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Maps preserving numerical radius distance on
C*-algebras

by

ZHAOFANG BAI (Xi’an and Linfen), JINCHUAN Hou (Linfen and Taiyuan)
and ZONGBEN XU (Xi’an)

Abstract. We characterize surjective nonlinear maps @ between unital C*-algebras
A and B that satisfy w(®(A) — ®(B)) = w(A— B) for all A, B € A under a mild condition
that @(I) — ®(0) belongs to the center of B, where w(A) is the numerical radius of A and
I is the unit of A.

1. Introduction. In the middle forties of the twentieth century, L. K.
Hua initiated the study of geometry of matrices. The fundamental problem
of geometry of matrices is to characterize the group of motions by as few
geometric invariants as possible [8]. Hua discovered that, for some fields F,
especially the real field R and complex field C, the “adjacency” invariant
(T and S are adjacent if rank(7" — S) = 1) alone is sufficient to charac-
terize the motions (up to automorphisms of the underlying field) on spaces
of matrices, symmetric matrices, skew-symmetric matrices and hermitian
matrices, respectively. Motivated by the geometry of matrices, a similar
fundamental question may be raised for the infinite-dimensional case.

PROBLEM. Find as few as possible properties that may be possessed by
operator spaces A and B or by elements in them and that are enough to
determine the structure of the map @ : A — B if & has these properties as
movariants, i.e., if @ preserves these properties.

Thus the problem is indeed to develop an analog of “geometry of ma-
trices” for operators. For B(H), where H is an infinite-dimensional Hilbert
space and B(H) is the von Neumann algebra of all bounded linear operators
on H, we proved in [1] that the invariant “numerical radius distance” alone
is sufficient to characterize the group generated by the following five simple
kinds of maps (motions):
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(1) A— UAU*, where U € B(H) is a unitary operator;

(2) A— UAU*, where U : H — H is a conjugate unitary operator;
(3) A— A%

(4) A— pA, where p € C and |p| = 1;

(5) A— A+ S, where S € B(H).

It was shown in [3] that “numerical radius distance” is also an invariant
which is enough to characterize surjective nonlinear maps between atomic
nest algebras. The purpose of this paper is to characterize maps preserving
numerical radius distance on C*-algebras.

Let A and B be unital C*-algebras. Denote by I and I’ the units of A
and B, respectively. Recall that a state 7 on A is a positive linear functional
on A with 7(I) = 1. For A € A, the numerical range and numerical radius
of A are defined, respectively, by

W(A) = {7(A) | 7 runs over all states on A},
w(A) = sup{[| | A € W(A)}.

It is well known that numerical radius, w(-), is a norm (but not a C*-norm)
and is equivalent to the original norm on 4. A map @ : A — B (no linearity
assumed) is numerical distance preserving if w(®(A)—P(B)) = w(A—B) for
all A, B € A. We also recall the definition of C*-isomorphism and conjugate
C*-isomorphism. A bijective map @ : A — B is a C*-isomorphism if & is
linear and satisfies

(1.1) P(AY) = 2(A)",
(1.2) B(A%) = P(A)?

for every A € A (i.e., @ is a *-Jordan isomorphism); @ is a conjugate C*-
isomorphism if @ is conjugate linear (i.e., @ is additive and ®(AA) = \P(A)
for every A € A and every complex number ) and satisfies (1.1) and (1.2).
From the classical Mazur-Ulam theorem [6], it follows that every numeri-
cal radius distance preserving surjective map sending 0 to O is real-linear.
Thus we essentially deal with the real-linear numerical radius preserving
maps on C*-algebras. Our main result (Theorem 1) shows that every unital
surjective real-linear numerical radius preserving map is a direct sum of a
C*-isomorphism and a conjugate C*-isomorphism. From our main result,
we also get some corollaries which characterize the surjective numerical ra-
dius distance preserving maps between some special C*-algebras such as von
Neumann algebras and von Neumann algebra factors.

Throughout this paper, the center of a C*-algebra A is the set Z(A) =
{Ae€ A| AB = BA for all B € A}. An element P € A is called a projection
if P2 = P and P* = P, and a central projection if P is a projection and
P e Z(A). An element A € Ais called a partial isometry if A*A and AA* are
projections; in particular, A is a unitary element if A*A = AA* = 1. A map
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& : A — B is said to be numerical radius preserving if w(®(A)) = w(A) for
every A € A.

2. Results and proofs. The following is the main result of this paper.

THEOREM 1. Let A and B be unital C*-algebras with units I and I’,
respectively. Let & : A — B be a surjective map with ®(I) — $(0) € Z(B).
Then w(®(A) — &(B)) = w(A — B) for all A,B € A if and only if there
is a central projection P € A with ®(P) a central projection in B, a C*-
isomorphism @1 : PAP — ®(P)BP(P), a conjugate C*-isomorphism Py :
(I-P)A(I-P) — (I'=®(P))B(I' =®(P)), and an element S and a central
unitary element U in B such that

®(A) = U(P1(PAP) + &o((I — P)A(I — P))) + S
for all A € A.

To prove Theorem 1, we need several lemmas. Denote by Bj(A,w) the
set {4 € A|w(A) < 1}. The first lemma characterizes the extreme points
of Bi(A,w); its proof is omitted since it is similar to that of [4, Theorem 1
and 2].

LEMMA 2. Every extreme point of Bi(A,w) is a partial isometric ele-
ment U in A with (I —U*U)A(I —UU*) = {0}. Moreover, I is an extreme
point of B1(A,w).

LEMMA 3. Let®: A — B be an additive map such that w(P(A)) < w(A)
for every A in A and let \ be a given scalar. Then

(i) ®(AI) = X' implies that for every self-adjoint element A € A, there
is a self-adjoint element C' € B such that P(iAA) = iAC;

(ii) @(NI) = NI’ implies that for every self-adjoint element A € A, there
is a self-adjoint element C € B such that ®(iAA) = iAC.

Proof. 1t is easy to see that (ii) follows from (i). Indeed, if ®(AI) = I,
then ¥ satisfies the condition in (i), where ¥(-) = &(-)*. So to each self-
adjoint element A € A there corresponds a self-adjoint element C' € B such
that W(iAA) = iAC. Consequently, ®(iAA) = i\C.

To prove (i), we suppose that |A\| = 1 and w(A) = 1. Write ®(iAA) =
A(B +iC), where B, C € B are self-adjoint. We show that B = 0. To do
this, we only need to prove that the spectral radius of B is 0 since B is
self-adjoint. If this is not true, take a nonzero number 3 from the spectrum
of B. If 8 > 0, then, for sufficiently large n,

wAGA+nl)) = w(iA 4 nl) = (1 + n?)'/?
<B+n<wB+nl)<wB+iC+nl)
= w(AB +iC) 4+ AnI') =w(P(iIXA + M) <w(A(iA+nl)),
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which is a contradiction. If § < 0, then considering —AA will also lead to a
contradiction. m

LEMMA 4. If an additive surjective mapping @ : A — B preserves nu-
merical radius and if ®(N) = N’ for every scalar X\, then & is a C*-
isomorphism.

Proof. We prove the lemma by checking several claims.

CLAIM 1. @ preserves numerical range, that is, W(P(A)) = W(A) for
every A € A. Consequently, for every self-adjoint element A € A, ®(A) is
self-adjoint and there is a self-adjoint element C' € B such that ®(iA) = iC.

Assume that there exists a v € C such that v € W(®(A)) \ W(A). Then
there is a circle with sufficiently large radius and centered at a certain A € C
such that W (A) lies inside the circle, but v lies outside it. Hence

w(A—= M) < v =) <w(@(A) —\I") =w(A - \),
which is a contradiction. So W(®(A)) € W(A). Applying the argument
to @1, we see that W(A) C W(P(A)). Hence, W(P(A)) = W(A) for all
Aec A

CLAIM 2. @ is linear.

Let A € A be a self-adjoint element. By Claim 1, W((1 + i)A) =
W(P(A)+PD(iA)) and P(iA) = iC for some self-adjoint element C' € B; con-
sequently, W((1+4)A) = W(P(A)+iC). Then for every state 7 on B, there
is a state 74 on A such that 74((1+1i)A) = 78(P(A) +iC). Since A, P(A),C
are self-adjoint, 78(@(A4)) = T4(A) = 78(C). Thus @(iA) = iP(A). Note
that & is real-linear and every element A in A can be written as B + iC
with B, C being self-adjoint. So @ is linear.

CrLAaM 3. @ is a C*-isomorphism.
Apply [2, Theorem 3| directly. =

LEMMA 5. If an additive surjective mapping ¢ : A — B preserves nu-
merical radius and if ?(A\I) = X for every scalar X\, then @ is a conjugate
C*-isomorphism.

Proof. Define ¥ : A — B by ¥(A) = ®(A)*. Then ¥ satisfies the con-

ditions in Lemma 4. So ¥ is a C*-isomorphism between A and B. As a
consequence, @ is a conjugate C*-isomorphism. =

Now we turn to the proof of our main result.

Proof of Theorem 1. If @ is a C*-isomorphism then the composition 7o ®
is a state on A for every state 7 on 5. Hence @ preserves numerical radius. It
is easy to see that every conjugate C*-isomorphism also preserves numerical
radius. Also note that multiplying by a central unitary does not change
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the numerical radius [2]. So the maps of the form described in the theorem
preserve numerical radius distance. Our main work is to check the “only if”
part.

Let ¥(A) = ¢(A) —&(0). Then ¥(0) = 0 and w(¥(A)) = w(A) for every
A € A. Tt follows from the Mazur-Ulam theorem [6] that ¥ is real-linear.
Consequently, we may, in what follows, assume that @ itself is real-linear
and preserves numerical radius, with @(/) in the center of B. Since ®(I)
is also an extreme point of Bj(B,w), it is easily seen from Lemma 2 that
®(I) is unitary. Thus, (@(I))~! is a central unitary element and, by [2],
W = (&(I))"'® is numerical radius preserving. Therefore, we may assume
further that @¢(I) = I’, and then prove that there is a central projection
P € A with ¢(P) a central projection in B, a C*-isomorphism ¢; : PAP —
&(P)BP(P) and a conjugate C*-isomorphism &5 : (I — P)A(I — P) —
(I' = &(P))B(I' — B(P)) such that $(A) = &1 (PAP) +&o((I — P)A(I — P))
for every A € A.

Cram 1. @(iI) =i(2Q — I') for some central projection Q in B.

By Lemma 3, ¢(:I) = iC for some self-adjoint C. Thus ®(:I)P(il)* =
®(il)*®(il) = —@(iI)?. On the other hand, by Lemma 2, il is an extreme
point of Bj(A,w). Since @ is real-linear and preserves numerical radius,
®(il) is an extreme point of By(B,w). By Lemma 2 again, —®(iI)? is a
projection with (I’ + ®(iI)?)B(I' + ®(iI)?) = 0. Hence ®(il)?> = —I'. Let
Q = (I' —i®(il))/2; then Q is a projection in B with @(il) = i(2Q — I').

In the following, we show that @(iI) is contained in the center of B,
and consequently, () is a central projection. For any nonzero self-adjoint
element B in B, Lemma 3 applied to ®~! yields a self-adjoint A € A such
that ®(iA) = iB. It is easy to see that either w(il +iA) = 1 + w(A) or
w(il—iA)=1+w(A). Then either w(P(il)+iB)=1+w(B) or w(P(il) —iB)
=1+ w(B). If w(P@iI) +iB) = 1 + w(B), then there is a state 7 on B
such that |7(®(il)) + 7(iB)| = 1 + w(B). It follows that |7(®(il))| = 1 and
|7(iB)| = w(B) # 0. Thus the state 7 satisfies 7((®(iI))?) = (r(P(il)))?
= —1 and |7(iB)| = w(B) # 0. So by [5, p. 292, 4.6.32], ®(il) lies in the
center of B. The case that w(®(il) —iB) = 1 — w(B) can be dealt with
similarly.

CLAIM 2. & preserves self-adjoint operators in both directions.

Since @ is invertible and ¢~! has the same properties as @, we only
check that @ sends self-adjoint elements to self-adjoint elements. Let A be
an arbitrary self-adjoint element in A with w(A) = 1. By Claim 1, #(A) =
QP(A)Q + (I' = Q)P(A)(I' — Q). Note that QP(-)Q : A — QBQ satisfies
w(QP(T)Q) < w(T) for every T € A and QP(iI)Q = i(Q). Using Lemma 3,
we see that QP(A)Q is self-adjoint. Similarly, since (I’ — Q)2(-)(I' — Q) :
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A — (I' = Q)B(I' — Q) satisfies w((I' — Q)P(T)(I' — Q)) < w(T) for ev-
ery T € Aand (I' — Q)P3GI)(I' — Q) = —i(I' — Q), by Lemma 3 again,
(I' = Q)P(A)(I' — Q) is self-adjoint. Therefore, $(A) is self-adjoint.

CLAIM 3. @ preserves projections in both directions.

Just as in the proof of Claim 2, we only need to show that @(P) is a
projection whenever P € A is. First, we show that & preserves positive
elements. Let A € A be positive with w(A) < 1. Then ||[A — I]| < 1, and
therefore w(®(A) — I') = w(A —I) < 1. It turns out that ¢(A) can have no
strictly negative spectrum since ¢(A) is self-adjoint. So ¢(A) is positive.

By [4, Theorem 4], the set of all extreme points of the positive portion of
B1(A,w) is the set of all projections in A. Now, since the real-linear map &
preserves numerical radius and positive elements, @ preserves the extreme
point of the positive portion of By (A, w). Therefore ¢ preserves projections.

CLAIM 4. There is a central projection P € A such that $(P) = Q.

By Claim 3, there is a projection P € A such that ¢(P) = Q. We will
show that P lies in the center of A. It is easy to see that (2P —1) = —i®(il).
Note that for every self-adjoint A € A, either w(@(iI)+iP(A)) = 1+w(P(A))
or w(®(il) —iP(A)) =1+ w(P(A)). Hence either

w2P — I+ A) =w(@2P —I)+ P(A)) = w(—i®(il) + P(A))
=w(P(il)+iP(A)) =1+ w(P(A)) =1+ w(A)
or
w2P —I—A)=w(@2P —I) — P(A)) = w(—i®(il) — P(A))
=w(P(l) —iP(A)) =1+ w(P(A)) =1+ w(A).
It is also easily seen that, in either case, there is a state 7 on A such that
|7(2P — I)| = 1 and |7(A)| = w(A) # 0. Thus 7((2P — I)?) = (7(2P — I))?
and |7(A)| = w(A) # 0. So, by [5, p. 292, 4.6.32], 2P — I lies in the center
of B.

CLAIM 5. @1 = @|pap is a C*-isomorphism between PAP and QBQ,
and D3 = P|(;_pya-p) 15 a conjugate C*-isomorphism of (I — P)A(I — P)
and (I' = Q)B(I' — Q).

It is easily checked that &1 (AP) = AQ and $o(A\(I — P)) = A(I' — Q) for
every complex number A. Now the proof is completed by using Lemmas 4
and 5. =

For the von Neumann algebra case, we have the following corollaries.

COROLLARY 6. Let A and B be von Neumann algebras, and let @ : A —
B be a surjective map with ®(I) — ®(0) = I'. Then w(P(A) — #(B)) =
w(A — B) for all A,B € A if and only if there is an element S in B, and
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there are four central projections Py, Py, P3, Py in A with P + P, + P3 +
Py =1 and &(P;) € Z(B) (i =1,...,4), a *-isomorphism &, : PLAP; —
&(P1)BD(Py), a conjugate *-isomorphism Po : Po APy — P(Po)BP(P2), a
*-anti-isomorphism @3 : Ps APy — &(P3)BP(Ps), and a conjugate *-anti-
isomorphism @y : Py APy — ®(Py)BP(Py) such that

@(A) = @1(P1AP1) + @Q(PQAPQ) + @3(P3AP3) + @4(P4AP4) + S
for all A e A.

Proof. We only need to check the “only if” part. By Theorem 1, there
is a central projection P € A with &(P) € Z(B), a C*-isomorphism @, :
PAP — &(P)B&(P), a conjugate C*-isomorphism &5 : (I — P)A(I — P) —
(I'=@(P))B(I'—®(P)) and an element S € B such that #(A) = ¢1(PAP)+
D9((I — P)A(I — P))+ S for every A € A. Note that every C*-isomorphism
between two von Neumann algebras is the direct sum of a *-isomorphism
and a *-anti-isomorphism (see [7]). That is, there is a central projection R in
@(P)BP(P) such that &(-)R is a *-isomorphism and @(-)(P(P) — R) is a *-
anti-isomorphism. It is known from [4] that every C*-isomorphism preserves
commutativity. Hence there are orthogonal projections Pj, P, in Z(A) such
that P+ P, = P, (p(Pl) = R and @(Pg) = @(P) —R. So (p’Pl.APl : PLAP —
O(P)BP(Py) is a *-isomorphism and @|p,ap, : PaAPy — $(Po)BP(P) is
a *-anti-isomorphism. Similarly, there are orthogonal projections P, Py €
Z(A) such that Ps+ Py =I— P, ®|p, ap, : P3 APy — &(P3)BP(P3) is a con-
jugate *-isomorphism and @|p, ap, : PAAPy — @(Py)BP(Py) is a conjugate
*-anti-isomorphism. The proof is finished. =

COROLLARY 7. Let A and B be von Neumann algebras with B a factor,
and let @ : A — B be a surjective map with @(1)—®(0) = I'. Then w(P(A)—
?(B)) = w(A — B) for all A,B € A if and only if there is an element S
in B such that &(-) — S is either a *-isomorphism, a *-anti-isomorphism, a
conjugate *-isomorphism, or a conjugate *-anti-isomorphism.

In the following, we characterize 2-local numerical radius isometry on
C*-algebras. A map @ : A — B is called a numerical radius isometry if @
is linear, surjective and numerical radius preserving (i.e. w(®(A)) = w(A)
for every A € A); @ is called a 2-local numerical radius isometry if for any
two elements A, B € A, there is a numerical radius isometry ¢ 4 p such that
P(A) =P4 p(A) and ¢(B) = P4 p(B).

THEOREM 8. Let A, B be unital C*-algebras with units I, 1" respectively.
Let &: A— B be a surjective 2-local numerical radius isometry. Then @ is a
multiple of a C*-isomorphism by a fixed unitary element in the center of B.

Proof. By the 2-local property of @, it follows that w(®(A) — &(B)) =
w(A—DB) for every A, B € A and ¢(0) = 0. Using the Mazur—Ulam theorem,
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we deduce that @ is real-linear. Let A be an element in A. For any scalar A €
C, there is a numerical radius isometry @4 x4 such that @4 ya(A) = ¢(A)
and @4 4(AA) = P(AA). Since P4 4 is linear, we have $(AA) = A\P(A).
Hence @ is in fact linear. Now the proof is finished by using [2, Theorem 3|. m
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