allows us to prove that a two-fold spectrally bounded surjective linear map from a unital complex Banach algebra onto a standard operator algebra acting on a complex Banach space is a homomorphism multiplied by a nonzero complex number (Theorem 2.2). Here a linear map $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ is said to be two-fold spectrally bounded if $\Phi_{2}: \mathcal{A} \otimes M_{2}(\mathbb{C}) \rightarrow$ $\mathcal{B} \otimes M_{2}(\mathbb{C})$ defined by $\Phi_{2}\left(\left(T_{i j}\right)\right)=\left(\Phi\left(T_{i j}\right)\right)$ is spectrally bounded. Section 3 concerns applications of Theorem 2.1 to the Hilbert space case. We show that a linear bijection Φ from $\mathcal{B}(H)$ onto $\mathcal{B}(K)$, where H and K are infinitedimensional complex Hilbert spaces, is spectrally bounded if and only if there exist a nonzero complex number d and an invertible operator $A \in$ $\mathcal{B}(H, K)$ such that either $\Phi(T)=d A T A^{-1}$ for all $T \in \mathcal{B}(H)$ or $\Phi(T)=$ $d A T^{\operatorname{tr}} A^{-1}$ for all $T \in \mathcal{B}(H)$ (Theorem 3.1). If the injectivity assumption on Φ is omitted, then either Φ has one of the above forms or Φ vanishes at every compact operator (Theorem 3.3). In particular, if H is separable, then Φ is surjective and spectrally bounded if and only if it is either an isomorphism or an anti-isomorphism multiplied by a nonzero scalar. From our arguments, we also answer affirmatively a question raised by Šemrl in [15] where he gave a characterization of unital bijections on $\mathcal{B}(H)$ which preserve squarezero operators and asked whether or not the "unital" assumption can be omitted.

Let us fix some notations. Let $\mathcal{B}(X)$ and $\mathcal{F}(X)$ be the sets of all bounded linear operators and of all finite rank bounded linear operators on the Banach space X, respectively. A subalgebra \mathcal{B} in $\mathcal{B}(X)$ is called a standard operator algebra if \mathcal{B} is closed and contains the identity operator and $\mathcal{F}(X)$. For $T \in \mathcal{B}(X)$, we denote by $\mathcal{R}(T)$ and $\operatorname{ker}(T)$ the range and kernel of T, respectively. If $T^{2}=T$, we say T is an idempotent operator. Throughout this paper, we denote by $x \otimes f$ the bounded linear operator on X defined for any $x \in X$ and $f \in X^{*}$ by $(x \otimes f)(z)=\langle z, f\rangle x$ for every $z \in X$, where $\langle z, f\rangle$ is the value of f at z. Note that this operator is of rank one whenever both x and f are nonzero, and that every operator of rank one can be written in this form. By a projection we mean a self-adjoint idempotent in $\mathcal{B}(H)$, where H is a Hilbert space.
2. General results. In this section we consider the general case of spectrally bounded linear maps from a Banach algebra onto a standard operator algebra on a complex Banach space. The following is our main result.

Theorem 2.1. Let \mathcal{A} be a unital complex Banach algebra and \mathcal{B} be a standard operator algebra on a complex Banach space X. Assume that $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ is a surjective linear map. If Φ is spectrally bounded, then Φ preserves square-zero elements.

Proof. By the discussion in the introduction, we may assume that Φ is spectral radius nonincreasing. We divide the proof into two steps. We mention that the idea of the proof of Step 1 is the same as an idea used in [5].

STEP 1. Let $A \in \mathcal{A}$ be such that $A^{k}=0$ for some $k \geq 2$. If $B \in \mathcal{B}$ satisfies $B Q^{i} B=0, i=0,1, \ldots, k-1$, where $Q=\Phi(A)$, then

$$
r\left(\lambda Q^{k}+B Q^{k-1}+Q B Q^{k-2}+\ldots+Q^{k-1} B\right)=0
$$

for every complex number λ.
Let $B_{1}=B Q^{k-1}+Q B Q^{k-2}+\ldots+Q^{k-1} B$ and $B_{2}=Q^{k}$. Since $r(B+\lambda Q)^{k}$ $=r\left[(B+\lambda Q)^{k}\right]$ and $B^{2}=B Q B=B Q^{2} B=\ldots=B Q^{k-2} B=0$, it follows that

$$
r(B+\lambda Q)^{k}=|\lambda|^{k-1} r\left(B_{1}+\lambda B_{2}\right)
$$

As Φ is surjective, there exists $C \in \mathcal{A}$ such that $\Phi(C)=B$. Moreover, since Φ is spectral radius nonincreasing, we have

$$
r(B+\lambda Q)^{k}=r(\Phi(C+\lambda A))^{k} \leq r(C+\lambda A)^{k}
$$

As $A^{k}=0$, it follows that

$$
r(C+\lambda A)^{k}=r\left[(C+\lambda A)^{k}\right]=r\left(C_{0}+\lambda C_{1}+\ldots+\lambda^{k-1} C_{k-1}\right)
$$

where $C_{0}=C^{k}, C_{1}=C^{k-1} A+\ldots+A C^{k-1}, \ldots, C_{k-1}=A^{k-1} C+\ldots+$ $C A^{k-1}$. Thus we have shown that

$$
|\lambda|^{k-1} r\left(B_{1}+\lambda B_{2}\right) \leq r\left(C_{0}+\lambda C_{1}+\ldots+\lambda^{k-1} C_{k-1}\right)
$$

Therefore, for any complex λ satisfying $|\lambda| \geq 1$, we have

$$
\begin{aligned}
r\left(B_{1}+\lambda B_{2}\right) & \leq|\lambda|^{-k+1} r\left(C_{0}+\lambda C_{1}+\ldots+\lambda^{k-1} C_{k-1}\right) \\
& \leq\left\|C_{0}\right\|+\left\|C_{1}\right\|+\ldots+\left\|C_{k-1}\right\| .
\end{aligned}
$$

On the other hand, for every complex λ satisfying $|\lambda| \leq 1$, one gets

$$
r\left(B_{1}+\lambda B_{2}\right) \leq\left\|B_{1}+\lambda B_{2}\right\| \leq\left\|B_{1}\right\|+\left\|B_{2}\right\|
$$

Thus the function $\lambda \mapsto r\left(B_{1}+\lambda B_{2}\right)$ is bounded on \mathbb{C}. As it is subharmonic, the Liouville theorem for subharmonic functions [3] shows that $r\left(B_{1}+\lambda B_{2}\right)$ $=r\left(B_{1}\right)$ for every complex λ. Observing that $B_{1} B=0$ it is easy to see that $B_{1}^{2}=D_{k-2} B Q^{k-2}+D_{k-3} B Q^{k-3}+\ldots+D_{0} B$ for some $D_{i} \in \mathcal{B}$ and so $B_{1}^{2} Q B=B_{1}^{2} B=0$. This further implies that B_{1}^{3} has the form $B_{1}^{3}=$ $E_{k-3} B Q^{k-3}+E_{k-2} B Q^{k-2}+\ldots+E_{0} B$ for some $E_{i} \in \mathcal{B}$, and consequently, $B_{1}^{3} Q^{2} B=B_{1}^{3} Q B=B_{1}^{3} B=0$. Repeating this procedure one shows that $B_{1}^{k+1}=0$. So $r\left(B_{1}+\lambda B_{2}\right)=0$ for every complex λ, as desired.

Step 2. If $A \in \mathcal{A}$ and $A^{2}=0$, then $\Phi(A)^{2}=0$.
Based on Step 1, an argument similar to that in Step 5 of the proof of the main results in [5], where $\mathcal{B}(X)$ is replaced by \mathcal{A} or \mathcal{B}, shows that, for every $k \geq 2$ and every $A \in \mathcal{A}$ with $A^{k}=0$, we have $\Phi(A)^{2 k-1}=0$. So for every $A \in \mathcal{A}$ satisfying $A^{2}=0$, we have $\Phi(A)^{3}=0$. Assume that there exists some $A \in \mathcal{A}$ with $A^{2}=0$ but $\Phi(A)^{2} \neq 0$. Let $\Phi(A)=Q$. It follows that $p(Q) \neq 0$ for every complex polynomial p of degree not exceeding 2 . Kaplansky's theorem on local algebraic operators tells us that there is $u \in X$ such that the vectors $u, Q u$ and $Q^{2} u$ are linearly independent. Therefore, $u \notin M=\operatorname{span}\left\{Q u, Q^{2} u-u\right\}$. Hence there exists a linear functional $f \in X^{*}$ such that $f(u)=f\left(Q^{2} u\right)=1$ and $f(Q u)=0$. Let $B=\left(Q^{2} u-u\right) \otimes f$. Then a straightforward computation shows that $B^{2}=B Q B=0$. So, by Step 1, we have $r\left(Q^{2}+B Q+Q B\right)=0$. On the other hand, one can easily check

$$
\left(Q^{2}+B Q+Q B\right)(u-Q u)=u-Q u
$$

so $r\left(Q^{2}+B Q+Q B\right) \geq 1$, which is a contradiction. Hence Φ preserves square-zero elements.

Applying Theorem 2.1, we can prove the following results.
Theorem 2.2. Let \mathcal{A} be a unital complex Banach algebra and \mathcal{B} be a standard operator algebra on a complex Banach space. Assume that Φ : $\mathcal{A} \rightarrow \mathcal{B}$ is a surjective linear map. Then $\Phi_{2}: \mathcal{A} \otimes M_{2}(\mathbb{C}) \rightarrow \mathcal{B} \otimes M_{2}(\mathbb{C})$ is spectrally bounded if and only if Φ is a homomorphism multiplied by a nonzero complex number.

Proof. The sufficiency is clear. Now let us check the necessity. Assume that $\Phi_{2}: \mathcal{A} \otimes M_{2}(\mathbb{C}) \rightarrow \mathcal{B} \otimes M_{2}(\mathbb{C})$ is spectrally bounded. By Theorem 2.1, Φ_{2} preserves square-zero elements. Let $C \in \mathcal{A}$ be invertible. For any $A \in \mathcal{A}$, since

$$
\left(\begin{array}{cc}
A & C \\
-C^{-1} A^{2} & -C^{-1} A C
\end{array}\right)^{2}=0
$$

we have

$$
\left(\begin{array}{cc}
\Phi(A) & \Phi(C) \\
-\Phi\left(C^{-1} A^{2}\right) & -\Phi\left(C^{-1} A C\right)
\end{array}\right)^{2}=0
$$

So

$$
\begin{equation*}
\Phi(A)^{2}-\Phi(C) \Phi\left(C^{-1} A^{2}\right)=0 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi(A) \Phi(C)-\Phi(C) \Phi\left(C^{-1} A C\right)=0 \tag{2.2}
\end{equation*}
$$

Letting $C=I$ in (2.2) gives $\Phi(I) \Phi(A)=\Phi(A) \Phi(I)$. Since Φ is surjective and also spectral radius nonincreasing, and since \mathcal{B} is a standard operator algebra, we must have $\Phi(I)=c I$ for some complex number c with $|c| \leq 1$. We claim $c \neq 0$. Otherwise, taking $C=I$ in (2.1) gives $\Phi(A)^{2}=0$ for every $A \in \mathcal{A}$, which contradicts the surjectivity of Φ. So, without loss of generality, we may assume that $\Phi(I)=I$. Now it is clear that $\Phi\left(A^{2}\right)=\Phi(A)^{2}$, that is, Φ is a Jordan homomorphism. By taking $A=I$ in (2.1), we see that Φ also preserves invertibility. So (2.2) implies

$$
\Phi\left(C^{-1} A C\right)=\Phi(C)^{-1} \Phi(A) \Phi(C)
$$

Since Φ is Jordan, we have $\Phi(C A C)=\Phi(C) \Phi(A) \Phi(C)$ for any $A, C \in \mathcal{A}$. Hence

$$
\begin{equation*}
\Phi\left(A C^{2}\right)=\Phi\left(C^{-1} C A C C\right)=\Phi(C)^{-1} \Phi(C A C) \Phi(C)=\Phi(A) \Phi(C)^{2} \tag{2.3}
\end{equation*}
$$

Next, choosing any nonzero $\lambda \in \mathbb{C}$ so that $\lambda-C$ is invertible, we get, replacing C by $\lambda-C$ in (2.3),

$$
\Phi(A C)=\Phi(A) \Phi(C)
$$

for all A and invertible C in \mathcal{A}. When C is not invertible, take $\lambda \in \mathbb{C}$ so that $\lambda-C$ is invertible; then $\Phi(A(\lambda-C))=\Phi(A)(\lambda-\Phi(C))$, which again implies that $\Phi(A C)=\Phi(A) \Phi(C)$. Therefore, Φ is a homomorphism from \mathcal{A} onto \mathcal{B}.

Corollary 2.3. Let \mathcal{A} be a unital complex Banach algebra and \mathcal{B} be a standard operator algebra on a complex Banach space. Assume that $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ is a bijective linear map. Then $\Phi_{2}: \mathcal{A} \otimes M_{2}(\mathbb{C}) \rightarrow \mathcal{B} \otimes M_{2}(\mathbb{C})$ is spectrally bounded if and only if Φ is an isomorphism multiplied by a nonzero complex number.

If \mathcal{A} is a standard operator algebra, then Φ has a more concrete characterization.

Corollary 2.4. Let \mathcal{A} and \mathcal{B} be two standard operator algebras on a complex Banach space X. Assume that $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ is a bijective linear map. Then $\Phi_{2}: \mathcal{A} \otimes M_{2}(\mathbb{C}) \rightarrow \mathcal{B} \otimes M_{2}(\mathbb{C})$ is spectrally bounded if and only if there exists a complex number c and an invertible operator $A \in \mathcal{B}(X)$ such that $\Phi(T)=c A T A^{-1}$ for every operator $T \in \mathcal{A}$.

Proof. It is clear that we need only check the necessity. Assume that Φ_{2} is spectrally bounded. By Theorem 2.2, Φ is a scalar multiple of an isomorphism. Since every isomorphism between standard operator algebras is spatial, there exists an invertible operator $A \in \mathcal{B}(X)$ such that $\Phi(T)=$ $c A T A^{-1}$ for every $T \in \mathcal{A}$.
3. Application to Hilbert space case. Let H and K be two infinitedimensional complex Hilbert spaces. Applying the results of Section 2, we can get a complete classification of the spectrally bounded linear maps from $\mathcal{B}(H)$ onto $\mathcal{B}(K)$ without the assumption that $\Phi(I)=I$. The following theorem is our main result in this section.

Theorem 3.1. Let H and K be two infinite-dimensional Hilbert spaces. Assume that $\Phi: \mathcal{B}(H) \rightarrow \mathcal{B}(K)$ is a bijective linear map. Then the following conditions are equivalent.
(1) Φ is spectrally bounded.
(2) There exists a nonzero complex number d and a bounded linear map $\Psi: \mathcal{B}(H) \rightarrow \mathcal{B}(K)$ preserving idempotents such that $\Phi=d \Psi$.
(3) Φ is a Jordan isomorphism multiplied by a nonzero complex number.
(4) Φ is either an isomorphism or an anti-isomorphism multiplied by a nonzero complex number.
(5) There exists a nonzero complex number d and an invertible operator $A \in \mathcal{B}(H, K)$ such that either $\Phi(T)=d A T A^{-1}$ for all $T \in \mathcal{B}(H)$ or $\Phi(T)=$ $d A T^{\operatorname{tr}} A^{-1}$ for all $T \in \mathcal{B}(H)$, where T^{tr} denotes the transpose of T relative to a fixed but arbitrary orthonormal basis of H.

To prove this theorem, the following lemma is needed.
Lemma 3.2. Suppose that $\Phi: \mathcal{B}(H) \rightarrow \mathcal{B}(K)$ is a surjective linear map which preserves square-zero operators. Then

$$
\begin{equation*}
\Phi(R)^{2} \Phi(I)=\Phi(I) \Phi(R)^{2} \tag{3.1}
\end{equation*}
$$

for all idempotents $R \in \mathcal{B}(H)$.
Proof. Let H be a direct sum of two closed infinite-dimensional linear subspaces H_{1} and H_{2} (note that we do not assume H_{1} and H_{2} are orthogonal). Let P and $Q=I-P$ be the idempotents corresponding to this direct
sum decomposition, that is, $\mathcal{R}(P)=H_{1}$ and $\operatorname{ker}(P)=H_{2}$. Assume that operators $A, B \in B(H)$ satisfy $P A P=A$ and $Q B Q=B$. It follows from [12, Theorem 2] that A and B can be written as sums of five operators with square zero. Say $A=A_{1}+A_{2}+A_{3}+A_{4}+A_{5}$ and $B=B_{1}+B_{2}+B_{3}+B_{4}+B_{5}$, with $P A_{i} P=A_{i}$ and $Q B_{i} Q=B_{i}(i=1, \ldots, 5)$. Clearly, $\left(A_{i}+B_{j}\right)^{2}=0$. Consequently, we have $\Phi\left(A_{i}\right) \Phi\left(B_{j}\right)+\Phi\left(B_{j}\right) \Phi\left(A_{i}\right)=0$, which further yields

$$
\Phi(A) \Phi(B)+\Phi(B) \Phi(A)=0
$$

In other words, we have

$$
\begin{equation*}
\Phi(P A P) \Phi((I-P) B(I-P))+\Phi((I-P) B(I-P)) \Phi(P A P)=0 \tag{3.2}
\end{equation*}
$$

for every $A, B \in \mathcal{B}(H)$.
We claim that

$$
\begin{equation*}
\Phi(R) \Phi(I)+\Phi(I) \Phi(R)=2 \Phi(R)^{2} \quad \text { for all idempotents } R \tag{3.3}
\end{equation*}
$$

If $R \in \mathcal{B}(H)$ is an idempotent such that both its range and kernel are infinite-dimensional, then by (3.2) with $A=B=I$ we get

$$
\Phi(R) \Phi(I-R)+\Phi(I-R) \Phi(R)=0
$$

which implies (3.3) immediately.
If R has a finite-dimensional image, take an idempotent P_{1} with both range and kernel infinite-dimensional such that $P_{1} \perp R$. Then

$$
\begin{aligned}
& \Phi\left(P_{1}\right) \Phi(R)+\Phi(R) \Phi\left(P_{1}\right) \\
& =\Phi\left(P_{1} P_{1} P_{1}\right) \Phi\left(\left(I-P_{1}\right) R\left(I-P_{1}\right)\right)+\Phi\left(\left(I-P_{1}\right) R\left(I-P_{1}\right)\right) \Phi\left(P_{1} P_{1} P_{1}\right)=0
\end{aligned}
$$

Therefore,

$$
\Phi\left(P_{1}+R\right)^{2}=\Phi\left(P_{1}\right)^{2}+\Phi(R)^{2}
$$

and

$$
\begin{aligned}
& \Phi(R) \Phi(I)+\Phi(I) \Phi(R) \\
& \quad=\Phi\left(P_{1}+R-P_{1}\right) \Phi(I)+\Phi(I) \Phi\left(P_{1}+R-P_{1}\right) \\
& \quad=\Phi\left(P_{1}+R\right) \Phi(I)+\Phi(I) \Phi\left(P_{1}+R\right)-\Phi\left(P_{1}\right) \Phi(I)-\Phi(I) \Phi\left(P_{1}\right) \\
& \quad=2 \Phi\left(P_{1}+R\right)^{2}-2 \Phi\left(P_{1}\right)^{2}=2 \Phi(R)^{2}
\end{aligned}
$$

If R has finite-dimensional kernel, then

$$
\Phi(I-R) \Phi(I)+\Phi(I) \Phi(I-R)=2 \Phi(I-R)^{2}
$$

and hence

$$
\Phi(R) \Phi(I)+\Phi(I) \Phi(R)=2 \Phi(R)^{2}
$$

completing the proof of (3.3). Thus, for any idempotent $R \in \mathcal{B}(H)$, we have

$$
\Phi(R)^{2} \Phi(I)+\Phi(R) \Phi(I) \Phi(R)=2 \Phi(R)^{3}
$$

and

$$
\Phi(I) \Phi(R)^{2}+\Phi(R) \Phi(I) \Phi(R)=2 \Phi(R)^{3}
$$

which implies that $\Phi(R)^{2} \Phi(I)=\Phi(I) \Phi(R)^{2}$.
Theorem 3.3. Let H and K be two infinite-dimensional Hilbert spaces. Assume that $\Phi: \mathcal{B}(H) \rightarrow \mathcal{B}(K)$ is a surjective linear map. If Φ is spectrally bounded, then either $\Phi(T)=0$ for all compact operators $T \in \mathcal{B}(H)$ or Φ is injective. In the last case, there exists a nonzero complex number d and an invertible operator $A \in \mathcal{B}(H, K)$ such that either $\Phi(T)=d A T A^{-1}$ for all $T \in \mathcal{B}(H)$ or $\Phi(T)=d A T^{\operatorname{tr}} A^{-1}$ for all $T \in \mathcal{B}(H)$, where T^{tr} denotes the transpose of T relative to a fixed but arbitrary orthonormal basis of H.

Proof. Assume that Φ is spectrally bounded. By Theorem 2.1, Φ preserves square-zero operators. We may assume that Φ is spectral radius nonincreasing by the discussion in the introduction.

Claim 1. For any orthogonal idempotents P_{1} and P_{2} in $\mathcal{B}(H)$, we have

$$
\begin{equation*}
\Phi\left(P_{1}+P_{2}\right)^{2}=\Phi\left(P_{1}\right)^{2}+\Phi\left(P_{2}\right)^{2} \tag{3.4}
\end{equation*}
$$

It is easily seen from the proof of Lemma 3.2 that (3.4) is true if $\operatorname{dim} \mathcal{R}\left(P_{i}\right)$ $=\operatorname{dim} \mathcal{R}\left(I-P_{i}\right)=\infty$ for $i=1$ or 2 . There are four cases left to check:
(i) $\operatorname{dim} \mathcal{R}\left(P_{1}\right)<\infty, \operatorname{dim} \mathcal{R}\left(P_{2}\right)<\infty$;
(ii) $\operatorname{dim} \mathcal{R}\left(P_{1}\right)<\infty, \operatorname{dim} \mathcal{R}\left(I-P_{2}\right)<\infty$;
(iii) $\operatorname{dim} \mathcal{R}\left(I-P_{1}\right)<\infty, \operatorname{dim} \mathcal{R}\left(P_{2}\right)<\infty$;
(iv) $\operatorname{dim} \mathcal{R}\left(I-P_{1}\right)<\infty, \operatorname{dim} \mathcal{R}\left(I-P_{2}\right)<\infty$.

In case (i), we can find an idempotent P_{3} orthogonal to $P_{1}+P_{2}$ with $\operatorname{dim} \mathcal{R}\left(P_{3}\right)=\operatorname{dim} \mathcal{R}\left(I-P_{3}\right)=\infty$. Thus

$$
\begin{aligned}
\Phi\left(P_{1}+P_{2}\right)^{2}+\Phi\left(P_{3}\right)^{2} & =\Phi\left(P_{1}+P_{2}+P_{3}\right)^{2}=\Phi\left(P_{1}\right)^{2}+\Phi\left(P_{2}+P_{3}\right)^{2} \\
& =\Phi\left(P_{1}\right)^{2}+\Phi\left(P_{2}\right)^{2}+\Phi\left(P_{3}\right)^{2}
\end{aligned}
$$

so $\Phi\left(P_{1}+P_{2}\right)^{2}=\Phi\left(P_{1}\right)^{2}+\Phi\left(P_{2}\right)^{2}$. The remaining cases are similar.
Claim 2. $\Phi(I)=c I$ for some nonzero complex number c.
We first prove that Φ is bounded. Since Φ is a spectral radius nonincreasing surjection and $\mathcal{B}(K)$ is semisimple, it follows from Aupetit [2] that Φ is bounded.

Let $C \in \mathcal{B}(H)$ be a linear combination of orthogonal projections, that is, $C=\sum_{i=1}^{n} \alpha_{i} P_{i}$, where $\left\{P_{i}\right\}_{i=1}^{n}$ is an orthogonal set of projections. Then $\Phi(C)^{2}=\sum_{i=1}^{n} \alpha_{i}^{2} \Phi\left(P_{i}\right)^{2}$ by (3.4). It follows that $\Phi(C)^{2} \Phi(I)=\Phi(I) \Phi(C)^{2}$ by Lemma 3.2. Now suppose $D \in \mathcal{B}(H)$ is self-adjoint; then D is a limit of linear combinations of orthogonal projections. Since Φ is bounded and linear, we have $\Phi(D)^{2} \Phi(I)=\Phi(I) \Phi(D)^{2}$. Let $C, D \in \mathcal{B}(H)$ be self-adjoint. Then $\Phi(C+D)^{2} \Phi(I)=\Phi(I) \Phi(C+D)^{2}$, which yields

$$
(\Phi(C) \Phi(D)+\Phi(D) \Phi(C)) \Phi(I)=\Phi(I)(\Phi(C) \Phi(D)+\Phi(D) \Phi(C))
$$

For any $T \in \mathcal{B}(H)$, there exist self-adjoint operators C and D such that $T=C+i D$. Because

$$
\begin{aligned}
& \Phi(C+i D)^{2} \Phi(I) \\
& \quad=\Phi(C)^{2} \Phi(I)-\Phi(D)^{2} \Phi(I)+i(\Phi(C) \Phi(D)+\Phi(D) \Phi(C)) \Phi(I) \\
& \quad=\Phi(I) \Phi(C+i D)^{2},
\end{aligned}
$$

we see that

$$
\Phi(T)^{2} \Phi(I)=\Phi(I) \Phi(T)^{2}
$$

for every $T \in \mathcal{B}(H)$, and consequently $S^{2} \Phi(I)=\Phi(I) S^{2}$ for all $S \in \mathcal{B}(K)$ by the surjectivity of Φ. This implies that $\Phi(I)=c I$ for some $c \in \mathbb{C}$. Furthermore, $c \neq 0$. Indeed, if $c=0$, then $\Phi(I)=0$. Thus by (3.3) we have $\Phi(R)^{2}=0$ for all idempotents R, which implies that $\Phi(C)^{2}=0$ for all self-adjoint operators C by the boundedness of Φ. Hence $\Phi(T)^{2}=0$ for all $T \in \mathcal{B}(H)$, which contradicts the surjectivity of Φ.

Therefore, with no loss of generality, we may assume $\Phi(I)=I$. Thus, by (3.3) again, Φ is idempotent preserving. Let $A \in \mathcal{B}(H)$ be self-adjoint and $A=\sum_{i=1}^{n} t_{i} P_{i}$ where $t_{i} \in \mathbb{R}$ and P_{i} are pairwise orthogonal projections. Since Φ maps mutually orthogonal projections to mutually orthogonal idempotents, $\Phi\left(A^{2}\right)=\Phi(A)^{2}$. Now, because the set of self-adjoint elements that are finite real linear combinations of orthogonal projections is dense in the set of all self-adjoint elements in $\mathcal{B}(H)$, we see that $\Phi\left(A^{2}\right)=\Phi(A)^{2}$ for all self-adjoint A in $\mathcal{B}(H)$ by the boundedness of Φ. Replacing A by $A+B$ where both A and B are self-adjoint, we get $\Phi(A B+B A)=\Phi(A) \Phi(B)+\Phi(B) \Phi(A)$. Since every $T \in \mathcal{B}(H)$ can be written in the form $T=A+i B$ with A and B self-adjoint, the last relations imply that $\Phi\left(T^{2}\right)=\Phi(T)^{2}$. So Φ is Jordan.

Since $\mathcal{B}(K)$ is a prime ring, by [9, Thm. 3.1], Φ is either a homomorphism or an anti-homomorphism. If Φ is not injective, then $\operatorname{ker} \Phi$ is a nonzero closed ideal in $\mathcal{B}(H)$. Since the smallest nontrivial closed ideal of $\mathcal{B}(H)$ is the ideal $\mathcal{K}(H)$ of compact operators, we have $\operatorname{ker} \Phi \supseteq \mathcal{K}(H)$. Hence $\Phi(T)=0$ for all compact operators $T \in \mathcal{B}(H)$. If Φ is injective, then Φ is either an isomorphism or an anti-isomorphism. Since every isomorphism or anti-isomorphism from $\mathcal{B}(H)$ onto $\mathcal{B}(K)$ is spatial, there exists an invertible operator $A \in \mathcal{B}(H, K)$ such that $\Phi(T)=A T A^{-1}$ for all $T \in \mathcal{B}(H)$ or $\Phi(T)=A T^{\operatorname{tr}} A^{-1}$ for all $T \in \mathcal{B}(H)$, where T^{tr} denotes the transpose of T relative to an orthonormal basis in H.

Remark 3.4. Claim 2 in the proof of Theorem 3.3 also answers affirmatively a question due to Šemrl [15], who showed that a unital linear bijection on $\mathcal{B}(H)$ is square-zero preserving if and only if it is either an automorphism or an anti-automorphism and he asked whether or not the unital assumption may be omitted. So we find that a linear bijection on
$\mathcal{B}(H)$ is square-zero preserving if and only if it is either an atomorphism or an anti-automorphism multiplied by a nonzero scalar.

Proof of Theorem 3.1. $(2) \Rightarrow(3) \Rightarrow(4) \Rightarrow(5) \Rightarrow(1)$ are obvious. $(1) \Rightarrow(2)$ follows from Theorem 3.3.

Note that if the Hilbert space H is separable, then Φ is injective in Theorem 3.3. In fact, if Φ is not injective, then $\mathcal{B}(H)$ is isomorphic to the quotient algebra $\mathcal{B}(H) / \mathcal{K}(H)$, which contradicts the fact that $\mathcal{B}(H) / \mathcal{K}(H)$ is simple. So we have the following corollary which generalizes [14, Thm. 2] by omitting the unital assumption.

Corollary 3.5. Let H and K be two infinite-dimensional Hilbert spaces with H separable. Assume that $\Phi: \mathcal{B}(H) \rightarrow \mathcal{B}(K)$ is a surjective linear map. Then Φ is spectrally bounded if and only if there exists a nonzero complex number d and an invertible operator $A \in \mathcal{B}(H, K)$ such that either $\Phi(T)=$ $d A T A^{-1}$ for all $T \in \mathcal{B}(H)$ or $\Phi(T)=d A T^{\operatorname{tr}} A^{-1}$ for all $T \in \mathcal{B}(H)$, where T^{tr} denotes the transpose of T relative to a fixed but arbitrary orthonormal basis of H.

REmARK 3.6. Our proofs still work if $\mathcal{B}(K)$ is replaced by a standard operator algebra acting on a complex Banach space. So the results in this section also hold true when Φ is a linear map from $\mathcal{B}(H)$ onto a standard operator algebra \mathcal{B}.

Acknowledgments. We would like to thank the referee who pointed out Šemrl's paper [14] to us.

References

[1] B. Aupetit, Spectrum-preserving linear mappings between Banach algebras or Jor-dan-Banach algebras, J. London Math. Soc. (2) 62 (2000), 917-924.
[2] B. Aupetit, A Primer on Spectral Theory, Springer, New York, 1991.
[3] B. Aupetit and H. du T. Mouton, Spectrum preserving linear mappings in Banach algebras, Studia Math. 109 (1994), 91-100.
[4] M. Brešar and P. Šemrl, Invertibility preserving maps preserve idempotents, Michigan Math. J. 45 (1998), 483-488.
[5] -, 一, Linear maps preserving the spectral radius, J. Funct. Anal. 142 (1996), 360368.
[6] M.-D. Choi, D. Hadwin, E. Nordgren, H. Radjavi and P. Rosenthal, On positive linear maps preserving invertibility, J. Funct. Anal. 59 (1984), 462-469.
[7] J. L. Cui and J. C. Hou, A characterization of homomorphisms between Banach algebras, Acta Math. Sinica, to appear.
[8] —, 一, Linear maps between Banach algebras compressing certain spectral functions, preprint.
[9] I. N. Herstein, Topics in Ring Theory, Springer, Berlin, 1991.
[10] J. C. Hou, Spectrum-preserving elementary operators on $\mathcal{B}(X)$, Chinese Ann. Math. Ser. B 19 (1998), 511-516.
[11] A. A. Jafarian and A. R. Sourour, Spectrum-preserving linear maps, J. Funct. Anal. 66 (1986), 255-261.
[12] C. Pearcy and D. Topping, Sums of small numbers of idempotents, Michigan Math. J., 14 (1967), 453-465.
[13] P. Šemrl, Two characterizations of automorphisms on $\mathcal{B}(X)$, Studia Math. 105 (1993), 143-149.
[14] -, Spectrally bounded linear maps on $\mathcal{B}(H)$, Quart. J. Math. Oxford 49 (1998), 87-92.
[15] - , Linear mappings that preserve operators annihilated by a polynomial, J. Operator Theory 36 (1996), 45-58.
[16] A. R. Sourour, Invertibility preserving linear maps on $L(X)$, Trans. Amer. Math. Soc. 348 (1996), 13-30.
[17] Q. Wang and J. C. Hou, Point-spectrum-preserving elementary operators on $\mathcal{B}(H)$, Proc. Amer. Math. Soc. 126 (1998), 2083-2088.
[18] X. L. Zhang and J. C. Hou, Positive elementary operators compressing spectrum, Chinese Sci. Bull. 42 (1997), 270-274.

Jianlian Cui
Institute of Mathematics
Chinese Academy of Sciences
Department of Mathematics

Beijing 100080, P.R. China
Shanxi Teachers University
Linfen 041004, P.R. China

Current address:
Department of Applied Mathematics
Taiyuan University of Technology
Taiyuan 030024, P.R. China
Department of Mathematics
Shanxi Teachers University
Linfen 041004, P.R. China
E-mail: cuijl@dns.sxtu.edu.cn

Current address:
Department of Mathematics
Shanxi University
Taiyuan 030000, P. R. China
E-mail: jhou@dns.sxtu.edu.cn

Received February 12, 2001
Revised version August 20, 2001

[^0]: 2000 Mathematics Subject Classification: Primary 47B48, 47L10, 47A10.
 Key words and phrases: spectral radius, Jordan homomorphism, isomorphism, Banach algebras.

 This work is supported by NNSFC and PNSFS.

