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On a theorem of Vesentini
by

GERD HERzOG and CHRISTOPH SCHMOEGER (Karlsruhe)

Abstract. Let A be a Banach algebra over C with unit 1 and f : C — C an entire
function. Let f : A — A be defined by

f(a) = f(a) (a€ A,
where f(a) is given by the usual analytic calculus. The connections between the periods

of f and the periods of f are settled by a theorem of E. Vesentini. We give a new proof of
this theorem and investigate further properties of periods of f, for example in C*-algebras.

Throughout this paper A denotes a complex unital Banach algebra with
unit 1. For a € A we write

o(a) = {A € C:a— A1 is not invertible in A}
for the spectrum of a. The center of A is the subset A€ of A given by
A°={z € A:za=az for all a € A}.

By H(C) we denote the collection of all entire functions f : C — C.
If f e H(C) and a € A, then f(a) is defined by the well known analytic
calculus (see [3]). If

o0
f(z)= Zanz" (z€C)
n=0
is the power series representation of f, then by [3],

o
fla) = Z ana™ = apl + ara + asa® + . ..
n=0

for a € A. Therefore, given f € H(C), we define the mapping f : A — A by

f(a) = f(a).
Hence f': A — A is given by

o
f'(a) = f'(a) = Z naya™ !
n=1
(thus f’ does not denote the derivative of the mapping f).
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For f € H(C) put
P(f)={weC: f(z+w) = f(z) for all z € C},
P(f)y={pe A: f(a+p)=1£(a) for all a € A}.

Observe that 0 € P(f) and 0 € P(f).
Throughout this paper f will denote an element of H(C) with power
series representation

f(z) = Zanz” (ag,as,... € C).
n=0

PROPOSITION 1. Letw € C, g € A and ¢* = q.

(1) f(wq) = aol + (f(w) — ao)q.
(2) If we P(f), then f(wq) = apl.

Proof. (1) We have
f(wq) = Z anw"q" = apl + (Zamu")q = apl + (f(w) — ao)q.
n=0 n=1

(2) Since f(w) = f(0) = aop, it follows from (1) that f(wq) = apl. =

PROPOSITION 2. Suppose that a,b € A, ab = ba and that ¢ : C — A is
defined by ¢(z) = £(za+0b) (z € C). Then ¢ is an A-valued analytic function
and

¢'(z) =f'(za+b)a  forall z € C.

Proof. We have

o0

o(z) = Z an(za+0b)" (2 €C).

n=0

It follows from [3, §59, §97] that ¢ is analytic and
—~ d
¢ (z) = nzzoan E(za +0)" (z€C).
Since ab = ba,
d
o (za+b)" =n(za+b)"ta forn>1,

thus o
() = (Z nan(za + b)”_l)a =f'(za + b)a

n=1

forzeC. m
THEOREM 1. Let w € P(f), ¢ € A and ¢*> = q. Then wq € P(f).
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Proof. Fix a € A and define ¢, : C — A by
o) = f(za+wq),  (2) = £(za).
Proposition 2 gives
6 () = £0) (20 + wg)ah, P (2) = £V (za)a*
for z€ Cand £k =0,1,... Hence
¢M(0) = £® (wg)a®, M (0) = £®(0)a"
for k > 0. Since w € P(f®) for k > 0, Proposition 1 shows that
oM(0) = FO(0)a" = £ (0)a* = v(0)
for k =0,1,... Therefore ¢ = ¢ on C. Hence
f(a+wa) = 6(1) = ¥(1) = £(a).

Since a € A was arbitrary, wq € P(f). =

COROLLARY 1. {wl:w € P(f)} C P(f).

THEOREM 2. Let p € P(f) and suppose that f is non-constant. Then:

(1) o(p) € P(1).

(2) p e A°.

(3) p € P(F).

Proof. (1) We have f(p) = f(p) = £(0) = apl. Put g(z) = f(2) — ao.
Then g(p) = 0. The spectral mapping theorem ([3, Satz 99.2]) gives

9(o(p)) = a(g(p)) = {0}

Since o(p) is compact and ¢ is non-constant, o(p) is finite, say o(p) =
{wi,...,wn}, and g(w;) = 0 (j = 1,...,n). Therefore f(w;) = f(0). Fix
29 € C and define h € H(C) by h(z) = g(z + zp). Then

h(a+p)=gla+p+ 201) =f((a+ 201) + p) — aol
=f(a+201) —apl = g(a+ z1) = h(a)
for all @ € A. This shows that p € P(h). As above, h(w;) = h(0) (j =
1,...,n). Thus
f(20) — a0 = g(20) = h(0) = h(wj) = g(wj + 20) = f(wj + 20) — ao
for j =1,...,n. Consequently, w; € P(f) (j =1,...,n).
(2) Since f is non-constant, there is some zg € C such that f’(zg) # 0.

Without loss of generality we can assume that zg = 0, so a; # 0. Now take
a € A. Then

(@ +p)f(a) = (a +p)f(a +p) = f(a+p)(a+p) = f(a)(a +p).
So pf(a) = f(a)p for all a € A. Therefore
pf(za) =f(za)p fora e Aand z e C.
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This gives
o0 oo
Z an2"pa”™ = Z anz"ap
n=0 n=0

for a € A and z € C. Comparing coefficients yields

appa”™ = anap for a € Aand n > 0.

For n =1 we get aipa = aiap (a € A). Since a1 # 0, p € A°.
(3) We have f(za + p) = f(za) for z € C and a € A. According to

Proposition 2,

f'(za+pla=1f(za)a (2 €C,acA).
Thus for z =1,
(%) f'(a+ p)a=f'(a)a for each a € A.
Now fix a € A and define ¢ : C — A by

#(z) =f'(a—21+p)—f'(a—21).

By (*), ¢(2)(a — z1) = 0 for every z € C. If |z| > ||a|, then z & o(a), thus
a — 21 is invertible in A. Therefore ¢(z) = 0 for z € C with |z| > ||al|. Since
¢ is analytic on C, we get ¢(z) = 0 for each z € C. Consequently,

f'la—21+p)=f'(a—21) (2€C).
Thus, for z =0, f'(a + p) = f’(a). Since a € A was arbitrary, p € P(f'). =

PROPOSITION 3. Suppose that f is non-constant. Then there exists zo € C
such that the function h € H(C) given by h(z) = f(z + 20) — f(20) has only
simple zeros.

Proof. First we show that there is some ¢ € f(C) such that f — ¢ has
only simple zeros. To this end assume to the contrary that for each ¢ € f(C)
the function f — ¢ has a zero of order > 2. Therefore for each ¢ € f(C) there
is z. € C with

f(ze) =¢, f'(2e) = 0.
It follows that z., # z., if ¢1 # co. Since f is non-constant, f(C) is a region
in C, hence f(C) is uncountable. This shows that the set {z. : ¢ € f(C)}
is uncountable. Hence the set of zeros of f’ is uncountable, a contradiction.
Thus we have shown that there is some zy € C such that f — f(zp) has only
simple zeros. If h € H(C) is defined by h(z) = f(z+ 20) — f(z0), then h has
the desired property. =

The following theorem contains a characterization of the periods of f,
and is due to E. Vesentini [5]. Vesentini’s proof makes extensive use of the
Dunford functional calculus and is essentially different from the proof given
here.
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THEOREM 3 (Vesentini). Suppose that f is non-constant. Then the fol-
lowing assertions are equivalent:

(1) p € P(f).

(2) There are wy,...,wy € P(f) and qi,...,q, € A° such that

l=q+...4¢q 0#¢=q (G=1,...,n), q¢u=0 (j#k)
and
pP=wiqi + ...+ wpn.

Proof. (1)=(2). By Proposition 3 there is zp € C such that the entire
function h(z) = f (z + z0) — f(20) has only simple zeros. It is clear that
P(h) = P(f). As in the proof of Theorem 2, p € P(h). By Theorem 2(1)
we derive o(p) = {w1,...,wp} C P(h) = P(f). Since h(p) = h(p) = h(0) =
h(0)1 = 0 and h has only simple zeros, Proposition 8.11 in [2] shows that
there are idempotents ¢, ..., ¢, € A\{0} with

4% =0 (G#k), a+...+a=1, pg=wiq (G=1...,n).
Thus p=p(g1 + ...+ qn) = w1q1 + ... wnqn. From [2, Remark (2), p. 37] it
follows that

qjb=bg; for each b € A with pb = bp
( =1,...,n). By Theorem 2(2) we derive ¢; € A° (j =1,...,n).

(2)=(1). Use Theorem 1 to get wjq; € P(f) for j = 1,...,n. Thus
pE P(f). u

ExampLEs. (1) If

(e} n

J() = exp(z) = Y =
n=0

then p € P(exp) if and only if there are k1,...,k, € Z and q1,...,q, € A°
with qJQ- =q; (J=1,...,n) and p = 2kymiq1 + ... + 2k, migy.

(2) 1t

& ZQn
f(z) = cos(z) = Z(‘l)nm7
n=0

then p € P(cos) if and only if there are k1,...,k, € Z and q1,...,q, € A°
with q]2. =q; (J=1,...,n) and p =2kiwq1 + ... + 2k, 7.
(3) Let w € C™ denote the vector (1,...,1), and consider the Banach
algebra
A={AcC™m .3\ e C: ATw = Aw = \w}.

Put
1 ... 1

1
m

Q=
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Then 1 # Q = Q% and Q € A°. Therefore 27iQ € P(exp) and 27Q €
P(cos). =

(4) Let X be a complex Banach space and let B(X) be the Banach
algebra of all bounded linear operators on X. Assume that Py € B(X)

and x € X, x # 0 are such that exp(Pp)xr = x. We consider the following
Py-invariant closed subspace of X:

Y = [Pfx : k € Nyl

Let P:Y — Y be the restriction of Py to Y, and consider the commutative
subalgebra of B(Y") defined by

A=[PF: ke Ny.
Obviously exp(A + P) = exp(A) for all A € A, that is, P € P(exp). Hence
there exist ki,...,k, € Z and Qq,...,Q, € A° with Q? =Q;(j=1,...,n)
and

P = 2k1m‘Q1 4+ ...+ 2]€nﬂ'2Qn

Moreover v; := Q;x satisfies Pv; = 2k;miv; (j =1,...,n), and

T=v1+ ...+ V.
Therefore, the eigenvector x of exp(Pp) can be written as a finite sum of

eigenvectors of Fp.

In this context, let X be a normable complete topological subspace of
the Fréchet space H(C) with f’ € X for each f € X. Let D : X — X denote
the differential operator Df = f’, and let ¢ € X with w € P(g), w # 0.
Then

(exp(wD)g)(2) = g(z +w) = g(z) (2€C).
Thus g = f1 + ... + fn with f1,..., fn € X satisfying wDf; = 2k;mif;.
Therefore g has the form

9= % exp( o )

j=1

with k1,...,k, € Z and ~1,...,7, € C.
In particular, there is no normable complete topological subspace X of
H(C) such that f" € X for all f € X, containing the function

Z o exp(2kmiz),
k=0

for example.
The next result contains further characterizations of periods of f.

THEOREM 4. If f is non-constant and p € A then the following asser-
tions are equivalent:
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(1) p € P(f).
(2) p € A% o(p) C P(f) and each w € o(p) is a simple pole of the
resolvent r(\,p) = (A1 —p)~ L.
(3) p € A and there are wi,...,w, € P(f) such that w; # wi (j # k)
and
(p—wil)...(p—wpl) =0.

Proof. (1)=(2). By Theorems 2 and 3, p € A°, o(p) = {w1,...,wn} C
P(f) and there are q1,...,q, € A° such that
l=q+...4q, O0#¢=q, q¢u=0 (j#k)
and
p=wiq1 + ...+ wnQn-

We can assume that w; # wy for j # k. Define the analytic function ¢ :
C\o(p) — Aby

o) =Y .
j=1 !

Since p € A® and pg; = wjq; (j =1,...,n),
—~ g —PY ¢
(AL —p)o(A) = ¢(A)(A1 —p) = Z # = ZQj =1
j=1 J j=1
This shows that ¢(A) = r(A,p) (A € C\ a(p)). Since g; # 0, it follows that
each w; is a simple pole of r(A, p).
(2)=(1). We have o(p) = {w1,...,wn} C P(f) with w;j # wy, for j # k.
By [2, Proposition 7.9] there exist q1,..., ¢, € A such that

l=q+...tdn, Gau=0 (j#k), 0#q¢=¢ (G=1...,n)

and
o(pgj) ={0,w;} (G=1,...,n) if n>1.
Furthermore (see [2, Remark (2), p. 37]), ¢ja = ag; for each a € A with
pa = ap. Since p € A°, we derive ¢; € A° (j =1,...,n). Next we show that
pq1 = wiqi. Let v > 0 be so small that wo,...,w, ¢ U = {AeC:|A—uw]
< r}. Put y(t) = wy +re’ (t € [0,27]). Then (see [2, Remark (1), p. 37])
1
n=5- S r(z,p) dz.
¥

Since wp is a simple pole of r(\,p), the Laurent expansion of r(\,p) on
U\ {w1} has the form

rp) = 1 o),




190 G. Herzog and C. Schmoeger

where g : U — A is analytic (see [3, Satz 97.4]). For A € U \ {w1 } it follows
that

A —p)g

1= 00 =) = B2 4 - (),

thus
A—w)l=(A1—-p)g1 + (A —w1)(AL = p)g(X).

If A — wy it follows that pgy = wigi. A similar proof shows that pg; = w;q;
for j =2,...,n. Then we have

p=p(@1+...+aqn) =wiqi + ... + wnln.

Theorem 3 shows now that p € P(f).

(1)=(3). Let h € H(C) be as in the proof of Theorem 3. Then P(h) =
P(f) = o(p) = {wi,...,wn} and h(p) = 0. Since h has only simple zeros,
Proposition 8.11 in [2] shows that

(p—wil)...(p—wyl) =0.
From p € P(f), we get p € A® (Theorem 2).
(3)=(1). Let ¢(2) = (# —w1)...(# —wp) (2 € C). Then ¢ € H(C), ¢
has only simple zeros and ¢(p) = 0. Again by [2, Proposition 8.11], there
exist non-zero idempotents ¢1, ..., ¢, € A such that

l=q+...4+q, qu=0 (G#k), pg=wjq (G=1...,n).
It follows from [2, Remark (2), p. 37] that gja = ag; for each a€ A with ap
=pa. Sincep € A% alsogj € A° (j=1,...,n). Fromp=p(g1+...+qn) =
wiq1 + - .. + wpqn we see now that p € P(f) (Theorem 3). =

Now we consider special types of Banach algebras.

A representation of A on a normed linear space X is a homomorphism of
A into the algebra B(X) of all bounded linear operators on X. A represen-
tation 7" is said to be strictly irreducible if T' # 0 and if {0} and X are the
only invariant subspaces of X for T' (i.e. Y with T'(a)Y C Y for all a € A).
We call A primitive if there is an injective strictly irreducible representation
of A on a Banach space.

ExaMPLE. If X is a complex Banach space, then B(X) is a primitive
Banach algebra (see [1, F.2.2]).

PROPOSITION 4. If A is primitive, then A° = {al: «a € C}.
Proof. [4, Corollary 2.4.5]. =

THEOREM 5. Let A be a primitive Banach algebra and suppose that f €
H(C) is non-constant. Then

P(f)={wl:we P(f)}.
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Proof. That {wl : w € P(f)} C P(f) follows from Corollary 1. Now
take p € P(f). By Theorem 2(2) and Proposition 4, p = w1 for some w € C.
Theorem 2(1) gives

{w} =0a(p) € P(f).
Thus w € P(f). m

REMARK. There is an elementary proof of Theorem 5 if A is the Banach
algebra B(X) (X a complex Banach space): Because of Theorem 3 it suffices
to show that if 0 # Q> = Q € B(X)¢, then Q = I (where I denotes the
identity on X). Therefore let 0 # Q% = Q € B(X)°. Then

X =QX)® N (@),

where Q(X) ={Qr:2 € X} ={r € X :Qr =z} and N(Q) ={z € X :
Qx = 0}. We have to show that N(Q) = {0}. Assume to the contrary that
there is zp € N(Q) with zg # 0. Since @ # 0 there exists yp € Q(X) such
that yo # 0. Now put xg = yo + 2o. Since zg # 0, xg € Q(X). Furthermore,
Q(X) is a closed subspace of X, thus, by the Hahn—Banach Theorem, there
is a bounded linear functional ¢ on X with

o(xg) #0, ©(Qr)=0 forallxe X.
Now define the operator A € B(X) by
Az = p(x)zo (2 € X).

Then AQzo = ¢(Qzo) zo = 0 and QAzy = v(zp) Q. Since Q € B(X)*
and p(zg) # 0, we get Qxo = 0. From z¢ = yo + 20 and zp € N(Q) it follows
that Qyo = 0, thus yg = Qyo = 0, a contradiction. m

PROPOSITION 5. Let A be a C*-algebra and let g € A° and ¢*> = q. Then
- =q.

Proof. By [1, BA.4.3] there exists e = e? = ¢* € A such that ge = e and
eq = q. Since q € A°, we have ge = eq, thus ¢ = e and therefore ¢* = ¢. =

For the next result observe that by Corollary 1 and Theorem 2, we have
P(f) = {0} & P(f) = {0}

COROLLARY 2. Let A be a C*-algebra and suppose that f is non-constant
and that P(f) # {0}. Then:

(1) Each p € P(f) is normal.
(2) P(f) CR < p=p* for each p € P(f).
(3) P(f) CiR < p= —p* for each p € P(f).

Proof. For (1), notice that since p € A° (Theorem 2), pp* = p*p. For
(2) and (3) let wg € P(f) \ {0} with |wp| minimal. If p € P(f) then, by
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Theorem 3, there are k1,...,k, € Z and ¢1,...,q, € A° with qu =q; (j=
1,...,n) and
b= wo(kﬂh +...+ ann)'
Proposition 5 gives p* = wo(kiq1 + . .. + kngn), thus
p—p" = (wo —wo)(k1q1 + - .. + kndn),
p +p* = (wO + wO)(k’ﬂh +...+ kn‘]n)'
This shows that (2) and (3) hold. =
COROLLARY 3. Let A and f be as in Corollary 2. Then the following
assertions are equivalent:
(1) P(f) is a x-subset (i.e., p € P(f) implies p* € P(f)).
(2) P(f) CR or P(f) CiR.
Proof. (1)=(2). Take wg € P(f) \ {0}. By Corollary 1, wgl € P(f),
hence wpl € P(f). Theorem 2(1) gives
o(Wol) € P(f);
thus Wy € P(f). It follows that Wy = wy or Wy = —wyp.
(2)=(1). Use Corollary 2. =

COROLLARY 4. Assume that A and [ are as in Corollary 2. If the coef-
ficients ag,ai,... of f are real, then P(f) is a x-subset.

Proof. For a € A we have f(a*) = > 07 a,(a*)", thus f(a*)* = f(a).
Now take p € P(f). Then, for each a € A,

fla+p*) =£((a”)" +p") =£((a” +p)*) =f(a" +p)" = £(a”)" = £(a);
thus p* € P(f). n

In C*-algebras each p € P(f) is normal. The following corollary shows

that in a general Banach algebra, elements in P(f) share some properties of
normal operators (on complex Hilbert spaces) with closed range.

COROLLARY 5. For p € P(f) we have:

(1) There is q € A with pgp = p and qpq = q (hence p has a pseudo-
inverse).

(2) pA={pa:ac A} is closed.

3) A=pA®{ac A:pa=0}.

(4) Ifa € A and p*a = 0, then pa = 0 (hence the ascent of p is < 1).

(5) p>A = pA (hence the descent of p is < 1).

Proof. By Theorems 2 and 3, p € A°, o(p) = {wi,...,wn} € P(f)
(wj # wy, for j # k) and there are ¢1, ..., g, € A° with

1l=q +...+qn, O#qj:qj? (j=1,...,n),
gjar =0 (j#k), p=wiqr+...+wngn.
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If 0 € o(p), then we are done. Hence let 0 € o(p). We can assume that
w1 = 0. Thus p = wage + ... + wnqn.

(1) Putq:wgqu—l—...—f—wglqn. Then pg =q2+...+¢, =1—¢q. Thus
pagp=(1-q)p=p—pg =p—wiqn =pand qpg = q¢(1 —q1) = ¢ —qq1 = q.
(2) Put r = pq. Then r2 = pgpq = pq = r, thus rA is closed. But
rA=pgA C pA=pgpAC pgA=rA,

hence pA = rA.

(3) Since r? =1, we have A = rA® (1 —7r)A =pA® (1 —r)A. It is easy
to see that (1 —r)A = {a € A:pa=0}.

(4) Let a € A and p?a = 0. Then pa € pAN (1 —r)A = {0}.

(5) It is clear that p?A C pA. Since pgp = p and p € A, it follows that
pA=p*qACp*A =
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