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When is L(X) topologizable as a topological algebra?

by

W. Żelazko (Warszawa)

Abstract. Let X be a locally convex space and L(X) be the algebra of all continuous
endomorphisms of X. It is known (Esterle [2], [3]) that if L(X) is topologizable as a
topological algebra, then the space X is subnormed. We show that in the case when X
is sequentially complete this condition is also sufficient. In this case we also obtain some
other conditions equivalent to the topologizability of L(X). We also exhibit a class of
subnormed spaces X, called sub-Banach spaces, which are not necessarily sequentially
complete, but for which the algebra L(X) is normable. Finally we exhibit an example of
a subnormed space X for which the algebra L(X) is not topologizable.

We say that a real or complex algebra is topologizable if there is a vector
space topology on it such that the product is jointly continuous. In this
case there is a basis of neighbourhoods of the origin such that for each such
neighbourhood U there is a neighbourhood V with V 2 ⊂ U , or, more gener-
ally, with V n ⊂ U for any fixed natural n. Similarly we say that an algebra
is normable if there is a submultiplicative norm on it. Clearly a normable
algebra is topologizable. In this paper we are concerned with the question
of topologizability of the algebra L(X) of all continuous endomorphisms of
a locally convex space X. If X is a Banach or normed space, then L(X) is
a Banach or normed algebra, which is one of the most important facts in
the theory of Banach algebras. However, if X is not a normed space, the
algebra L(X) could be topologizable only when X is subnormed , i.e. there
is a norm ‖ · ‖ on X generating a finer (stronger) topology. Jean Esterle [3]
has shown that if the algebra A(X) of all finite-dimensional endomorphisms
of X is topologizable, then X is subnormed. Since the topologizability of
L(X) implies the topologizability of A(X), the fact that X is subnormed is
necessary here. He has also shown in [2] that X is subnormed if and only if
A(X) is normable.

In this paper we show that under the assumption of sequential complete-
ness of X the converse is true, so that in this case L(X) is topologizable if
and only if X is subnormed and if and only if L(X) is normable. In the proof
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we show that for a subnormed X all its continuous endomorphisms are also
continuous with respect to the norm ‖ · ‖, and then the induced operator
norm does the job. Furthermore, we exhibit a class of subnormed spaces X
(called sub-Banach spaces), which contains all sequentially complete locally
convex spaces and also some spaces which are not sequentially complete and
for which L(X) is normable and so topologizable. Here again we show that
all operators in L(X) are continuous with respect to ‖·‖. However we exhibit
an example of a subnormed space X for which L(X) is not topologizable.

The topology of any locally convex space X is given by a family of
seminorms (| · |α), thus if X is subnormed with a stronger norm ‖ · ‖, then
each seminorm | · |α is continuous with respect to ‖ · ‖, so that there are
positive constants Mα such that Mα|x|α ≤ ‖x‖ for all x in X. Replacing the
system (| · |α) by (Mα| · |α) we can assume

(1) ‖x‖ = sup
α
|x|α

for all x in X. In this case the closed unit ball B of ‖ · ‖ is given by

(2) B =
⋂

α

Bα where Bα = {x ∈ X : |x|α ≤ 1}.

We call a subnormed space X sub-Banach if its topology can be given
by means of a system of seminorms (| · |α) such that the supremum in (1)
is finite for all x ∈ X and X is complete in the norm ‖ · ‖. We shall give an
example of a locally convex space which is sub-Banach but not sequentially
complete. We can always assume that in an arbitrary subnormed space the
norm ‖ · ‖ is given by (1) for a certain system of seminorms, but we cannot
claim that X is complete in this norm.

We now recall some definitions and facts needed in what follows. Let X
be a locally convex space. An absolutely convex bounded subset B of X is
called a disc; its Minkowski functional ‖ · ‖B is a norm on the subspace XB

spanned by B. Such a disc is called a Banach disc if the spaceXB is complete
in ‖·‖B. For example, ifX is sub-Banach, then the unit ball of the norm (1) is
a Banach disc. In general, if B is a disc, then the subspace XB ⊂ X is a sub-
normed space with the (finer) norm ‖ ·‖B ([6], Proposition 3.2.2). A sequen-
tially complete disc is always a Banach disc ([6], Corollary 3.2.5). A barrel
is an absolutely convex, closed and absorbing subset of X. A barrelled space
is a locally convex space in which every barrel is a neighbourhood of the
origin. Every completely metrizable locally convex space is barrelled. Since
the set B given by (2) is a barrel and a bounded set (all seminorms | · |α are
bounded on it), the Kolmogorov theorem stating that a topological vector
space is normed if and only if it is locally convex and locally bounded (has
a bounded neighbourhood of the origin) implies that a barrelled subnormed
space is normed (this fact is already remarked in [2]). It is known that every
barrel absorbs every Banach disc ([6], Proposition 3.2.7). Thus we have
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Theorem A. Let X be a real or complex sequentially complete locally
convex space. Then every barrel absorbs every bounded set.

The above follows from the fact that the absolutely convex envelope of
a bounded set is bounded, and its closure is also bounded and absolutely
convex, so it is a disc. Since a closed subset of a sequentially complete space
is sequentially complete, the above disc is a Banach disc and so it is absorbed
by every barrel.

Note that if X is subnormed and sequentially complete, then the set B
given by (2) is closed, so it is a Banach disc, and X is a sub-Banach space.
Thus every sequentially complete subnormed space is sub-Banach.

Call a bounded subset B of X maximal if it absorbs any other bounded
set, and call a topological vector space X bornologically normable if there is
a norm on it such that the bounded subsets of X coincide with the subsets
bounded with respect to this norm.

We can now formulate our first result.

Theorem 1. Let X be a sequentially complete real or complex locally
convex space. Then the following are equivalent.

(i) The algebra L(X) is topologizable.
(ii) The space X is subnormable.
(iii) The space X has a maximal bounded set.
(iv) The algebra L(X) is normable.
(v) The space X is bornologically normable.

Proof. The implication (i)⇒(ii) is shown in [3], and it holds true with-
out the assumption of sequential completeness. Suppose now that X is sub-
normable with a norm ‖·‖, which can be assumed to be of the form (1). The
set B given by (2) is closed in the topology of X. In fact, if x0 = limµ xµ
with xµ ∈ B, then |xµ|α ≤ 1 for all µ and α, so that |x0| ≤ 1 for all α and
so x0 ∈ B. Consequently, B is a bounded barrel in X. By Theorem A it
absorbs all bounded sets in X, and (ii) implies (iii).

For (iii)⇒(iv) it is sufficient to show that every operator T in L(X) is
continuous with respect to the norm (1), because then the induced operator
norm on L(X) will do the job. Let then T ∈ L(X). Since the image under a
continuous linear map of a bounded set is bounded, it follows that T (B) is
bounded and by (iii) there is a positive C such that T (B) ⊂ CB, so that for
any x ∈ X with ‖x‖ = 1, we have ‖Tx‖ ≤ C and the implication follows.
Clearly (iv) implies (i).

To prove (iii)⇒(v) assume that S is a maximal bounded subset in X.
Since all seminorms giving the topology of X are bounded on S, we can
renormalize them so that |x|α ≤ 1 for all x ∈ S and all α. Thus S is
contained in a set B of the form (2), and this set is also a maximal bounded
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set. Consequently, all bounded sets in X are bounded with respect to the
norm (1), and all sets bounded in the norm (1) are bounded, since they are
absorbed by the bounded set (2). Condition (v) follows.

Evidently (v) implies (iii), since every normed space has a maximal
bounded set, namely the unit ball of its norm. This completes the proof.

We shall show later that in the absence of sequential completeness con-
dition (ii) implies none of (i), (iii), (iv) and (v).

We now provide the reader with two examples of subnormed spaces which
are not normed. It turns out that both are in a natural way multiplicatively
convex algebras and they were considered by Michael in [4].

Examples 2. 1. LetX be the space C[0, 1] equipped with the seminorms
| · |s, where s is a sequence {ξi} with ξi → ξ0, 0 ≤ ξi ≤ 1 and |x|s =
maxi |x(ξi)|. It is a complete non-metrizable locally convex space and it is
subnormed with the usual norm in C[0, 1].

2. Denote by Ω the set of all countable ordinals provided with the
segment topology (the basis of open sets consists of the open segments
(α, β) with α < β). Put X = C(Ω), the vector space of all continuous
scalar functions on Ω with seminorms |x|α = max0≤t≤α |x(t)|, α ∈ Ω (it is
well known that all continuous functions on Ω are bounded). It is a non-
metrizable complete locally convex space which is subnormed with the norm
‖x‖ = max{|x(t)| : t ∈ Ω}.

Remark. It is not hard to see that in the above examples the conver-
gence of sequences in the finer norm (1) is equivalent to the convergence in
the original topology. Such an equivalence does not hold true if the space in
question is only sequentially complete (e.g. if X = L(E) for a Banach space
E, provided with the topology of strong convergence of operators, and with
the operator norm as the finer norm). Thus we may ask the following

Question. Let X be a complete locally convex space which is a sub-
normed space with the finer norm of the form (1). Is it true that a sequence
of elements of X is convergent in the norm (1) if and only if it is convergent
in the original topology of X?

We now show that L(X) is normable for a class of locally convex spaces
X which are not necessarily sequentially complete.

Proposition 3. Let X be a real or complex locally convex space which
is sub-Banach. Then the algebra L(X) is normable.

Proof. Let ‖ · ‖ be the norm of the form (1) under which X is a sub-
Banach space. As in the proof of Theorem 1, we shall be done if we show
that each operator T ∈ L(X) is continuous with respect to the norm (1).
So suppose that some operator is not, and try to get a contradiction. There
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exists a sequence (zi) ⊂ X with

(3) lim ‖zi‖ = 0

and ‖Tzi‖ ≥ C > 0. Replacing, if necessary, zi by ‖zi‖−1/2zi we can assume

(4) lim ‖Tzi‖ =∞.
We choose inductively a subsequence (xi) ⊂ (zi) in the following way. Choose
first zi1 so that ‖zi1‖ < 2−1 and ‖Tzi1‖ > 1. By (1) there is an α1 such
that |Tzi1 |α1 > 1. Put x1 = zi1 . Suppose that we have chosen elements
x1, . . . , xn−1 and indices α1, . . . , αn−1 in such a way that

(i) ‖xi‖ < 2−i for 1 ≤ i ≤ n− 1,
(ii) |Txm+i|αm < 2−i for 1 ≤ m ≤ n− 1 and 1 ≤ i ≤ n−m− 1,
(iii) |T (

∑m
i=1 xi)|αm > m for 1 ≤ m ≤ n− 1.

We now look for xn and αn so that the above relations hold true if we
replace n − 1 by n. Relation (3) implies that ‖zi‖ < 2−n for sufficiently
large i, say i ≥ i1. Consider now (ii). The index n occurs here only in the
inequalities

(5) |Txn|αm < 2m−n for 1 ≤ m < n.

Relations (1) and (3) imply zj → 0 in the topology of X, and, since T
is continuous, we have lim |Tzj |αm = 0 for 1 ≤ m < n and so relations
(5) hold true whenever xn = zj and j is sufficiently large, say j ≥ i2.
Consider now (iii). Relation (4) implies limj ‖T (

∑n−1
i=1 xi) + Tzj‖ =∞, and

so ‖T (
∑n−1
i=1 xi) + Tzj‖ > n for j ≥ i3. Setting xn = zmax(i1,i2,i3) we obtain

(i) and (ii) with n − 1 replaced by n, and also ‖T (
∑n
i=1 xi)‖ > n. Now (1)

implies that there is an αn so that (iii) holds for m = n, so that, by the
inductive assumption, it holds for 1 ≤ m ≤ n, and the inductive construction
is complete.

Condition (i) yields
∑
i ‖xi‖ <∞ and the completeness of X in the norm

(1) implies that there is an element x ∈ X with limn(x −∑n
i=1 xi) = 0.

Consequently, limn |x −
∑n
i=1 xi|α = 0 for all α and the series converges

in X. Since T is continuous, we have

Tx = lim
n

n∑

i=1

Txi.

Consequently,

|Tx|αm = lim
n

∣∣∣
n∑

i=1

Txi

∣∣∣
αm

for all m. Relations (ii) and (iii) imply that for a fixed m and all n > m we
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have
∣∣∣T
( n∑

i=1

xi

)∣∣∣
αm
≥
∣∣∣T
( m∑

i=1

xi

)∣∣∣
αm
−
∣∣∣T
( n−m∑

i=1

xm+i

)∣∣∣
αm

> m−
n−m∑

i=1

2−i > m−1.

Thus |Tx|αm ≥ m−1 for all m, so that ‖Tx‖ =∞ by (1). This is the desired
contradiction, since Tx ∈ X and ‖·‖ is a norm on X. The conclusion follows.

We now give an example of a space X which is not sequentially complete
but satisfies the assumptions of Proposition 3.

Example 4. Let X be the space Cb(R) of all bounded continuous func-
tions on the real line R, provided with the topology given by the seminorms
|x|n = max|t|≤n |x(t)|, n = 1, 2, . . . (the compact-open topology). It is a
dense subspace of the space C(R) of all continuous functions on R. It is not
sequentially complete, since the spaces considered are metrizable. Clearly X
is sub-Banach under the norm (1) equal to supt∈R |x(t)|, and so, by Propo-
sition 3, the algebra L(X) is normable. Observe that there is no maximal
bounded set in X, so that the conclusion of Theorem 1 does not hold true if
X is not sequentially complete, since in our case conditions (i), (ii) and (iv)
are satisfied while (iii) and (v) are not. Also the completion of X is barrelled
and not normed, so it is not subnormed.

The following example gives a locally convex subnormed space X for
which the algebra L(X) is not normable (and even not topologizable, as
shown in Proposition 6).

Example 5. Denote byX the dense subspace of the complex space C(R)
consisting of all compactly supported functions; it is a subspace of the space
of the previous example, thus it is also subnormed. We show that the algebra
L(X) is not normable. Suppose that it is. Observe first that the operators
Tϕ of multiplication by functions ϕ in C(R) are continuous endomorphisms
of X, so that the algebra A = C(R) can be treated as a subalgebra of
L(X). Therefore it is normable with a submultiplicative norm ‖·‖. However,
it is known that A is not normable (cf. [1], Proposition 2.1.14, see also
Proposition 2.1.3). Thus X satisfies condition (ii) of Theorem 1, but does
not satisfy (iv).

We now show that the algebra L(X) for X as in Example 5 is not topol-
ogizable. In the proof we use a modification of the method of [5].

Proposition 6. There exists a locally convex subnormed space X for
which the algebra L(X) is not topologizable. More specifically , the space X
of all compactly supported continuous functions on R provided with the
compact-open topology has this property.
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Proof. Assume, for contradiction, that there is a (Hausdorff) topology
τ on L(X) making the multiplication jointly continuous. Fix a continuous
function ϕ on R supported in the interval [1/3, 2/3], and denote by T the
operator of multiplication by ϕ; it is certainly a non-zero element of L(X).
Choose a τ -neighbourhood U of the origin in L(X) such that T 6∈ U . With-
out loss of generality we can assume that λU ⊂ U for all scalars λ satisfying
|λ| ≤ 1 (cf. [7], Theorem 1.2.2). By the joint continuity of multiplication we
can find a τ -neighbourhood V of the origin so that

(6) V 3 ⊂ U.
Denote by S the left shift on X given by (Sx)(t) = x(t− 1), x ∈ X, t ∈ R.
Clearly S is invertible and S, S−1 ∈ L(X). Fix positive cn and dn so that
cnS

−n ∈ V and dnSnT ∈ V for all natural n, and put rn = n/(cndn). Fix a
function φ in C(R) such that φ(t) = rn for t ∈ [n+ 1/3, n+ 2/3] and denote
by Q the operator of multiplication by φ. Again we have Q ∈ L(X). Choose
a positive ε so that εQ ∈ V . By (6) we have

(7) cndnεS
−nQSnT ∈ V 3 ⊂ U.

Calculate now the product S−nQSnT . For every x in X we have

(S−nQSnTx)(t) = (S−nQ)(ϕ(t− n)x(t− n))

= rnS
−n(ϕ(t− n)x(t− n)) = rnϕ(t)x(t) = (rnTx)(t),

since ϕ(t− n)x(t− n) is supported by [n+ 1/3, n+ 2/3] and φ equals to rn
on this interval. Since x was chosen arbitrarily, we obtain S−nQSnT = rnT
for n = 1, 2, . . . Now (7) and the definition of rn imply nεT ∈ U for all
natural n. Since nε > 1 for large n, we have T ∈ U , which contradicts our
assumption. The conclusion follows.

The above result also shows that in general condition (ii) of Theorem 1
does not imply (i). It also supports the following

Conjecture. Let X be a locally convex subnormed space. Then the
algebra L(X) is topologizable if and only if it is normable.

We now show that every subnormed locally convex space is dense in a
subnormed space X for which L(X) is normable.

Proposition 7. Let X be a real or complex subnormed space and denote
by X its completion. Then there is a subnormed space X1 with X ⊂ X1 ⊂ X
such that the algebra L(X1) is normable.

Proof. Since X is subnormed, there is a system (| · |α) of seminorms such
that formula (1) gives a norm. The seminorms | · |α extend by continuity to
X and generate its topology. We denote the extended seminorms with the
same symbols. Formula (2) applied to the extended seminorms gives a disc
in X and it is a Banach disc, since X is complete. Let now X1 = XB be
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the subspace spanned by B. It is a Banach space in the norm (1) and the
conclusion follows by Proposition 2.

One of useful results in the theory of Banach spaces states that every
Banach space X is a left Banach module over L(X), i.e. the map

(8) (T, x) 7→ Tx

is jointly continuous. Since for some non-normable locally convex spaces X
the algebra L(X) is topologizable (it is always topologizable as a semitopo-
logical algebra, i.e. with separately continuous multiplication; this can be
shown by providing L(X) with the maximal locally convex topology which
is given by means of all seminorms, see e.g. [9]), we can ask whether X can
be made a topological L(X)-module with some topology on L(X), i.e. such
that the map (8) is jointly continuous. The negative answer was given in [8],
Theorem 10.2. We formulate it as

Proposition 8. Let X be a real or complex locally convex space. If the
algebra L(X) can be topologized as a topological vector space in such a way
that the map (8) is jointly continuous, then (and only then) X is a normed
space.

A. Pirkovskii informed me that he obtained a similar result in his dis-
sertation.
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Sci. Paris 278 (1974), 1037–1040.
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