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Vitali Lemma approach to differentiation
on a time scale

by

Chuan Jen Chyan (Taipei) and Andrzej Fryszkowski (Warszawa)

Abstract. A new approach to differentiation on a time scale T is presented. We give
a suitable generalization of the Vitali Lemma and apply it to prove that every increasing
function f : T → R has a right derivative f ′+(x) for µ∆-almost all x ∈ T. Moreover,�
[a,b)

f ′+(x) dµ∆ ≤ f(b)− f(a).

The theory of time scales has received much attention since Hilger’s
[4] initial paper introduced the unifying theory for continuous and discrete
calculus. Subsequent major development of the calculus on time scales is due
to Agarwal and Bohner [1], Bohner and Peterson [2, 3], and Kaymakcalan
et al. [5].

In this paper, we are concerned with the covering theorem of Vitali on
time scales. It is well known that the Vitali Lemma is the basic tool for the
development of differentiation theory for Riemann and Lebesgue integrals.
A similar treatment of differentiation theory on time scales is given.

Before introducing the problems of interest for this paper, we present
some definitions and notations which are common to the recent literature.

Definition 1. A nonempty closed subset, T, of R, endowed the sub-
space topology, is called a time scale. For t < supT and r > inf T, define
the forward jump operator , σ, and the backward jump operator , %, by

σ(t) = inf{τ ∈ T : τ > t} ∈ T, %(r) = sup{τ ∈ T : τ < r} ∈ T.
If σ(t) > t, then t is said to be right-scattered , and if %(r) < r, then r is said
to be left-scattered. If σ(t) = t and t < supT, then t is said to be right-dense,
and if %(r) = r and r > inf T then r is said to be left-dense.

The sets of right-dense and left-dense points will be denoted by DR and
DL respectively.
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Definition 2. For x : T → R and t ∈ T (if t = supT, assume t is not
left-scattered), define the delta derivative of x(t), x∆(t), to be the number
(when it exists) with the property that, for any ε > 0, there is a neighbor-
hood, U , of t such that

|[x(σ(t))− x(s)]− x∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|
for all s ∈ U . If F∆(t) = h(t), then define the integral by

t�

a

h(s)∆s = F (t)− F (a).(1)

Definition 3. For a, b ∈ T, define the closed interval [a, b] in T by

[a, b] = {t ∈ T : a ≤ t ≤ b}.
Open intervals, half-open intervals etc. are defined similarly. For an arbitrary
interval P ⊂ T we denote its length by

l(P ) = b− a.
Consider the family FR = {[a, b) : a, b ∈ T} and for an arbitrary set

A ⊂ T put

m∗(A) = inf
{ ∞∑

i=1

l(Pi) : Pi ∈ FR and A ⊂
∞⋃

i=1

Pi

}
.(2)

One can notice that m∗ is an outer measure on 2T. By the Carathéodory
Extension Theorem, m∗ defines a σ-field L = L∆ of measurable sets A ∈ L
satisfying the condition

m∗(E) = m∗(E ∩ A) +m∗(E ∩A′)
for every E ⊂ T, where A′ = T \ A. Define µ∆ = m∗|L. Following Bohner
& Peterson [2] the measure µ∆ is called the ∆-measure, while L is the
family of ∆-measurable sets. Note that any P ∈ FR is ∆-measurable with
µ∆(P ) = l(P ) and any compact set K ⊂ T\{maxT} is of finite ∆-measure.
Moreover, any Borel set is ∆-measurable.

Similarly, consider the family FL = {(a, b] : a, b ∈ T} and define

m∗(A) = inf
{ ∞∑

i=1

l(Pi) : Pi ∈ FL and A ⊂
∞⋃

i=1

Pi

}
.(3)

Now the Carathéodory procedure leads to the∇-measure µ∇ and∇-measur-
able sets L∇.

As usual we say that a certain property is satisfied ∆-almost everywhere
(∆-a.e.) or for ∆-almost all (∆-a.a.) points if the set of points where the
property does not hold has ∆-measure zero. Similarly we define the notions
of ∇-almost everywhere (∇-a.e.) and ∇-almost all (∇-a.a.).
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Notice that

m∗(−A) = m∗(A), m∗(−A) = m∗(A),(4)

where the outer measures on the right-hand sides are taken on the time
scale T, while on the left on −T.

Our goal in this paper is to give an extension of the formula (1) to the
Lebesgue integrals

�

[a,b)

f ′+(t) dµ∆ ≤ f(b)− f(a),
�

(a,b]

f ′−(t) dµ∇ ≤ f(b)− f(a),

where the derivatives f ′+(t) and f ′−(t) are understood a.e. This requires a
new approach to differentiation on the time scale T by the use of a suitable
version of the Vitali Lemma.

Before we formulate and prove it we need the following properties of the
outer measures m∗ and m∗.

Proposition 1. (i) For any A ⊂ DR we have m∗(A) ≤ m∗(A).
(ii) For any A ⊂ DL we have m∗(A) ≤ m∗(A).
(iii) For any A ⊂ DL ∩DR we have m∗(A) = m∗(A).

Proof. We shall show just (i), since (ii) follows from (i), and (iii) is a
simple consequence of the previous ones.

Fix ε > 0 and take Rj = (aj , bj ] such that

A ⊂
∞⋃

j=1

Rj ,

∞∑

j=1

l(Rj) ≤ m∗(A) + ε.

Set N1 = {j : bj is right-scattered} and N2 = {j : bj is right-dense}. For
j ∈ N1 take Pj = [aj , bj), while for j ∈ N2 choose Pj = [aj , cj), where
cj > bj is a point in T such that cj − bj < ε/2j . Observe that

A ⊂
∞⋃

j=1

Pj ,

∞∑

j=1

l(Pj) ≤
∞∑

j=1

l(Rj) + ε ≤ m∗(A) + 2ε.

Thus m∗(A) ≤ m∗(A) + 2ε and since ε > 0 is arbitrary we have m∗(A) ≤
m∗(A), which ends the proof.

Proposition 2. For a sequence of intervals [ai, bi) with ai ∈ DR, i =
1, 2, . . . , and any A ⊂ T , we have

m∗
(
A ∩

∞⋃

i=1

[ai, bi)
)

= m∗
(
A ∩

∞⋃

i=1

(ai, bi)
)
.(5)

Similarly for intervals (ai, bi] with bi ∈ DL, i = 1, 2, . . . , we have

m∗
(
A ∩

∞⋃

i=1

(ai, bi]
)

= m∗
(
A ∩

∞⋃

i=1

(ai, bi)
)
.(6)
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Proof. By (4) it is enough to show (5). Notice that always

m∗
(
A ∩

∞⋃

i=1

[ai, bi)
)
≥ m∗

(
A ∩

∞⋃

i=1

(ai, bi)
)
.

The equality is obvious if m∗(A ∩⋃∞i=1(ai, bi)) =∞.
If m∗(A ∩⋃∞i=1(ai, bi)) < ∞ then for every ε > 0 there exist Rj ∈ FR,

j = 1, 2, . . . , such that

A ∩
∞⋃

i=1

(ai, bi) ⊂
∞⋃

j=1

Rj

and ∞∑

j=1

l(Rj) < m∗
(
A ∩

∞⋃

i=1

(ai, bi)
)

+ ε.

Choose Pi = [ai, ci) ∈ FR, i = 1, 2, . . . , such that l(Pi) < ε/2i. Then

A ∩
∞⋃

i=1

[ai, bi) ⊂
∞⋃

j=1

Rj ∪
∞⋃

i=1

Pi

and hence

m∗
(
A ∩

∞⋃

i=1

[ai, bi)
)
≤
∞∑

j=1

l(Rj) +
∞∑

i=1

l(Pi) < m∗
(
A ∩

∞⋃

i=1

(ai, bi)
)

+ 2ε.

Now letting ε→ 0 we obtain (5).

Consider the families F0R = {P ∈ FR : l(P ) > 0} and F0L = {P ∈ FL :
l(P ) > 0}. Observe that F0R covers DR in the sense of Vitali, while F0L
covers DL. Indeed, if x ∈ DR then there is a decreasing sequence {tn} ⊂ T
such that lim tn = x and hence the intervals [x, tn) ∈ F0R satisfy lim l([x, tn))
= 0. The case of F0L is similar.

We shall show that the following analogues of the Vitali Lemma hold:

Lemma 1. (a) (Vitali Lemma for ∆-measure). Let E ⊂ DR be a set
with m∗(E) <∞. Then for every ε > 0 there exist pairwise disjoint intervals
P1, . . . , PN ∈ F0R such that

m∗
(
E \

N⋃

n=1

Pn

)
< ε.

(b) (Vitali Lemma for ∇-measure). Let E ⊂ DL be a set with m∗(E)
<∞. Then for every ε > 0 there exist pairwise disjoint intervals P1, . . . , PN
∈ F0L such that

m∗
(
E \

N⋃

n=1

Pn

)
< ε.
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Proof. We discuss only case (a) because the arguments used can easily be
adapted to (b). Since m∗(E) <∞, there exists W =

⋃∞
i=1Ri ⊃ E with Ri ∈

F0R and
∑∞

i=1 l(Ri) < ∞. Therefore µ∆(W ) = m∗(W ) ≤∑∞i=1 l(Ri) < ∞.
Set FW = {P ∈ F0R : P ⊂ W} and observe that FW still covers E in the
sense of Vitali. We choose by induction a family {Pn} ⊂ FW of pairwise
disjoint intervals as follows: Let P1 ∈ FW be any interval and assume that
P1, . . . , Pn ∈ FW have already been chosen.

If E ⊂ ⋃n
i=1 Pi we are done. If E\⋃n

i=1 Pi 6= ∅ then for any x ∈ E\⋃n
i=1 Pi

there exists an interval P ∈ FW such that

P ∩
n⋃

i=1

Pi = ∅.

Thus the number

kn = sup
{
l(P ) : P ∩

n⋃

i=1

Pi = ∅, P ∈ FW
}

(7)

satisfies
0 < kn ≤ m∗(W ) <∞.

Therefore one can find Pn+1 ∈ FW such that

Pn+1 ∩
n⋃

i=1

Pi = ∅, 1
2
kn < l(Pn+1) ≤ kn.

Notice that

1
2

∞∑

n=1

kn ≤
∞∑

n=1

µ∆(Pn) = µ∆

∞⋃

n=1

Pn ≤ µ∆(W ) <∞.

Hence kn → 0 as well as l(Pn)→ 0. Let Pn = [an, bn). Define

cn = inf{t ∈ T : t ≥ 3an − 2bn},(8)

dn = sup{t ∈ T : t ≤ 3bn − 2an},(9)

and observe that cn, dn ∈ T with cn ≥ an and bn ≤ dn. Thus

Jn = [cn, dn) ⊃ Pn, l(Jn) ≤ (3bn − 2an)− (3an − 2bn) = 5l(Pn).

Now fix ε > 0 and take N such that
∞∑

n=N+1

l(Pn) <
ε

5
.

Hence
∞∑

n=N+1

l(Jn) < ε.(10)
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Let

X = E \
N⋃

n=1

Pn.

To establish the lemma we need to show that

m∗(X) < ε.(11)

Take an arbitrary point x ∈ X. Since x 6∈ ⋃N
i=1 Pi we can find P ∈ FW with

x ∈ P and

P ∩
N⋃

i=1

Pi = ∅.(12)

Notice that

P ∩
∞⋃

i=1

Pi 6= ∅.(13)

Indeed, otherwise P ∩ ⋃n
i=1 Pi = ∅ for every n = 1, 2, . . . and therefore

0 < l(P ) ≤ kn, which is a contradiction, since kn → 0. From (12) and (13)
we conclude that

P ∩
∞⋃

i=N+1

Pi 6= ∅.

Thus there is i ≥ N + 1 such that

P ∩ Pi 6= ∅.(14)

Take n to be the smallest possible integer i exceeding N + 1 and satisfying
(14). One can easily notice that

P ∩
n−1⋃

i=1

Pi = ∅.

Hence 0 < l(P ) ≤ kn−1 < 2l(Pn) and if P = [a, b) we have

b− a < 2(bn − an).(15)

We claim that x ∈ Jn. To see this take z ∈ P ∩ Pn and observe that∣∣∣∣x−
an + bn

2

∣∣∣∣ ≤ |x− z|+
∣∣∣∣z −

an + bn
2

∣∣∣∣ < (b− a) +
bn − an

2
<

5(bn − an)
2

.

Thus 3an − 2bn < x < 3bn − 2an and therefore cn ≤ x ≤ dn. To deduce the
claim it remains to show that x 6= dn. Assume to the contrary that x = dn.
Then

b > x = dn ≥ bn.
Hence b > 3bn − 2an, since if b ≤ 3bn − 2an, then b ≤ dn. We also have
bn > a, since a ≤ z < bn. So finally

b− a > (3bn − 2an)− bn = 2(bn − an),
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which contradicts (15). Therefore x ∈ Jn ⊂
⋃∞
i=N+1 Ji. But x ∈ X was

arbitrarily chosen, so

X ⊂
∞⋃

i=N+1

Ji

and hence by (10) we have

m∗(X) ≤
∞∑

n=N+1

l(Jn) =
∞∑

n=N+1

µ∆(Jn) < ε,

which completes the proof.

Usually the Vitali Lemma is applied to problems concerning differentia-
tion. The same occurs for the time scale T, but in order to talk about deriva-
tives of a function f : T → R we have to distinguish between right-dense,
left-dense, right-scattered and left-scattered points.

Let x ∈ DR be a right-dense point. Then the quantities

D+f(x) = lim sup
t→x+

f(t)− f(x)
t− x , D+f(x) = lim inf

t→x+

f(t)− f(x)
t− x

will be called, respectively, the right upper and right lower derivatives of f
at x.

If x is right-scattered then we put

D+f(x) = D+f(x) =
f(σ(x))− f(x)

σ(x)− x .

Similarly, for x ∈ DL being a left-dense point we define

D−f(x) = lim sup
t→x−

f(t)− f(x)
t− x , D−f(x) = lim inf

t→x−
f(t)− f(x)

t− x ,

and if x is left-scattered then we put

D−f(x) = D−f(x) =
f(%(x))− f(x)

%(x)− x .

One can easily observe that D+f(x) ≥ D+f(x) and D−f(x) ≥ D−f(x).
We say that f is right differentiable at x if D+f(x) = D+f(x) 6= ±∞.

In this case that common value is called the right derivative of f at x and
denoted by f ′+(x). Analogously, f ′−(x) = D−f(x) = D−f(x) 6= ±∞ is called
the left derivative of f at x.

Finally, f is differentiable at x if f ′+(x) = f ′−(x), and that common value
is denoted by f ′(x) and called the derivative of f at x.

The derivatives just introduced have similar properties to the usual ones.
We just need to notice that for g(x) = −f(−x) defined on the time scale
−T we have

D−g(x) = −D+f(−x), D−g(x) = −D+f(−x),
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and
g′+(x) = −f ′−(−x), g′+(x) = −f ′−(−x).(16)

In what follows we shall develop a theory of differentiation distinguishing
right and left derivatives. We begin with the following observation:

Theorem 1. Let f : T→ R be an increasing function. Then:

(i) f is right differentiable ∆-a.e. on DR;
(ii) f is left differentiable ∇-a.e. on DL;
(iii) f is differentiable ∆-a.e. and ∇-a.e. on DL ∩DR.

The derivatives f ′+ and f ′− are measurable, nonnegative and for every
a, b ∈ T \ {inf T, supT} we have

�

[a,b)

f ′+(t) dµ∆ ≤ f(b)− f(a),
�

(a,b]

f ′−(t) dµ∇ ≤ f(b)− f(a).(17)

Proof. We prove just (iii), since (i) is similar, while (ii) can be deduced
from (i) for g(x) = −f(−x) defined on −T. We need to show that the set of
points where both right and left derivatives are unequal has both ∆ and ∇
measures zero, i.e.

m∗(E) = m∗(E) = 0.(18)

We may consider only the set

E = {x ∈ DR ∩DL : f ′+(x) > f ′−(x)}
since the set arising from the opposite inequality can be similarly handled.
Observe that E can be represented as the union of the sets

En,α,β = {x ∈ DR ∩DL ∩ (mn,Mn) : f ′+(x) > α > β > f ′−(x)}.
for all rationals α > β > 0 and n = 1, 2, . . . , where

mn = inf{t ∈ T : t ≥ −n}, Mn = sup{t ∈ T : t < n}.
Moreover from Proposition 1 we know that m∗(En,α,β) = m∗(En,α,β) =: s.
Hence it is sufficient to check that

s = 0.(19)

Pick an arbitrary ε > 0 and choose W =
⋃∞
i=1Ri ⊃ En,α,β with Ri ∈

F0L and
∑∞

i=1 l(Ri) < s + ε. Observe that for each x ∈ En,α,β there is an
arbitrarily small interval P = (t, x] ⊂W such that

f(x)− f(t) < β(x− t) = βl(P ).

Thus the family

FW = {P = (a, b] ∈ F0L : P ⊂W, b ∈ DL, f(b)− f(a) < βl(P )}
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covers En,α,β in the sense of Vitali. Hence by Lemma 1, we can choose a
finite collection {P1, . . . , PN} ⊂ FW of pairwise disjoint intervals such that

m∗
(
En,α,β \

N⋃

i=1

Pi

)
< ε.

Let Pi = (ai, bi] and set A = En,α,β ∩
⋃N
i=1(ai, bi) ⊂ DL ∩ DR. Then by

Proposition 1 and (6) we have

m∗(A) = m∗(A) > s− ε.
By the construction for each i ∈ {1, . . . , N} we have

f(bi)− f(ai) < β(bi − ai) = βl(Pi).

Summing up these inequalities we obtain
N∑

i=1

(f(bi)− f(ai)) <
N∑

i=1

βl(Pi) < β(s+ ε).

Now each z ∈ A ⊂ En,α,β admits an arbitrarily small interval I = [z, s) ⊂
(ai, bi), for some i ∈ {1, . . . , N}, such that

f(s)− f(z) > α(s− z) = αl(I).

Therefore the family

F1 = {I = [a, b) ∈ FW : I ⊂ (ai, bi) for some i ∈ {1, . . . , N}
and f(b)− f(a) > αl(I)}

covers A in the sense of Vitali. Now applying Lemma 1 again we can choose
a finite collection {I1, . . . , IM} ⊂ F1 of pairwise disjoint intervals such that

m∗
(
A \

M⋃

k=1

Ik

)
< ε.

Let Ik = [ck, dk) and set B = A ∩⋃M
k=1 Ik. Then

m∗(B) > m∗(A)− ε > s− 2ε,

and for each k ∈ {1, . . . ,M} we have

f(dk)− f(ck) > α(dk − ck) = αl(Ik).

Hence
M∑

k=1

(f(dk)− f(ck)) > α

M∑

k=1

l(Ik) > αm∗(B) > α(s− 2ε).

But each interval Ik is contained in some interval Pi. For given i, set N(i) =
{k : Ik ⊂ Pi} = {k1, . . . , km}, where the numbering is such that

ai ≤ ck1 < dk1 ≤ ck2 < dk2 ≤ . . . ≤ ckm < dkm ≤ bi.
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Thus we obtain∑

k∈N(i)

(f(dk)− f(ck))

= f(dkm)− f(ck1) +
m−1∑

r=1

(f(ckr+1)− f(dkr)) ≤ f(bi)− f(ai),

since f is increasing. Hence
M∑

k=1

(f(dk)− f(ck)) =
N∑

i=1

∑

k∈N(i)

(f(dk)− f(ck)) ≤
N∑

i=1

(f(bi)− f(ai))

and so
α(s− 2ε) < β(s+ ε).

Recall that ε > 0 was arbitrarily chosen, so we have βs ≥ αs. But β < α,
hence s has to be 0.

To show (17) it is enough to prove that
�

[a,b)

f ′+(x) dµ∆ ≤ f(b)− f(a)(20)

since the other relation follows from (16) upon replacing f(t) by h(t) =
−f(−t). Observe that (i)–(iii) give the existence of sets D0

R ⊂ DR and
D0 ⊂ DR ∩DL with

m∗(DR \D0
R) = 0, m∗(DR ∩DL \D0) = 0(21)

and such that the limits

lim
t→x+

f(t)− f(x)
t− x and lim

t→x
f(t)− f(x)

t− x
exist (finite or not), respectively, for x ∈ D0

R and for x ∈ D0 (for right-
scattered points by definition). Define

D = (DR \D0
R) ∪ [(DR ∩DL) \D0]′ = D′R ∪ [D0

R \DL] ∪D0
R ∩DL

and observe that by (21),
m∗(D′) = 0.

Consider

g(x) =





lim
t→x+

f(t)− f(x)
t− x for x ∈ D0

R,

+∞ for x ∈ DR \D0
R,

f(σ(x))− f(x)
σ(x)− x for x ∈ T \DR.

Observe that f is right differentiable whenever g(x) is finite for x ∈ D, and
then g(x) = f ′+(x). We shall construct a sequence of nonnegative simple
functions gn : [a, b)→ R with the following properties:
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(a) gn(x) tends to g(x) for x ∈ [a, b) ∩D;
(b)

�
[a,b) gn(x) dµ∆ ≤ f(b)− f(a).

The construction goes as follows. Take δ = (b− a)/n and consider a
partition Pn of [a, b) given by a = t0 < t1 < . . . < tN = b such that for each
i ∈ {1, . . . , N} either

ti − ti−1 ≤ δ
or

ti − ti−1 > δ, %(ti−1) = ti.

Such a partition Pn exists by Lemma 5.7 in Bohner & Peterson [3]. Define

gn(x) =
f(ti)− f(ti−1)

ti − ti−1
for x ∈ [ti−1, ti).

We shall show that gn(x) tends to g(x) for x ∈ D. Denote by [tni−1(x), tni (x))
∈ Pn the subinterval containing x. We have to consider the following cases:

1. x ∈ T\DR (x is right-scattered). Then for sufficiently large n we have
σ(x) − x > δ = (b− a)/n. Therefore x and σ(x) have to be consecutive
division points of Pn. But then

gn(x) =
f(σ(x))− f(x)

σ(x)− x = g(x).

2. x ∈ D0
R \DL (x is left-scattered and right-dense). Then for sufficiently

large n we have x − %(x) > δ = (b− a)/n and therefore tni−1(x) = x with
tni (x)→ x+. But then

gn(x) =
f(tni )− f(x)

tni − x
→ g(x).

3. x ∈ D0
R ∩DL (x is left- and right-dense). Then

lim
t→x

f(t)− f(x)
t− x = g(x)

and for each n we have tni (x)− tni−1(x) < δ = (b− a)/n. Hence tni−1(x)→ x−

and tni (x)→ x+. But then

f(tni−1(x))− f(x)
tni−1(x)− x → g(x),

f(tni (x))− f(x)
tni (x)− x → g(x).

We claim that
f [tni (x)]− f [tni−1(x)]
tni (x)− tni−1(x)

→ g(x).

Indeed:
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(a) If g(x) is finite, then for every ε > 0 and sufficiently large n we have

[g(x)− ε][x− tni−1(x)] ≤ f(x)− f [tni−1(x)] ≤ [g(x) + ε][x− tni−1(x)],

[g(x)− ε][tni (x)− x] ≤ f [tni (x)]− f(x) ≤ [g(x) + ε][tni (x)− x].

Adding those inequalities we obtain

[g(x)− ε][tni (x)− tni−1(x)] ≤ f [tni (x)]− f [tni−1(x)]

≤ [g(x) + ε][tni (x)− tni−1(x)]

or equivalently

g(x)− ε ≤ f [tni (x)]− f [tni−1(x)]
tni (x)− tni−1(x)

≤ g(x) + ε.

Thus
g(x)− ε ≤ gn(x) ≤ g(x) + ε

and the latter shows that gn(x)→ g(x).
(b) Suppose g(x) is infinite, say +∞ (for −∞ we proceed similarly).

Then for any K > 0 and sufficiently large n we have

K[x− tni−1(x)] ≤ f(x)− f [tni−1(x)],

K[tni (x)− x] ≤ f [tni (x)]− f(x).

Adding again we obtain

K ≤ f [tni (x)]− f [tni−1(x)]
tni (x)− tni−1(x)

.

Thus

lim inf
n→∞

f [tni (x)]− f [tni−1(x)]
tni (x)− tni−1(x)

≥ K,

and this shows that also in this case gn(x)→ g(x).
From the Fatou Lemma we now conclude that

�

[a,b)

g(t) dµ∆ ≤ lim inf
n→∞

�

[a,b)

gn(t) dµ∆.

But
�

[a,b)

gn(t) dµ∆ =
N∑

i=1

�

[ti−1,ti)

f(ti)− f(ti−1)
ti − ti−1

dµ∆

=
N∑

i=1

[f(ti)− f(ti−1)] = f(b)− f(a)

and therefore �

[a,b)

g(t) dµ∆ ≤ f(b)− f(a).
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Since g(t) ≥ 0 for ∆-a.a. points in [a, b), the latter shows that g is ∆-
integrable and hence finite ∆-a.e. in [a, b). Thus f is right differentiable a.e.
in [a, b) and g = f ′+ a.e. in [a, b), which completes the proof.
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