Character contractibility of Banach algebras and homological properties of Banach modules

by

RASOUL NASR-ISFAHANI and SIMA SOLTANI RENANI (Isfahan)

Abstract. Let \mathcal{A} be a Banach algebra and let ϕ be a nonzero character on \mathcal{A} . We give some necessary and sufficient conditions for the left ϕ -contractibility of \mathcal{A} as well as several hereditary properties. We also study relations between homological properties of some Banach left \mathcal{A} -modules, the left ϕ -contractibility and the right ϕ -amenability of \mathcal{A} . Finally, we characterize the left character contractibility of various Banach algebras related to locally compact groups.

1. Introduction. A Banach algebra \mathcal{A} is called *amenable* if the first cohomology group $H^1(\mathcal{A}, \mathcal{X}^*)$ vanishes for all Banach \mathcal{A} -bimodules \mathcal{X} . Johnson [J] showed that the amenability of the group algebra $L^1(G)$ for a locally compact group G is equivalent to the amenability of G; however, this equivalence does not remain true for the convolution semigroup algebra $\ell^1(S)$ of a discrete semigroup S; consider, for example the additive semigroup \mathbb{N} of natural numbers.

Motivated by these considerations, Lau [L] introduced and investigated a large of class of Banach algebras which he called *F*-algebras; that is, Banach algebras \mathcal{L} which are the preduals of W^* -algebras \mathcal{M} such that the identity element u of \mathcal{M} is a character on \mathcal{L} . Later, in [PI], *F*-algebras were termed Lau algebras. A Lau algebra \mathcal{L} is said to be left amenable if $H^1(\mathcal{L}, \mathcal{X}^*) = \{0\}$ for all Banach \mathcal{L} -bimodules \mathcal{X} with the left action defined by $l \cdot x = u(l)x$ for all $l \in \mathcal{L}$ and $x \in \mathcal{X}$; Lau [L] proved that $\ell^1(S)$ is left amenable if and only if S is left amenable (see also Lau and Wong [LW]).

Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A}) \cup \{0\}$, where $\Delta(\mathcal{A})$ is the spectrum of \mathcal{A} consisting of all characters from \mathcal{A} into the complex numbers. The Banach algebra \mathcal{A} is called *left* ϕ -amenable if $H^1(\mathcal{A}, \mathcal{X}^*)$ vanishes for all Banach \mathcal{A} -bimodules \mathcal{X} for which the left module action of \mathcal{A} on \mathcal{X} is

²⁰¹⁰ Mathematics Subject Classification: Primary 46H25, 43A07; Secondary 22D15, 46H05.

Key words and phrases: Banach algebra, character amenable, character contractible, injectivity, projectivity, Banach left module, locally compact group.

defined by $a \cdot x = \phi(a)x$ ($a \in \mathcal{A}, x \in \mathcal{X}$). This concept of amenability has recently been introduced and studied by Kaniuth, Lau and Pym [KLP1], [KLP2] under the name of ϕ -amenability.

The Banach algebra \mathcal{A} is called *left* ϕ -contractible if $H^1(\mathcal{A}, \mathcal{X})$ vanishes for any Banach \mathcal{A} -bimodule \mathcal{X} for which the right module action of \mathcal{A} on \mathcal{X} is defined by $x \cdot a = \phi(a)x$ ($a \in \mathcal{A}, x \in \mathcal{X}$); moreover, \mathcal{A} is called *left character contractible* if it is left ϕ -contractible for all $\phi \in \mathcal{A}(\mathcal{A}) \cup \{0\}$. These notions were recently introduced and studied by Hu, Monfared and Traynor [HMT] as right ϕ -contractibility and right character contractibility respectively; see also Monfared [M1]. Let us point out that left ϕ -contractibility is significantly stronger than left ϕ -amenability.

On the other hand, there is a considerable progress in the study of homological properties of Banach left \mathcal{A} -modules defined by Helemskii [H2]; in particular, homological properties of several Banach left $L^1(G)$ -modules have recently been described by several authors: see for example [BNS], [DP], and [NS].

In this paper, we study the relation between the left character contractibility of the Banach algebra \mathcal{A} and homological properties of Banach left \mathcal{A} -modules. In Section 2, we show that the left ϕ -contractibility of \mathcal{A} is equivalent to the existence of a topological left invariant ϕ -mean in \mathcal{A} , that is, an element $m \in \mathcal{A}$ such that $\phi(m) = 1$ and $am = \phi(a)m$ for all $a \in \mathcal{A}$. We also characterize the left ϕ -contractibility of \mathcal{A} in terms of derivations from \mathcal{A} into certain Banach \mathcal{A} -bimodules.

In Section 3, we study hereditary properties of left ϕ -contractibility. We then investigate the left ϕ -contractibility and left character contractibility of unitizations, second duals and projective tensor products of Banach algebras.

In Section 4, we show that the projectivity of a Banach left \mathcal{A} -module \mathcal{E} with $a \cdot \xi = \phi(a)\xi$ ($a \in \mathcal{A}, \xi \in \mathcal{E}$) is equivalent to the left ϕ -contractibility of \mathcal{A} .

In Section 5, we investigate the injectivity of a Banach left \mathcal{A} -module \mathcal{E} with $a \cdot \xi = \phi(a)\xi$ ($a \in \mathcal{A}, \xi \in \mathcal{E}$) in terms of the right ϕ -amenability of \mathcal{A} . We also show that the injectivity of a dual Banach left \mathcal{A} -module \mathcal{E} with $a \cdot \xi = \phi(a)\xi$ ($a \in \mathcal{A}, \xi \in \mathcal{E}$) is equivalent to the right ϕ -amenability of \mathcal{A} . We then show that the injectivity of such Banach left \mathcal{A} -modules is a sufficient, but not necessary condition for the right ϕ -amenability of \mathcal{A} .

Finally, in Section 6, we study the left character contractibility of several Banach algebras related to a locally compact group.

2. Characterization of left ϕ -contractibility. Let \mathcal{A} be a Banach algebra and let \mathcal{X} be a Banach \mathcal{A} -bimodule. A *derivation* is a linear map $D: \mathcal{A} \to \mathcal{X}$ such that $D(ab) = a \cdot D(b) + D(a) \cdot b$ for all $a, b \in \mathcal{A}$. For $x \in \mathcal{X}$,

the linear map $\operatorname{ad}_x : \mathcal{A} \to \mathcal{X}$ defined by $\operatorname{ad}_x(a) = a \cdot x - x \cdot a$ for all $a \in \mathcal{A}$ is a derivation. A derivation $D : \mathcal{A} \to \mathcal{X}$ is *inner* if there is $x \in \mathcal{X}$ such that $D = \operatorname{ad}_x$.

Let $\phi \in \Delta(\mathcal{A})$ and recall from Hu, Monfared and Traynor [HMT] that \mathcal{A} is left ϕ -contractible if $H^1(\mathcal{A}, \mathcal{X}) = \{0\}$ for all Banach \mathcal{A} -bimodules \mathcal{X} with $x \cdot a = \phi(a)x$ for all $a \in \mathcal{A}$ and $x \in \mathcal{X}$, that is, every continuous derivation from \mathcal{A} into \mathcal{X} is inner.

Let us recall that the second dual \mathcal{A}^{**} of \mathcal{A} equipped with the first Arens product \odot defined by the equations

 $(M \odot N)(f) = M(Nf),$ (Nf)(a) = N(fa), (fa)(b) = f(ab)

for all $M, N \in \mathcal{A}^{**}$, $f \in \mathcal{A}^*$ and $a, b \in \mathcal{A}$ is a Banach algebra. It is wellknown from Kaniuth, Lau and Pym [KLP1, Theorem 1.1] that the left ϕ amenability of \mathcal{A} is equivalent to the existence of a *topological left invariant* ϕ -mean in \mathcal{A}^{**} , that is, a linear functional M in \mathcal{A}^{**} satisfying $M(\phi) = 1$ and $a \odot M = \phi(a)M$ for all $a \in \mathcal{A}$. Also, they proved that the left ϕ -amenability of \mathcal{A} is equivalent to the existence of a *bounded topological left invariant approximate* ϕ -mean in \mathcal{A} , that is, a bounded net $(a_{\alpha}) \subseteq \mathcal{A}$ such that $\phi(a_{\alpha}) \to 1$ and $||aa_{\alpha} - \phi(a)a_{\alpha}|| \to 0$ for all $a \in \mathcal{A}$; see [KLP1, Theorem 1.4].

Our first result characterizes the left ϕ -contractibility of \mathcal{A} in terms of topological left invariant ϕ -means in \mathcal{A} ; we shall frequently use it without explicit reference.

THEOREM 2.1. Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Then the following assertions are equivalent:

- (i) \mathcal{A} is left ϕ -contractible.
- (ii) There is a topological left invariant ϕ -mean in \mathcal{A} .

Proof. (i) \Rightarrow (ii). Choose $b \in \mathcal{A}$ with $\phi(b) = 1$. Note that ker(ϕ) is a Banach \mathcal{A} -bimodule by taking the right action to be $x \cdot a = \phi(a)x$ for all $x \in \text{ker}(\phi)$ and $a \in \mathcal{A}$ and taking the left action to be the natural one. Then the formula D(a) = ab - ba for all $a \in \mathcal{A}$ defines a derivation D from \mathcal{A} into ker(ϕ). Therefore there is $c \in \text{ker}(\phi)$ such that $D = \text{ad}_c$. Now, consider m = b - c and note that $\phi(m) = 1$ and $am = \phi(a)m$ for all $a \in \mathcal{A}$.

(ii) \Rightarrow (i). We have to show that any continuous derivation $D : \mathcal{A} \to \mathcal{X}$ with $x \cdot a = \phi(a)x$ for all $x \in \mathcal{X}$ and $a \in \mathcal{A}$ is inner. To that end, choose a topological left invariant ϕ -mean m in \mathcal{A} , and note that

$$a \cdot D(m) - D(m) \cdot a = D(a \cdot m) - D(a) \cdot m - D(m) \cdot a$$
$$= \phi(a)D(m) - D(a)\phi(m) - \phi(a)D(m) = -D(a)$$

for all $a \in \mathcal{A}$. This means that $D = \operatorname{ad}_{-D(m)}$ as required.

As a consequence of Theorem 2.1, we have the following result in which we consider the Banach \mathcal{A} -bimodule ker(ϕ) as in the proof of Theorem 2.1.

COROLLARY 2.2. Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A}) \cup \{0\}$. Then the following statements are equivalent:

(i) \mathcal{A} is left ϕ -contractible.

(ii) Any continuous derivation $D: \mathcal{A} \to \ker(\phi)$ is inner.

Let $\Theta : \mathcal{A} \to \mathcal{B}$ be a Banach algebra homomorphism and $\phi \in \Delta(\mathcal{A}) \cup \{0\}$. Then \mathcal{B} is a Banach \mathcal{A} -bimodule under the following module actions:

 $a \cdot b = \Theta(a)b, \quad b \cdot a = \phi(a)b \quad (a \in \mathcal{A}, b \in \mathcal{B}).$

We denote the above Banach \mathcal{A} -bimodule by $\mathcal{B}^{\Theta}_{\phi}$.

THEOREM 2.3. Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A}) \cup \{0\}$. Then the following statements are equivalent:

- (i) \mathcal{A} is left ϕ -contractible.
- (ii) For every Banach algebra B and every homomorphism Θ : A → B, any continuous derivation D : A → B^Θ_φ is inner.
- (iii) For every Banach algebra \mathcal{B} and every injective homomorphism Θ : $\mathcal{A} \to \mathcal{B}$, any continuous derivation $D : \mathcal{A} \to \mathcal{B}^{\Theta}_{\phi}$ is inner.

Proof. The implications $(i) \Rightarrow (ii) \Rightarrow (iii)$ are trivial. We show that (iii) implies (i). Suppose that (iii) holds and let \mathcal{X} be a Banach \mathcal{A} -bimodule with the right action $x \cdot a = \phi(a)x$ for all $x \in \mathcal{X}$ and $a \in \mathcal{A}$. Also, let $D : \mathcal{A} \to \mathcal{X}$ be a continuous derivation. Consider the module extension Banach algebra $\mathcal{X} \oplus_1 \mathcal{A}$, that is, the space $\mathcal{X} \oplus \mathcal{A}$ endowed with the norm

$$||(x,a)|| = ||x|| + ||a||$$

and the product

$$(x,a) \cdot_1 (y,b) = (x \cdot b + a \cdot y, ab)$$

for all $x, y \in \mathcal{X}$ and $a, b \in \mathcal{A}$. Obviously the map $\Theta : \mathcal{A} \to \mathcal{X} \oplus_1 \mathcal{A}$ defined by $\Theta(a) = (0, a)$ for all $a \in \mathcal{A}$ is an injective Banach algebra homomorphism. Now, define $D_1 : \mathcal{A} \to \mathcal{X} \oplus_1 \mathcal{A}$ by $D_1(a) = (D(a), 0)$ for $a \in \mathcal{A}$. Then

$$D_1(ab) = (D(ab), 0) = (\phi(b)D(a) + aD(b), 0)$$

= $\phi(b)D(a, 0) + (0, a) \cdot (D(b), 0)$
= $\phi(b)D_1(a) + \Theta(a) \cdot D_1(b).$

Thus D_1 is a derivation from \mathcal{A} into $(\mathcal{X} \oplus_1 \mathcal{A})^{\Theta}_{\phi}$, and so D_1 is inner by assumption. That is, there exist $a_0 \in \mathcal{A}$ and $x_0 \in \mathcal{X}$ such that $D_1 = \mathrm{ad}_{(x_0, a_0)}$. So, for each $a \in \mathcal{A}$ we have

$$(D(a),0) = \operatorname{ad}_{(x_0,a_0)}(a) = \Theta(a) \cdot_1 (x_0,a_0) - \phi(a)(x_0,a_0) = (0,a) \cdot_1 (x_0,a_0) - \phi(a)(x_0,a_0) = (ax_0 - \phi(a)x_0, aa_0 - \phi(a)a_0).$$

208

Therefore $D = \operatorname{ad}_{x_0}$ and so for each Banach \mathcal{A} -bimodule \mathcal{X} with the right action $x \cdot a = \phi(a)x$ for all $a \in \mathcal{A}$ and $x \in \mathcal{X}$, any continuous derivation $D : \mathcal{A} \to \mathcal{X}$ is inner, that is, \mathcal{A} is left ϕ -contractible.

3. Hereditary properties of left ϕ -contractibility. Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. We denote by \mathcal{A}^{\sharp} the unitization of \mathcal{A} and by $\phi^{\sharp} \in \Delta(\mathcal{A}^{\sharp})$ the unique extension of ϕ .

THEOREM 3.1. Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Then \mathcal{A} is left ϕ -contractible if and only if \mathcal{A}^{\sharp} is left ϕ^{\sharp} -contractible.

Proof. Suppose that \mathcal{A} is left ϕ -contractible. Then there is a topological left invariant ϕ -mean $m \in \mathcal{A}$. Thus for each $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$, we have $\phi^{\sharp}((m,0)) = \phi(m) = 1$ and

$$(a,\lambda)(m,0) = (am + \lambda m, 0) = \phi^{\sharp}(a,\lambda)(m,0).$$

That is, (m, 0) is a topological left invariant ϕ^{\sharp} -mean in \mathcal{A}^{\sharp} .

Conversely, suppose that \mathcal{A}^{\sharp} is left ϕ^{\sharp} -contractible. Then there exists a topological left invariant ϕ^{\sharp} -mean $(m, \alpha) \in \mathcal{A}^{\sharp}$, that is,

 $\phi^{\sharp}(m, \alpha) = 1$ and $(a, \lambda)(m, \alpha) = \phi^{\sharp}((a, \lambda))(m, \alpha)$

for each $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$. It follows that

 $\phi(a) + \alpha = 1$, $\alpha a = 0$ and $ma = \phi(a)m$.

This implies that m is a topological left invariant ϕ -mean in \mathcal{A} .

It is well-known that $\Delta(\mathcal{A}^{\sharp}) = \{\phi^{\infty}\} \cup \{\phi^{\sharp} : \phi \in \Delta(\mathcal{A})\}$, where $\phi^{\infty}(a, \lambda) = \lambda$ for all $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$.

THEOREM 3.2. Let \mathcal{A} be a Banach algebra. Then \mathcal{A} has a right identity if and only if \mathcal{A}^{\sharp} is left ϕ^{∞} -contractible.

Proof. Suppose that \mathcal{A} has a right identity e. Then for each $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$ we have $\phi^{\infty}(-e, 1) = 1$ and

$$(a,\lambda)(-e,1) = (-ae - \lambda e + a,\lambda) = (-\lambda e,1) = \phi^{\infty}(a,\lambda)(-e,1).$$

Thus (-e, 1) is a topological left invariant ϕ^{∞} -mean in \mathcal{A}^{\sharp} , and so \mathcal{A}^{\sharp} is left ϕ^{∞} -contractible.

Conversely, suppose that \mathcal{A}^{\sharp} is left ϕ^{∞} -contractible and choose a topological left invariant ϕ^{∞} -mean $(m, \alpha) \in \mathcal{A}^{\sharp}$. Thus for each $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$,

 $\phi^{\infty}((m, \alpha)) = 1$ and $(a, \lambda)(m, \alpha) = \lambda(m, \alpha).$

It follows that $am + \alpha a = 0$ and $\alpha = 1$. So, -m is a left identity for \mathcal{A} .

COROLLARY 3.3. Let \mathcal{A} be a Banach algebra. Then \mathcal{A} is left character contractible if and only if \mathcal{A}^{\sharp} is left character contractible.

This result follows from Theorems 3.1 and 3.2, and the following result from [HMT, Corollary 2.5] and [J, Proposition 1.5].

PROPOSITION 3.4. Let \mathcal{A} be a Banach algebra. Then:

- (i) A is left 0-amenable if and only if it has a bounded right approximate identity.
- (ii) \mathcal{A} is left 0-contractible if and only if it has a right identity.

Now, let us give another characterization of the left character amenability of \mathcal{A} by the left character contractibility of its second dual.

PROPOSITION 3.5. Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Then \mathcal{A}^{**} is left ϕ -contractible if and only if \mathcal{A} is left ϕ -amenable.

Proof. The "only if" part is trivial. For the converse, suppose that \mathcal{A} is left ϕ -amenable. Then there is $M \in \mathcal{A}^{**}$ such that $M(\phi) = 1$ and $a \odot M = \phi(a)M$ for all $a \in \mathcal{A}$. By the continuity of the first Arens product, we have

$$M(\phi) = 1$$
 and $N \odot M = N(\phi)M$

for all $N \in \mathcal{A}^{**}$. Therefore M is a topological left invariant ϕ -mean in \mathcal{A}^{**} . Hence \mathcal{A}^{**} is left ϕ -contractible.

We can now introduce a large family of Banach algebras on which left ϕ -amenability coincides with left ϕ -contractibility.

COROLLARY 3.6. Let \mathcal{A} be a Banach algebra which is a left or right ideal in \mathcal{A}^{**} and $\phi \in \Delta(\mathcal{A})$. Then \mathcal{A} is left ϕ -contractible if and only if \mathcal{A} is left ϕ -amenable.

Proof. In view of Proposition 3.5, we only need to note that if M is a topological left invariant mean in \mathcal{A}^{**} and a_0 is an element of \mathcal{A} with $\phi(a_0) = 1$, then $a_0 \odot M$ and $M \odot a_0$ are topological left invariant means in \mathcal{A} . This means that \mathcal{A} is left ϕ -contractible.

We say that \mathcal{A} is *left character amenable* if it is left ϕ -amenable for all $\phi \in \mathcal{A}(\mathcal{A}) \cup \{0\}$; this is the same as right character amenability in [HMT] (see also [M2]).

It is well-known that \mathcal{A} has a bounded right approximate identity if and only if \mathcal{A}^{**} has a right identity; see for example [BD, Proposition III.28.7]. So, as a consequence of Propositions 3.4 and 3.5, we have the following.

COROLLARY 3.7. Let \mathcal{A} be a Banach algebra. If \mathcal{A}^{**} is left character contractible, then \mathcal{A} is left character amenable.

In Section 6, we will see that the converse of Corollary 3.7 is not valid. Our next result describes an interaction between the ϕ -contractibility of a Banach algebra and of its closed ideals.

210

PROPOSITION 3.8. Let \mathcal{A} be a Banach algebra and let \mathcal{I} be a closed two-sided ideal of \mathcal{A} and $\phi \in \Delta(\mathcal{A})$ with $\mathcal{I} \not\subseteq \ker(\phi)$. Then the following statements are equivalent:

- (i) \mathcal{I} is left $\phi|_{\mathcal{I}}$ -contractible.
- (ii) \mathcal{A} is left ϕ -contractible.

Proof. First, suppose that (i) holds. Then there exists an element $m_0 \in \mathcal{I}$ such that $\phi|_{\mathcal{I}}(m_0) = 1$ and $bm_0 = \phi|_{\mathcal{I}}(b)m_0$ for all $b \in \mathcal{I}$. Fix $\iota_0 \in \mathcal{I}$ such that $\phi|_{\mathcal{I}}(\iota_0) = 1$ and set $m := \iota_0 m_0$. Now, $\phi(m) = \phi|_{\mathcal{I}}(\iota_0 m_0) = 1$ and for each $a \in \mathcal{A}$ we have

$$am - \phi(a)m = a\iota_0 m_0 - \phi(a)\iota_0 m_0 = (a\iota_0)m_0 - \phi(a)\phi|_{\mathcal{I}}(\iota_0)m_0$$

= $\phi(a)\phi|_{\mathcal{I}}(\iota_0)m_0 - \phi(a)\phi(\iota_0)m_0 = 0.$

Thus \mathcal{A} is left ϕ -contractible.

Conversely, suppose that (ii) holds and let $m \in \mathcal{A}$ be such that

 $\phi(m) = 1$ and $am = \phi(a)m$

for all $a \in \mathcal{A}$. Choose $\iota_0 \in \mathcal{I}$ such that $\phi(\iota_0) = 1$ and define $m_0 := \iota_0 m$. Thus $m_0 \in \mathcal{I}, \ \phi|_{\mathcal{I}}(m_0) = \phi(\iota_0 m) = \phi(m) = 1$ and for each $b \in \mathcal{I}$ we have

 $bm_0 - \phi|_{\mathcal{I}}(b)m_0 = b\iota_0 m - \phi|_{\mathcal{I}}(b)\iota_0 m = \phi|_{\mathcal{I}}(b)\phi(\iota_0)m - \phi|_{\mathcal{I}}(b)\phi(\iota_0)m = 0;$ therefore \mathcal{I} is left $\phi|_{\mathcal{I}}$ -contractible.

As a consequence of Proposition 3.8, we have the following result.

COROLLARY 3.9. Let \mathcal{A} be a left character contractible Banach algebra and let \mathcal{I} be a closed two-sided ideal of \mathcal{A} . Then \mathcal{I} is left character contractible if and only if it has a right identity.

This result was also obtained by Hu, Monfared and Traynor [HMT, Lemma 6.8], with a different proof. Before we give our next result, note that if \mathcal{I} is a closed two-sided ideal of \mathcal{A} , then there is a unique $\psi \in \Delta(\mathcal{A}/\mathcal{I})$ with $\psi \circ q = \phi$ if and only if $\mathcal{I} \subseteq \ker(\phi)$, where $q : \mathcal{A} \to \mathcal{A}/\mathcal{I}$ is the canonical epimorphism.

PROPOSITION 3.10. Let \mathcal{A} be a Banach algebra and let \mathcal{I} be a closed two-sided ideal of \mathcal{A} and $\phi \in \Delta(\mathcal{A})$ with $\mathcal{I} \subseteq \ker(\phi)$. Suppose that \mathcal{I} has a right identity and that \mathcal{A}/\mathcal{I} is ψ -contractible, where $\psi \in \Delta(\mathcal{A}/\mathcal{I})$ with $\psi \circ q = \phi$. Then \mathcal{A} is ϕ -contractible.

Proof. Since \mathcal{A}/\mathcal{I} is ψ -contractible, there exists $n \in \mathcal{A}$ such that $\psi(n+\mathcal{I}) = 1$ and $an + \mathcal{I} = \psi(a + \mathcal{I})n + \mathcal{I}$ for all $a \in \mathcal{A}$. Set m := n - ne, where e is a right identity for \mathcal{I} . Since $ne \in \mathcal{I}$ and $\phi(n) = 1$, we have $\phi(m) = 1$ and

$$am - \phi(a)m = an - ane - \phi(a)n + \phi(a)ne$$

= $an - \phi(a)n - (an - \phi(a)n)e$

for all $a \in \mathcal{A}$. Since $an - \phi(a)n \in \mathcal{I}$, it follows that $am = \phi(a)m$. That is, m is a topological left invariant mean in \mathcal{A} , and so \mathcal{A} is ϕ -contractible.

LEMMA 3.11. Let \mathcal{A} and \mathcal{B} be Banach algebras and $\psi \in \Delta(\mathcal{B})$. If there is a continuous epimorphism $\Theta : \mathcal{A} \to \mathcal{B}$ and \mathcal{A} is $\psi \circ \Theta$ -contractible, then \mathcal{B} is ψ -contractible.

Proof. By assumption, there is $m \in \mathcal{A}$ such that $\psi(\Theta(m)) = 1$ and $am = \psi(\Theta(a))m$ for all $a \in \mathcal{A}$. Define $n := \Theta(m)$ and note that $\psi(n) = 1$. Also, for each $b \in \mathcal{B}$, there exists $a \in \mathcal{A}$ such that $\Theta(a) = b$, and hence

$$bn - \psi(b)n = \Theta(a)\Theta(m) - \psi(\Theta(a))\Theta(m) = \Theta(am - \psi(\Theta(a))m) = 0.$$

So, n is a topological left invariant ψ -mean in \mathcal{B} ; hence \mathcal{B} is ψ -contractible.

As a consequence of Lemma 3.11, we have the following result.

PROPOSITION 3.12. Let \mathcal{A} be a Banach algebra and let \mathcal{I} be a closed two-sided ideal of \mathcal{A} and $\phi \in \Delta(\mathcal{A})$ with $\mathcal{I} \subseteq \ker(\phi)$. Suppose that \mathcal{A} is ϕ contractible. Then \mathcal{A}/\mathcal{I} is ψ -contractible, where $\psi \in \Delta(\mathcal{A}/\mathcal{I})$ with $\psi \circ q = \phi$.

Before we present our next result, let us remark that for each collection $\{\mathcal{A}_{\alpha} : \alpha \in \Gamma\}$ of Banach algebras, we denote by $\prod_{\alpha \in \Gamma} \mathcal{A}_{\alpha}$ the product space of the collection, i.e., the space consisting of all mappings $a : \Gamma \to \bigcup_{\alpha \in \Gamma} \mathcal{A}_{\alpha}$ for which $a_{\alpha} \in \mathcal{A}_{\alpha}$, the linear operations being given coordinatewise. For $1 \leq p < \infty$, we recall that the l^p direct sum of the collection is

$$\bigoplus_{\alpha\in\Gamma}^{p}\mathcal{A}_{\alpha} = \Big\{a\in\prod_{\alpha\in\Gamma}\mathcal{A}_{\alpha}: \|a\| = \Big(\sum_{\alpha}\|a_{\alpha}\|^{p}\Big)^{1/p} < \infty\Big\},\$$

and the c_0 direct sum of the collection is

$$\bigoplus_{\alpha\in\Gamma}^{0}\mathcal{A}_{\alpha} = \Big\{a\in\prod_{\alpha\in\Gamma}\mathcal{A}_{\alpha}: \|a\|_{\infty} = \max_{\alpha}\|a_{\alpha}\| < \infty \text{ and } \lim_{\alpha}a_{\alpha} = 0\Big\}.$$

The sum $\bigoplus_{\alpha\in\Gamma}^{p} \mathcal{A}_{\alpha}$, $p \geq 1$ or p = 0, is a Banach algebra with multiplication being defined coordinatewise. If $\Lambda \subseteq \Gamma$, then $\bigoplus_{\alpha\in\Lambda}^{p} \mathcal{A}_{\alpha}$ can be identified with the complemented closed ideal of $\bigoplus_{\alpha\in\Gamma}^{p} \mathcal{A}_{\alpha}$, consisting of all a with $a_{\alpha} = 0$ for all $\alpha \notin \Lambda$. It is easy to see that

$$\Delta\left(\bigoplus_{\alpha\in\Gamma}^{P}\mathcal{A}_{\alpha}\right) = \{\phi_{\beta}^{\oplus}: \phi_{\beta}\in\Delta(\mathcal{A}_{\beta}), \beta\in\Gamma\},\$$

where ϕ_{β}^{\oplus} is defined by $\phi_{\beta}^{\oplus}((a_{\alpha})_{\alpha\in\Gamma}) = \phi_{\beta}(a_{\beta})$ for all $(a_{\alpha})_{\alpha\in\Gamma} \in \bigoplus_{\alpha\in\Gamma}^{p} \mathcal{A}_{\alpha}$.

THEOREM 3.13. Let $(\mathcal{A}_{\alpha})_{\alpha\in\Gamma}$ be a family of Banach algebras, $\phi_{\beta} \in \Delta(\mathcal{A}_{\beta})$ for some $\beta \in \Gamma$, and p = 0 or $p \geq 1$. Then $\mathfrak{A} = \bigoplus_{\alpha\in\Gamma}^{p} \mathcal{A}_{\alpha}$ is left ϕ_{β}^{\oplus} -contractible if and only if \mathcal{A}_{β} is left ϕ_{β} -contractible.

Proof. Since for each $\beta \in \Gamma$, \mathcal{A}_{β} is a closed two-sided ideal of \mathfrak{A} and ϕ_{β}^{\oplus} is the unique extension of ϕ_{β} , the result follows from Proposition 3.8.

There is no analogue of the above theorem for left character contractibility. For example, the Banach algebra $l^p = \bigoplus_{i \in \mathbb{N}}^p \mathbb{C}, p \ge 1$, does not have a right identity, and so it is not left character contractible whereas \mathbb{C} is left character contractible.

Now, we study the relation between the left character contractibility of two Banach algebras and of their projective tensor product. As usual, we denote by $\mathcal{A} \otimes \mathcal{B}$ the projective tensor product of the Banach algebras \mathcal{A} and \mathcal{B} ; we recall that for $f \in \mathcal{A}^*$ and $g \in \mathcal{B}^*$, $f \otimes g$ denotes the element of $(\mathcal{A} \otimes \mathcal{B})^*$ satisfying $(f \otimes g)(a \otimes b) = f(a)g(b)$ for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$, and we note that $\mathcal{\Delta}(\mathcal{A} \otimes \mathcal{B}) = \{\phi \otimes \psi : \phi \in \mathcal{\Delta}(\mathcal{A}), \psi \in \mathcal{\Delta}(\mathcal{B})\}.$

THEOREM 3.14. Let \mathcal{A} and \mathcal{B} be Banach algebras, $\phi \in \Delta(\mathcal{A})$ and $\psi \in \Delta(\mathcal{B})$. Then $\mathcal{A} \otimes \mathcal{B}$ is left $\phi \otimes \psi$ -contractible if and only if \mathcal{A} is left ϕ -contractible and \mathcal{B} is left ψ -contractible.

Proof. Suppose that $\mathcal{A} \otimes \mathcal{B}$ is left $\phi \otimes \psi$ -contractible. Then there is an element $m \in \mathcal{A}$ with

 $\phi \otimes \psi(m) = 1$ and $(a \otimes b)m = \phi(a)\psi(b)m$

for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. Now, we consider the linear map $\Upsilon : \mathcal{A} \otimes \mathcal{B} \to \mathcal{A}$ determined by $\Upsilon(a \otimes b) = a\psi(b)$. Then $\Upsilon(m) \in \mathcal{A}$. We show that $\Upsilon(m)$ is a topological left invariant mean. To that end, choose $a_0 \in \mathcal{A}$ and $b_0 \in \mathcal{B}$ such that $\phi(a_0) = 1$ and $\psi(b_0) = 1$. Thus

$$\begin{aligned} a\Upsilon(m) &= a\Upsilon((a_0 \otimes b_0)m)) = \Upsilon(aa_0 \otimes b_0m) \\ &= \Upsilon(\phi(a)\phi(a_0)\psi(b_0)m) = \phi(a)\Upsilon(m). \end{aligned}$$

Moreover, since $\phi \circ \Upsilon = \phi \otimes \psi$, we have

$$\phi(\Upsilon(m)) = \phi \otimes \psi(m) = 1.$$

Similarly, there is a topological left invariant mean in \mathcal{B} .

Conversely, suppose that \mathcal{A} is left ϕ -contractible and \mathcal{B} is left ψ -contractible. Then, by assumption, there is an element $m_1 \in \mathcal{A}$ with

$$\phi(m_1) = 1$$
 and $m_1 = \phi(a)m_1$

for all $a \in \mathcal{A}$. Moreover, there is an element $m_2 \in \mathcal{B}$ such that

$$\psi(m_2) = 1$$
 and $bm_2 = \psi(b)m_2$

for all $b \in \mathcal{B}$. Now, set $m := m_1 \otimes m_2$ and note that

$$(\phi \otimes \psi)(m_1 \otimes m_2) = 1$$
 and $(a \otimes b)(m_1 \otimes m_2) = \phi(a)\psi(b)(m_1 \otimes m_2)$

for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$; it follows that $w(m_1 \otimes m_2) = \phi \otimes \psi(w) \ m_1 \otimes m_2$ for all $w \in \mathcal{A} \widehat{\otimes} \mathcal{B}$. Hence $\mathcal{A} \widehat{\otimes} \mathcal{B}$ is left $\phi \otimes \psi$ -contractible.

COROLLARY 3.15. Let \mathcal{A} and \mathcal{B} be Banach algebras. Then $\mathcal{A} \otimes \mathcal{B}$ is left character contractible if and only if \mathcal{A} and \mathcal{B} are left character contractible.

Proof. By Theorem 3.14, it is sufficient to show that $\mathcal{A} \otimes \mathcal{B}$ is left 0-contractible if and only if \mathcal{A} and \mathcal{B} are left 0-contractible. But this follows immediately form Proposition 3.4 together with the fact that $\mathcal{A} \otimes \mathcal{B}$ has a right identity if and only if \mathcal{A} and \mathcal{B} have right identities; see [LO, Theorem 1].

4. Left ϕ -contractibility and projectivity. Let \mathcal{A} be a Banach algebra and \mathcal{E} be a Banach left \mathcal{A} -module. In this case, the dual \mathcal{E}^* of \mathcal{E} is a Banach right \mathcal{A} -module with the action induced via $\langle \Lambda \cdot a, \xi \rangle = \langle \Lambda, a \cdot \xi \rangle$ for all $a \in \mathcal{A}, \xi \in \mathcal{E}$ and $\Lambda \in \mathcal{E}^*$. The Banach left \mathcal{A} -module \mathcal{E} is called *faithful* if $\mathcal{A} \cdot \xi \neq \{0\}$ for all $\xi \in \mathcal{E} \setminus \{0\}$; it is called *essential* if the linear span of $\mathcal{A} \cdot \mathcal{E}$ is dense in \mathcal{E} .

PROPOSITION 4.1. Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Then any Banach left \mathcal{A} -module \mathcal{E} with $a \cdot \xi = \phi(a)\xi$ for all $a \in \mathcal{A}$ and $\xi \in \mathcal{E}$ is faithful and essential.

Proof. The result follows immediately from the assumption that $a \cdot \xi = \xi$ for all $a \in \mathcal{A}$ with $\phi(a) = 1$.

Let \mathcal{E} and \mathcal{F} be two Banach spaces, and denote by $B(\mathcal{E}, \mathcal{F})$ the Banach space of all bounded operators from \mathcal{E} into \mathcal{F} . An operator $T \in B(\mathcal{E}, \mathcal{F})$ is called *admissible* if $T \circ S \circ T = T$ for some $S \in B(\mathcal{F}, \mathcal{E})$. In the case where \mathcal{E} and \mathcal{F} are Banach left \mathcal{A} -modules, $\mathcal{A}B(\mathcal{E}, \mathcal{F})$ denotes the closed linear subspace of $B(\mathcal{E}, \mathcal{F})$ consisting of all left \mathcal{A} -module morphisms. An operator $T \in \mathcal{A}B(\mathcal{E}, \mathcal{F})$ is called a *retraction* if there exists $S \in \mathcal{A}B(\mathcal{F}, \mathcal{E})$ with $T \circ S = I_{\mathcal{F}}$, and in this case \mathcal{F} is called a *retract* of \mathcal{E} ; T is a *coretraction* if there exists $S \in \mathcal{A}B(\mathcal{F}, \mathcal{E})$ with $S \circ T = I_{\mathcal{E}}$.

A Banach left \mathcal{A} -module \mathcal{P} is called *projective* if for any Banach left \mathcal{A} -modules \mathcal{E} and \mathcal{F} , each admissible epimorphism $T \in {}_{\mathcal{A}}B(\mathcal{E},\mathcal{F})$, and each $S \in {}_{\mathcal{A}}B(\mathcal{P},\mathcal{F})$, there exists $R \in {}_{\mathcal{A}}B(\mathcal{P},\mathcal{E})$ such that $T \circ R = S$.

Let \mathcal{E} be a Banach space, and let $\mathcal{P} = \mathcal{A} \widehat{\otimes} \mathcal{E}$ be endowed with the module operation determined by

$$a \cdot (b \otimes \xi) = ab \otimes \xi \quad (a, b \in \mathcal{A}, \xi \in \mathcal{E}).$$

So, we can define the canonical morphism $\pi \in {}_{\mathcal{A}}B(\mathcal{A}\widehat{\otimes}\mathcal{E},\mathcal{E})$ by $\pi(a \otimes \xi) = a \cdot \xi$ for all $a \in \mathcal{A}, \xi \in \mathcal{E}$. The following characterization of projective Banach left \mathcal{A} -modules is given in [H2, Proposition IV.1.1].

PROPOSITION 4.2. Let \mathcal{A} be a Banach algebra and \mathcal{E} be an essential Banach left \mathcal{A} -module. Then \mathcal{E} is projective if and only if the canonical morphism $\pi \in {}_{\mathcal{A}}B(\mathcal{A} \otimes \mathcal{E}, \mathcal{E})$ is a retraction.

Our first result characterizes the projectivity of certain Banach left \mathcal{A} -modules in terms of the left ϕ -contractibility of \mathcal{A} .

THEOREM 4.3. Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Then the following assertions are equivalent.

- (i) Any Banach left \mathcal{A} -module \mathcal{E} with $a \cdot \xi = \phi(a)\xi$ ($\xi \in \mathcal{E}, a \in \mathcal{A}$) is projective.
- (ii) There is a projective Banach left \mathcal{A} -module \mathcal{E} with $a \cdot \xi = \phi(a)\xi$ $(\xi \in \mathcal{E}, a \in \mathcal{A}).$
- (iii) The Banach left \mathcal{A} -module \mathbb{C} with $a \cdot z = \phi(a)z$ ($z \in \mathbb{C}$, $a \in \mathcal{A}$) is projective.
- (iv) \mathcal{A} is left ϕ -contractible.

Proof. (ii) \Rightarrow (iii). Let \mathcal{E} be a projective Banach left \mathcal{A} -module with $a \cdot \xi = \phi(a)\xi$ for all $\xi \in \mathcal{E}$ and $a \in \mathcal{A}$, and choose $\xi_0 \in \mathcal{E}$ and $\Lambda \in \mathcal{E}^*$ such that $\Lambda(\xi_0) = 1$. Define the left \mathcal{A} -module morphism $\gamma : \mathbb{C} \to \mathcal{E}$ by $\gamma(z) = z\xi_0$ for all $z \in \mathbb{C}$. So, $(\Lambda \circ \gamma)(z) = z$ for all $z \in \mathbb{C}$, and therefore \mathbb{C} is a retract of \mathcal{E} as a Banach left \mathcal{A} -module. Thus \mathbb{C} is a projective Banach left \mathcal{A} -module by [H2, Proposition III.1.16].

(iii) \Rightarrow (iv). Suppose that \mathbb{C} is a projective Banach left \mathcal{A} -module with $a \cdot z = \phi(a)z$ for all $z \in \mathbb{C}$ and $a \in \mathcal{A}$. Then there exists $\rho : \mathbb{C} \to \mathcal{A} \otimes \mathbb{C} \simeq \mathcal{A}$ such that $(\rho \circ \pi)(z) = z$ for all $z \in \mathbb{C}$, where $\pi : \mathcal{A} \otimes \mathbb{C} \to \mathbb{C}$ is canonical embedding. Define $m := \rho(1) \in \mathcal{A}$. Then $m(\phi) = \phi(m) = \pi(\rho(1)) = 1$ and $am = \rho(a \cdot 1) = \phi(a)m$. So, m is a topological left invariant ϕ -mean in \mathcal{A} , and thus \mathcal{A} is a left ϕ -contractible.

(iv) \Rightarrow (i). Suppose that there is a topological left invariant mean m in \mathcal{A} . Then for each Banach left \mathcal{A} -module \mathcal{E} with $a \cdot \xi = \phi(a)\xi$ for all $a \in \mathcal{A}$ and $\xi \in \mathcal{E}$, the map $\rho : \mathcal{E} \to \mathcal{A} \otimes \mathcal{E}$ with $\rho(\xi) = m \otimes \xi$ ($\xi \in \mathcal{E}$) has the following properties:

$$\rho(a \cdot \xi) = m \otimes a \cdot \xi = \phi(a)m \otimes \xi = am \otimes \xi = a \cdot \rho(\xi),$$

and

$$\pi \circ \rho(\xi) = \pi m \otimes \xi = \phi(m)\xi = \xi.$$

Therefore, ρ is a retraction of π , and so \mathcal{E} is a projective Banach left \mathcal{A} -module by Proposition 4.2.

COROLLARY 4.4. Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Then the Banach left \mathcal{A} -module \mathcal{A} with $a \cdot b = \phi(a)b$ $(a, b \in \mathcal{A})$ is projective if and only if \mathcal{A} is left ϕ -contractible.

REMARK 4.5. In view of Theorem 4.3, hereditary properties of ϕ -contractibility of Banach algebras \mathcal{A} in Section 3 can be reformulated in terms of projectivity of Banach left \mathcal{A} -modules. For example, Theorem 3.1 can be restated as follows.

Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Then a Banach left \mathcal{A} -module \mathcal{E} with $a \cdot \xi = \phi(a)\xi$ ($a \in \mathcal{A}, \xi \in \mathcal{E}$) is projective if and only if \mathcal{E} is projective

as a Banach left \mathcal{A}^{\sharp} -module such that

$$(a,\lambda)\cdot\xi = \phi^{\sharp}(a,\lambda)\xi \quad ((a,\lambda)\in\mathcal{A}^{\sharp},\,\xi\in\mathcal{E}).$$

5. Right ϕ -amenability and injectivity. Let \mathcal{A} be a Banach algebra and recall that a Banach left \mathcal{A} -module \mathcal{J} is called *injective* if for any Banach left \mathcal{A} -modules \mathcal{E} and \mathcal{F} , each admissible monomorphism $T \in {}_{\mathcal{A}}B(\mathcal{E},\mathcal{F})$, and each $S \in {}_{\mathcal{A}}B(\mathcal{E},\mathcal{J})$, there exists $R \in {}_{\mathcal{A}}B(\mathcal{F},\mathcal{J})$ such that $R \circ T = S$. Similar definitions apply for Banach right \mathcal{A} -modules. Note that each retraction of an injective Banach left \mathcal{A} -module is injective by [H2, Proposition III.1.16].

Let \mathcal{E} be a Banach space. Then $B(\mathcal{A}, \mathcal{E})$ is a Banach \mathcal{A} -bimodule for the following two module operations:

$$(a \cdot T)(b) = T(ba), \quad (T \cdot a)(b) = T(ab)$$

for all $a, b \in \mathcal{A}$ and $T \in B(\mathcal{A}, \mathcal{E})$; see [D, Example 2.6.2(viii)]. Now, we can consider the canonical embedding $\Pi : \mathcal{E} \to B(\mathcal{A}, \mathcal{E})$ defined by the formula

$$\Pi(\xi)(a) = a \cdot \xi \quad (a \in \mathcal{A}, \, \xi \in \mathcal{E}).$$

The following characterization of injective modules is given in [H2, Proposition III.1.31]:

PROPOSITION 5.1. Let \mathcal{A} be a Banach algebra, and let \mathcal{E} be a faithful Banach left \mathcal{A} -module. Then \mathcal{E} is injective if and only if the canonical embedding Π is a coretraction of \mathcal{A} -modules.

Note that injectivity can be characterized in terms of the functor Ext whose definition can be found in [H2]. Indeed, a left Banach \mathcal{A} -module \mathcal{J} is injective if and only if $\operatorname{Ext}^{1}_{\mathcal{A}}(\mathcal{E},\mathcal{J}) = \{0\}$ for each Banach left \mathcal{A} -module \mathcal{E} ; see [H2, Proposition III.4.5].

We are now ready to characterize the injectivity of some Banach \mathcal{A} modules by the right ϕ -amenability of \mathcal{A} ; that is, $H^1(\mathcal{A}, \mathcal{X}^*)$ vanishes for every Banach \mathcal{A} -bimodule \mathcal{X} with the right module action $x \cdot a = \phi(a)x$ $(a \in \mathcal{A}, x \in \mathcal{X})$. Note that this concept is equivalent to the existence of an element M in \mathcal{A}^{**} such that $M(\phi) = 1$ and $M \odot a = \phi(a)M$ for all $a \in \mathcal{A}$; such an element M is called a *topological right invariant* ϕ -mean.

THEOREM 5.2. Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Then the following assertions are equivalent:

- (i) Any dual Banach left \mathcal{A} -module \mathcal{E} with $a \cdot \xi = \phi(a)\xi$ ($\xi \in \mathcal{E}, a \in \mathcal{A}$) is injective.
- (ii) The Banach left A-module \mathbb{C} with $a \cdot z = \phi(a)z$ ($z \in \mathbb{C}, a \in A$) is injective.
- (iii) There is an injective Banach left \mathcal{A} -module \mathcal{E} with $a \cdot \xi = \phi(a)\xi$ $(\xi \in \mathcal{E}, a \in \mathcal{A}).$
- (iv) \mathcal{A} is right ϕ -amenable.

Proof. The implications $(i) \Rightarrow (ii) \Rightarrow (iii)$ are trivial.

(iii) \Rightarrow (iv). Suppose that (iii) holds, and let \mathcal{E} be as in (iii). Then there is a left \mathcal{A} -module morphism $\rho : B(\mathcal{A}, \mathcal{E}) \to \mathcal{E}$ such that $\rho \circ \Pi = I_{\mathcal{E}}$. For each $f \in \mathcal{A}^*$, let $T_f \in B(\mathcal{A}, \mathcal{E})$ be defined by $T_f(a) = f(a)\xi_0$ for all $a \in \mathcal{A}$, where ξ_0 is a fixed nonzero element of \mathcal{E} . Now, define the functional $M \in \mathcal{A}^{**}$ by $M(f) = (\Lambda_0 \circ \rho)(T_f)$ for all $f \in \mathcal{A}^*$, where Λ_0 is an element of \mathcal{E}^* with $\Lambda_0(\xi_0) = 1$. Then

$$M(\phi) = (\Lambda_0 \circ \rho)(T_{\phi}) = (\Lambda_0 \circ \rho)(\Pi(\xi_0)) = \Lambda_0(\xi_0) = 1.$$

Also, for each $a \in \mathcal{A}$ and $f \in \mathcal{A}^*$, we have $T_{af} = a \cdot T_f$ and thus

$$(M \odot a)(f) = M(af) = (\Lambda_0 \circ \rho)(a \cdot T_f) = \Lambda_0(a \cdot \rho(T_f))$$
$$= \phi(a)\Lambda_0(\rho(T_f)) = \phi(a)M(f),$$

That is, M is a topological right invariant ϕ -mean in \mathcal{A}^{**} , and so (iv) holds.

 $(iv) \Rightarrow (i)$. Suppose that (iv) holds and let \mathcal{E} be a dual Banach left \mathcal{A} -module with $a \cdot \xi = \phi(a)\xi$ for all $a \in \mathcal{A}$ and $\xi \in \mathcal{E}$. To prove that \mathcal{E} is injective, it is sufficient to show $\operatorname{Ext}^{1}_{\mathcal{A}}(\mathcal{F}, \mathcal{E}) = \{0\}$ for all Banach right \mathcal{A} -modules \mathcal{F} . To that end, choose a Banach right \mathcal{A} -module \mathcal{E}_{*} with $z \cdot a = \phi(a)z$ for all $z \in \mathcal{E}_{*}$ and $a \in \mathcal{A}$ such that $(\mathcal{E}_{*})^{*} = \mathcal{E}$. Then for each Banach right \mathcal{A} -module \mathcal{F} we have

$$\operatorname{Ext}^{1}_{\mathcal{A}}(\mathcal{F},\mathcal{E}) = H^{1}(\mathcal{A}, B(\mathcal{F},\mathcal{E})) = H^{1}(\mathcal{A}, (\mathcal{F} \widehat{\otimes} \mathcal{E}_{*})^{*}) = H^{1}(\mathcal{A}, (\mathcal{E}_{*} \widehat{\otimes} \mathcal{F})^{*}).$$

Moreover, $\mathcal{E}_* \otimes \mathcal{F}$ is a Banach \mathcal{A} -bimodule with

$$(z \otimes y) \cdot a = \phi(a)(z \otimes y)$$

for all $a \in \mathcal{A}, z \in \mathcal{E}_*$ and $y \in \mathcal{F}$. Since \mathcal{A} is right ϕ -amenable, it follows that $H^1(\mathcal{A}, \mathcal{X}^*) = \{0\}$ for all Banach \mathcal{A} -bimodules \mathcal{X} with $a \cdot x = \phi(a)x$ for all $a \in \mathcal{A}$ and $x \in \mathcal{X}$; in particular, $\operatorname{Ext}^1_{\mathcal{A}}(\mathcal{F}, \mathcal{E}) = \{0\}$ as required.

COROLLARY 5.3. Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Then the Banach left \mathcal{A} -module \mathcal{A}^* with $a \cdot f = \phi(a)f$ ($f \in \mathcal{A}^*, a \in \mathcal{A}$) is injective if and only if \mathcal{A} is right ϕ -amenable.

THEOREM 5.4. Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Let \mathcal{I} be a closed two-sided ideal of \mathcal{A} with $\mathcal{I} \nsubseteq \ker(\phi)$. Then a Banach left \mathcal{A} -module \mathcal{E} with $a \cdot \xi = \phi(a)\xi$ ($a \in \mathcal{A}, \xi \in \mathcal{E}$) is injective if and only if \mathcal{E} is injective as a Banach left \mathcal{I} -module with $i \cdot \xi = \phi|_{\mathcal{I}}(i)\xi$ ($i \in \mathcal{I}, \xi \in \mathcal{E}$).

Proof. Suppose that \mathcal{E} is injective as a Banach left \mathcal{A} -module with $a \cdot \xi = \phi(a)\xi$ for all $a \in \mathcal{A}$ and $\xi \in \mathcal{E}$. Then by Proposition 5.1, there is a left \mathcal{A} -module morphism $\rho : B(\mathcal{A}, \mathcal{E}) \to \mathcal{E}$ such that $\rho \circ \Pi = I_{\mathcal{E}}$. For each $T \in B(\mathcal{I}, \mathcal{E})$, let $\tilde{T} \in B(\mathcal{A}, \mathcal{E})$ be defined by $\tilde{T}(a) = T(\iota_0 a)$ for all $a \in \mathcal{A}$, where ι_0 is a fixed nonzero element of \mathcal{I} such that $\phi(\iota_0) = 1$. Also, define the left \mathcal{I} -module morphism $\tilde{\rho} : B(\mathcal{I}, \mathcal{E}) \to \mathcal{E}$ by the formula $\tilde{\rho}(T) = \rho(\tilde{T})$

for all $T \in B(\mathcal{I}, \mathcal{E})$. Since $\tilde{\tilde{\Pi}}(\xi) = \Pi(\xi)$ and $(i \cdot T)^{\sim} = i \cdot \tilde{T}$, for all $\xi \in \mathcal{E}$, $i \in \mathcal{I}$ and $T \in B(\mathcal{I}, \mathcal{E})$, we have

$$\tilde{\rho}(i \cdot T) = i \cdot \tilde{\rho}(T) \text{ and } \tilde{\rho} \circ \tilde{\Pi} = I_{\mathcal{E}},$$

where $\tilde{\Pi} : \mathcal{E} \to B(\mathcal{I}, \mathcal{E})$ is the canonical embedding. Thus \mathcal{E} is injective as a Banach left \mathcal{I} -module such that $i \cdot \xi = \phi|_{\mathcal{I}}(i)\xi$ for all $i \in \mathcal{I}$ and $\xi \in \mathcal{E}$.

Conversely, suppose that \mathcal{E} is injective as a Banach left \mathcal{I} -module such that $i \cdot \xi = \phi|_{\mathcal{I}}(i)\xi$ for all $i \in \mathcal{I}$ and $\xi \in \mathcal{E}$. Then by Proposition 5.1, there is a left \mathcal{A} -module morphism $\rho : B(\mathcal{I}, \mathcal{E}) \to \mathcal{E}$ such that $\rho \circ \Pi = I_{\mathcal{E}}$. We define the left \mathcal{A} -module morphism $\tilde{\rho} : B(\mathcal{A}, \mathcal{E}) \to \mathcal{E}$ by the formula $\tilde{\rho}(T) = \rho(T_{\mathcal{I}})$ for all $T \in B(\mathcal{A}, \mathcal{E})$. Since $\tilde{\Pi}_{\mathcal{I}}(\xi) = \Pi(\xi)$ and $i \cdot T_{\mathcal{I}} = (i \cdot T)_{\mathcal{I}} = T(ia)$ for all $\xi \in \mathcal{E}, i \in \mathcal{I}$ and $T \in B(\mathcal{A}, \mathcal{E})$, we have

$$\tilde{\rho}(a \cdot T) = a \cdot \tilde{\rho}(T) \text{ and } \tilde{\rho} \circ \Pi = I_{\mathcal{E}},$$

where $\tilde{H}: \mathcal{E} \to B(\mathcal{A}, \mathcal{E})$ is the canonical embedding. Therefore by Proposition 5.1, \mathcal{E} is injective as a Banach left \mathcal{A} -module such that $a \cdot \xi = \phi(a)\xi$ for all $a \in \mathcal{A}$ and $\xi \in \mathcal{E}$.

As a consequence of Theorem 5.4, we have the following result.

COROLLARY 5.5. Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Then a Banach left \mathcal{A} -module \mathcal{E} with $a \cdot \xi = \phi(a)\xi$ ($a \in \mathcal{A}, \xi \in \mathcal{E}$) is injective if and only if \mathcal{E} is injective as a Banach left \mathcal{A}^{\sharp} -module with $(a, \lambda) \cdot \xi = \phi^{\sharp}(a, \lambda)\xi$ ($(a, \lambda) \in \mathcal{A}^{\sharp}, \xi \in \mathcal{E}$).

Note that a Banach algebra \mathcal{A} is right ϕ -amenable if any Banach left \mathcal{A} -module \mathcal{E} with $a \cdot \xi = \phi(a)\xi$ for all $a \in \mathcal{A}$ and $\xi \in \mathcal{E}$ is injective; this follows from Theorem 5.2. We note that this is an "if and only if" statement for certain Banach algebras. First, we state another result on those Banach algebras \mathcal{A} which are right ϕ -contractible; that is, $H^1(\mathcal{A}, \mathcal{X}) = \{0\}$ for every Banach \mathcal{A} -bimodule \mathcal{X} with the left module action $a \cdot x = \phi(a)x$ for all $a \in \mathcal{A}$ and $x \in \mathcal{X}$.

LEMMA 5.6. Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. If \mathcal{A} is right ϕ -contractible, then any Banach left \mathcal{A} -module \mathcal{E} with $a \cdot \xi = \phi(a)\xi$ for all $a \in \mathcal{A}$ and $\xi \in \mathcal{E}$ is injective.

Proof. Suppose that \mathcal{A} is right ϕ -contractible. Then by a similar proof to that of Theorem 2.1, there exists $a_0 \in \mathcal{A}$ with $\phi(a_0) = 1$ and $a_0 a = \phi(a) a_0$ for all $a \in \mathcal{A}$. Define $\rho : B(\mathcal{A}, \mathcal{E}) \to \mathcal{E}$ by $\rho(T) = T(a_0)$ for all $T \in B(\mathcal{A}, \mathcal{E})$. Then for each $a \in \mathcal{A}$, we have

$$\rho(a \cdot T) = (a \cdot T)(a_0) = T(a_0 a) = \phi(a)T(a_0) = a \cdot \rho(T)$$

and

$$(\rho \circ \Pi)(\xi) = \Pi(\xi)(a_0) = \phi(a_0)\xi = \xi.$$

Therefore by Proposition 5.1, \mathcal{E} is injective.

(

As a consequence of Corollary 3.6 and Lemma 5.6, we have the following result.

THEOREM 5.7. Let \mathcal{A} be a Banach algebra which is a left or right ideal in \mathcal{A}^{**} and $\phi \in \Delta(\mathcal{A})$. Then \mathcal{A} is right ϕ -amenable if and only if any Banach left \mathcal{A} -module such that $a \cdot \xi = \phi(a)\xi$ for all $a \in \mathcal{A}$ and $\xi \in \mathcal{E}$ is injective.

The following example shows that Theorem 5.7 does not remain valid for all Banach algebras.

EXAMPLE 5.8. Let $\ell^1(\mathbb{N})$ denote the convolution semigroup algebra of the additive semigroup \mathbb{N} , and let $\phi_{\mathbb{N}} \in \Delta(\ell^1(\mathbb{N}))$ be defined by $\phi_{\mathbb{N}}((a_n)) = \sum_{n=1}^{\infty} a_n$ for all $(a_n) \in \ell^1(\mathbb{N})$. Then $\ell^1(\mathbb{N})$ is right $\phi_{\mathbb{N}}$ -amenable. But we shall show that $c_0(\mathbb{N})$, the space of null sequences, is not injective as a Banach left $\ell^1(\mathbb{N})$ -module with the action

$$(a_n) \cdot (g_n) = \left(\sum_{m=1}^{\infty} a_m g_n\right)$$

for all $(a_n) \in \ell^1(\mathbb{N})$ and $(g_n) \in c_0(\mathbb{N})$. On the contrary, suppose that $c_0(\mathbb{N})$ is an injective Banach left $\ell^1(\mathbb{N})$ -module. Then by Proposition 5.1, there exists a left $\ell^1(\mathbb{N})$ -module morphism $\rho : B(\ell^1(\mathbb{N}), c_0(\mathbb{N})) \to c_0(\mathbb{N})$ such that $\rho \circ \Pi = I_{c_0(\mathbb{N})}$, where $\Pi : c_0(\mathbb{N}) \to B(\ell^1(\mathbb{N}), c_0(\mathbb{N}))$ is the canonical embedding defined by $\Pi((g_n))((a_n)) = (a_n) \cdot (g_n)$ for all $(g_n) \in c_0(\mathbb{N})$ and $(a_n) \in \ell^1(\mathbb{N})$.

Now, let $P: \ell^{\infty}(\mathbb{N}) \to B(\ell^{1}(\mathbb{N}), c_{0}(\mathbb{N}))$ be the continuous map given by the formulae

$$P((f_n))((a_n)) = \left(\left(\sum_{m=n}^{\infty} a_m \right) f_n \right)_n,$$

for all $(f_n) \in \ell^{\infty}(\mathbb{N})$ and $(a_n) \in \ell^1(\mathbb{N})$, where $\ell^{\infty}(\mathbb{N})$ is the space of bounded sequences.

We show that the map $\rho \circ P$ is a projection of $\ell^{\infty}(\mathbb{N})$ onto $c_0(\mathbb{N})$, which contradicts [H1, Theorem 0.1.16]. To that end, it suffices to show that $\rho \circ P$ is the identity map on $c_{00}(\mathbb{N})$, the space of sequences with finite support. Take $(h_n) \in c_{00}(\mathbb{N})$ and define $T_0 = P((h_n)) - \Pi((h_n))$. If l is a natural number with $h_n = 0$ for all n > l, then we define $(b_n) \in \ell^1(\mathbb{N})$ by

$$b_n = \begin{cases} 1, & 1 \le n \le l, \\ -1, & l+1 \le n \le 2l \\ 0, & \text{otherwise.} \end{cases}$$

,

It is clear that $\phi_{\mathbb{N}}((b_n)) = 0$ and $T_0 = (b_n) \cdot S$, where $S : \ell^1(\mathbb{N}) \to c_0(\mathbb{N})$ is defined by $S((a_n)) = (a_n h_n)$ for all $(a_n) \in \ell^1(\mathbb{N})$. Therefore

$$\rho(T_0) = \rho((b_n) \cdot S) = \phi_{\mathbb{N}}((b_n))\rho(S) = 0.$$

That is, $\rho \circ P = \rho \circ \Pi$ as required.

6. Applications to group algebras. Let G be a locally compact group with left Haar measure λ_G and let $L^1(G)$ be the group algebra of G as defined in [HR] endowed with the norm $\|\cdot\|_1$ and the convolution product *. Let $L^{\infty}(G)$ be the usual Lebesgue space with the essential supremum norm $\|\cdot\|_{\infty}$, and let M(G) be the measure algebra of G as defined in [HR]. Let X be a *left introverted* subspace of $L^{\infty}(G)$, i.e., $Ff, fh \in X$ for all $F \in X^*$, $f \in X$ and $h \in L^1(G)$, where

$$(Ff)(h) = F(fh)$$
 and $(fh)(k) = f(h * k)$

for all $k \in L^1(G)$. In this case, X^* is a Banach algebra with the first Arens multiplication \odot defined by $(F \odot H)(f) = F(Hf)$ for all $F, H \in X^*$ and $f \in X$. Examples of closed left introverted subspace of $L^{\infty}(G)$ include the space LUC(G) of all left uniformly continuous functions on G and the space $L_0^{\infty}(G)$ of all $f \in L^{\infty}(G)$ which vanish at infinity; this space was introduced and extensively studied by Lau and Pym in [LP].

Let \widehat{G} denote the dual group of G consisting of all continuous homomorphisms from G into the circle group \mathbb{T} . For $\rho \in \widehat{G}$, define ϕ_{ρ} to be the character induced by ρ on $L^{1}(G)$, that is,

$$\phi_{\rho}(h) = \int_{G} \overline{\rho(s)} h(s) \, d\lambda_{G}(s) \quad (h \in L^{1}(G)).$$

Note that there is always at least one character on $L^1(G)$, namely, the augmentation character ϕ_1 . It is well-known that there is no other character on $L^1(G)$; that is,

$$\Delta(L^1(G)) = \{\phi_\rho : \rho \in \widehat{G}\};\$$

see for example [HR, Theorem 23.7]. Let ϕ_{ρ} also denote the natural extensions of ϕ_{ρ} from $L^{1}(G)$ to a character on any one of the Banach algebras $M(G), L_{0}^{\infty}(G)^{*}, LUC(G)^{*}$ and $L^{1}(G)^{**}$. Finally, let us recall that G is called *amenable* if $L^{1}(G)$ is ϕ_{1} -amenable; it is well-known that all locally compact abelian groups and compact groups are amenable, but the free group \mathbb{F}_{2} on two generators is not amenable; see [R] for more details.

THEOREM 6.1. Let G be a locally compact group and $\rho \in \widehat{G}$. Then the following assertions are equivalent:

- (i) $L^1(G)$ is left ϕ_{ρ} -contractible.
- (ii) M(G) is left ϕ_{ρ} -contractible.
- (iii) $L_0^{\infty}(G)^*$ is left ϕ_{ρ} -contractible.
- (iv) G is compact.

Proof. It is well-known that $L^1(G)$ is a closed two-sided ideal in $L_0^{\infty}(G)^*$ and M(G); see [LP, Proposition 2.2] and [HR, Theorem 19.18]. So, the equivalences (i) \Leftrightarrow (ii) \Leftrightarrow (iii) are trivial by Proposition 3.8.

Now, suppose that (i) holds. Then there exists $h_0 \in L^1(G)$ such that $\phi_{\rho}(h_0) = 1$ and $h * h_0 = \phi_{\rho}(h)h_0$ for all $h \in L^1(G)$. So, $\bar{\rho}h_0 \in L^1(G)$, $\phi_1(\bar{\rho}h_0) = 1$ and $h * \bar{\rho}h_0 = \phi_1(h)\bar{\rho}h_0$ for all $h \in L^1(G)$. It follows that $\bar{\rho}h_0$ is a topological left invariant ϕ_1 -mean in $L^1(G)$, and hence G is compact; see for example [R, Exercise 1.1.7]. Conversely, suppose that G is a compact group endowed with a normalized left Haar measure. Then $\rho \in L^1(G)$, $\phi_{\rho}(\rho) = 1$ and $h * \rho = \phi_{\rho}(h)\rho$ for all $h \in L^1(G)$. Therefore $L^1(G)$ is left ϕ_{ρ} -contractible.

COROLLARY 6.2. Let G be a locally compact group. Then the following assertions are equivalent:

(i) L¹(G) is left character contractible.
(ii) M(G) is left character contractible.
(iii) L₀[∞](G)* is left character contractible.
(iv) G is finite.

Proof. Suppose that (i) holds. By Proposition 3.4, $L^1(G)$ has a right identity. So, G is discrete; see [HR, Theorem 20.25]. Therefore $L_0^{\infty}(G)^* = M(G) = L^1(G)$ and thus (ii) and (iii) hold. So, the equivalences (i) \Leftrightarrow (ii) \Leftrightarrow (iii) follow from Corollaries 3.7 and 3.9.

The equivalence (i) \Leftrightarrow (iv) follows from Proposition 3.4 and Theorem 6.1. \blacksquare

COROLLARY 6.3. Let G be a locally compact group and $\rho \in \widehat{G}$. Then the following assertions are equivalent:

- (i) $L^1(G)^{**}$ is left ϕ_{ρ} -contractible.
- (ii) $LUC(G)^*$ is left ϕ_{ρ} -contractible.
- (iii) G is amenable.

Proof. Suppose that $L^1(G)^{**}$ is left ϕ_{ρ} -contractible and note that the restriction map $\Theta : L^1(G)^{**} \to LUC(G)^*$ is a continuous epimorphism. This together with Lemma 3.11 implies that $LUC(G)^*$ is ϕ_{ρ} -contractible. Now, suppose that (ii) holds. Then there is an $M \in LUC(G)^*$ such that $M(\phi_{\rho})=1$ and $N \odot M = N(\phi_{\rho})M$ for all $N \in LUC(G)^*$. Define $M_{\rho}(f) := M(f_{\rho})$ for all $f \in LUC(G)$, where $f_{\rho}(s) = f(s)\overline{\rho(s)}$ for $s \in G$. Then $f_{\rho} \in LUC(G)$, and therefore M_{ρ} is well-defined. We also have

$$M_{\rho}(\phi_1) = M(\phi_{\rho}) = 1.$$

Indeed, $\phi_{1_{\rho}}(s) = \phi_1(s)\bar{\rho}(s) = \phi_{\rho}(s)$. On the other hand, for each $h \in L^1(G)$ and $f \in LUC(G)$ we have

$$(h \odot M_{\rho})(f) = M_{\rho}(fh) = M((fh)_{\rho}) = (\rho h \odot M)(f_{\rho})$$
$$= \phi_{\rho}(\rho h)M_{\rho}(f) = \phi_{1}(h)M_{\rho}(f).$$

Therefore, M_{ρ} is a topological left invariant mean on LUC(G) and so G is amenable by [R, Lemma 1.1.7 and Theorem 1.1.9].

Now, suppose that G is amenable. Then $L^1(G)$ is left ϕ_{ρ} -amenable by [M2, Corollary 2.4]. So, Proposition 3.5 shows that $L^1(G)^{**}$ is left ϕ_{ρ} -contractible.

REMARK 6.4. As in [LL, Corollary 4.4], it would be interesting to characterize the left ϕ -contractibility on \mathcal{X}^* , the dual Banach algebra of an introverted subspace \mathcal{X} of the space of essentially bounded functions on G; see also [LL, Theorem 3.9].

COROLLARY 6.5. Let G be a locally compact group and $\rho \in \widehat{G}$. Then the following assertions are equivalent:

- (i) $L^1(G)^{**}$ is left character contractible.
- (ii) $LUC(G)^*$ is left character contractible.
- (iii) G is finite.

Proof. Suppose that (i) holds and note that the restriction map from $L^1(G)^{**}$ onto $LUC(G)^*$ is a continuous epimorphism. This together with [HMT, Lemma 6.8] implies that $LUC(G)^*$ is character contractible. Now, suppose that (ii) holds. Then the restriction map from $LUC(G)^*$ onto M(G) is a continuous epimorphism. Therefore, [HMT, Lemma 6.8] implies that M(G) is character contractible, and so G is finite by Corollary 6.2.

If G is finite, it is trivial that $L^1(G)^{**}$ is left character contractible.

In the following, let A(G) denote the Fourier algebra of G as defined in [E], and recall the well-known fact that $\Delta(A(G)) = \{\phi_s : s \in G\}$, where $\phi_s(k) = k(s)$ for all $k \in A(G)$.

PROPOSITION 6.6. Let G be a locally compact group and $s \in G$. Then A(G) is left ϕ_s -contractible if and only if G is discrete.

Proof. First, suppose that A(G) is left ϕ_s -contractible. Therefore there exists $m \in A(G)$ such that $m(\phi_s) = 1$ and k(t)m(t) = k(s)m(t) for all $x \in G$. Thus $k = k(s)\chi_{coz(m)}$ for all $k \in A(G)$. This shows that $m = \chi_{\{s\}}$. Since $m \in A(G)$, it follows that G is discrete. For the converse, suppose that G is discrete. Then $\chi_{\{s\}}$ is an element of A(G) with $\phi_s(\chi_{\{s\}}) = 1$ and $k\chi_{\{s\}} = \phi_s(k)\chi_{\{s\}}$ for all $k \in A(G)$. This means A(G) is ϕ_s -contractible.

COROLLARY 6.7. Let G be a locally compact group. Then A(G) is left character contractible if and only if G is finite.

Proof. We only need to recall from Propositions 3.4 and 6.6 that A(G) is left character contractible if and only if G is discrete and A(G) has a right identity; that is, G is finite.

To prepare for the setting in our last results, set

$$\mathcal{L}A(G) := L^1(G) \cap A(G)$$

and define

$$\|\|h\|\| := \|h\|_1 + \|h\|_{A(G)} \quad (h \in \mathcal{L}A(G)).$$

Then $\mathcal{L}A(G)$ with the norm $\|\cdot\|$ is a Banach space; this space was introduced and extensively studied by Ghahramani and Lau [GL].

We recall that $\mathcal{L}A(G)$ with the convolution product is a Banach algebra and it is a dense left ideal of $L^1(G)$ such that $|||h * k||| \leq ||h||_1 |||k|||$ for all $k \in \mathcal{L}A(G)$ and $h \in L^1(G)$. Ghahramani and Lau [GL] called $\mathcal{L}A(G)$ endowed with convolution product the Lebesgue-Fourier algebra of G.

PROPOSITION 6.8. Let G be a locally compact group and $\rho \in \widehat{G}$. If the Lebesgue–Fourier algebra $\mathcal{L}A(G)$ is $\phi_{\rho}|_{\mathcal{L}A(G)}$ -contractible, then G is compact.

Proof. First note that ϕ_{ρ} is linear and multiplicative on $\mathcal{L}A(G)$ and we have

$$|\phi_{\rho}(h)| \le \|\phi_{\rho}\| \, \|h\|_{1} \le \|\phi_{\rho}\| \, \|h\|$$

for all $h \in \mathcal{L}A(G)$. Since $\mathcal{L}A(G)$ is dense in $L^1(G)$, $\phi_{\rho}|_{\mathcal{L}A(G)}$ is a nonzero character on $\mathcal{L}A(G)$. Since $\mathcal{L}A(G)$ is a left ideal of $L^1(G)$ and $||h||_1 \leq |||h||$ for all $h \in \mathcal{L}A(G)$, an argument similar to the proof of Lemma 3.8 shows that $L^1(G)$ is ϕ_{ρ} -contractible, and so G is compact by Theorem 6.1.

COROLLARY 6.9. Let G be a locally compact group. Then the Lebesgue-Fourier algebra $\mathcal{L}A(G)$ is character contractible if and only if G is finite.

Proof. The result follows immediately from Proposition 6.8 and the fact that $\mathcal{L}A(G)$ has an identity if and only if G is discrete.

Let us recall from [GL] that $\mathcal{L}A(G)$ with the pointwise product is a Banach algebra which is a dense ideal of A(G) and $|||k \cdot h||| \le ||k||_{A(G)} |||h|||$ for all $h \in \mathcal{L}A(G)$ and $k \in A(G)$.

PROPOSITION 6.10. Let G be a locally compact group. Then $\mathcal{L}A(G)$ endowed with the pointwise product is character contractible if and only if G is finite.

Proof. Suppose that $\mathcal{L}A(G)$ endowed with the pointwise product is character contractible. First note that $\phi \in \Delta(A(G))$ is linear and multiplicative on $\mathcal{L}A(G)$ and we have

$$|\phi(h)| \le \|\phi\| \, \|h\|_1 \le \|\phi\| \, \|h\|$$

for all $h \in \mathcal{L}A(G)$. Since $\mathcal{L}A(G)$ is dense in A(G), $\phi|_{\mathcal{L}A(G)}$ is a nonzero character on $\mathcal{L}A(G)$. Now, since $\mathcal{L}A(G)$ is an ideal of A(G) and $||h||_1 \leq ||h||$ for all $h \in \mathcal{L}A(G)$, the same argument in the proof of Lemma 3.8 shows that A(G) is ϕ -contractible, and so G is discrete by Proposition 6.6. It is

well-known that $\mathcal{L}A(G)$ endowed with the pointwise product has an identity if and only if G is compact; see [GL, Proposition 2.6]. Therefore the result follows from Theorem 3.8.

Conversely, if G is finite, then A(G) is character contractible by Corollary 6.7, and hence $\mathcal{L}A(G) = A(G)$. Thus the norms $\| \cdot \|$ and $\| \cdot \|_{A(G)}$ are equivalent on $\mathcal{L}A(G)$ by the open mapping theorem, and so $\mathcal{L}A(G)$ is character contractible.

We conclude the paper by the following result on the Banach left $L^1(G)$ module $L^1(G)$ which does not remain valid for all Banach algebras; see Example 5.8.

COROLLARY 6.11. Let G be a locally compact group. Then $L^1(G)$ is injective as a Banach left $L^1(G)$ -module such that $h \cdot k = \phi_1(h)k$ for all $h, k \in L^1(G)$ if and only if G is amenable.

Proof. By Proposition 5.2, the "only if" part is clear. Now suppose that G is amenable. Then $L^1(G)$ is right ϕ_1 -amenable. So, M(G) is injective as a Banach left $L^1(G)$ -module with $h \cdot \mu = \phi_1(h)\mu$ for all $\mu \in M(G)$ and $h \in L^1(G)$, by Theorem 5.2. We also know $L^1(G)$ is a retract of M(G); thus, $L^1(G)$ is injective as a Banach left $L^1(G)$ -module.

Acknowledgements. The authors would like to express their sincere gratitude to Professor Anthony To-Ming Lau for his comments on the manuscript. They would also like to thank the Center of Excellence for Mathematics at the Isfahan University of Technology.

References

- [BNS] F. Bahrami, R. Nasr-Isfahani and S. Soltani Renani, Homological properties of certain Banach modules over group algebras, Proc. Edinburgh Math. Soc., to appear.
- [BD] F. F. Bonsall and J. Duncan, *Complete Normed Algebras*, Springer, Berlin, 1973.
- [D] H. G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monogr. 24, Clarendon Press, Oxford, 2000.
- [DP] H. G. Dales and M. E. Polyakov, Homological properties of modules over group algebras, Proc. London Math. Soc. 89 (2004), 390–426.
- [E] P. Eymard, L'algèbre de Fourier d'un groupe localement compacte, Bull. Soc. Math. France 92 (1964), 181–236.
- [GL] F. Ghahramani and A. T. Lau, Approximate weak amenability, derivations and Arens regularity of Segal algebras, Studia Math. 169 (2005), 189–205.
- [H1] A. Ya. Helemskii, Banach and Locally Convex Algebras, Oxford Univ. Press, New York, 1993.
- [H2] —, The Homology of Banach and Topological Algebras, Kluwer, Dordrecht, 1989.
- [HR] E. Hewitt and K. Ross, *Abstract Harmonic Analysis II*, Springer, New York, 1970.

- [HMT] Z. Hu, M. S. Monfared and T. Traynor, On character amenable Banach algebras, Studia Math. 193 (2009), 53–78.
- B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
- [KLP1] E. Kaniuth, A. T. Lau, and J. Pym, On φ-amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008), 85-96.
- [KLP2] —, —, —, On character amenability of Banach algebras, J. Math. Anal. Appl. 344 (2008), 942–955.
- [L] A. T. Lau, Analysis on a class of Banach algebras with application to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983), 161–175.
- [LL] A. T. Lau and R. J. Loy, Weak amenability of Banach algebras on locally compact groups, J. Funct. Anal. 145 (1997), 175–204.
- [LP] A. T. Lau and J. Pym, Concerning the second dual of the group algebra of a locally compact group, J. London Math. Soc. 41 (1990), 445–460.
- [LW] A. T. Lau and J. C. S. Wong, Invariant subspaces for algebras of linear operators and amenable locally compact groups, Proc. Amer. Math. Soc. 102 (1988), 581– 586.
- [LO] R. J. Loy, Identities in tensor products of Banach algebras, Bull. Austral. Math. Soc. 2 (1970), 253–260.
- [M1] M. S. Monfared, On certain products of Banach algebras with applications to harmonic analysis, Studia Math. 178 (2007), 277–294.
- [M2] —, Character amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008), 697–706.
- [NS] R. Nasr-Isfahani and S. Soltani Renani, On homological properties for some modules of uniformly continuous functions over convolution algebras, Bull. Austral. Math. Soc., to appear.
- [P] A. T. Paterson, Amenability, Math. Surveys Monogr. 29, Amer. Math. Soc., Providence, RI, 1988.
- [PI] J. P. Pier, Amenable Banach Algebras, Pitman Res. Notes Math. Ser. 172, Longman Sci. Tech., Harlow, 1988.
- [R] V. Runde, *Lectures on Amenability*, Springer, New York, 2002.

Rasoul Nasr-Isfahani, Sima Soltani Renani Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156-83111, Iran E-mail: isfahani@cc.iut.ac.ir simasoltani@math.iut.ac.ir

Received January 29, 2010

(6803)