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On the size of quotients of function spaces
on a topological group

by

Ahmed Bouziad (Rouen) and Mahmoud Filali (Oulu)

Abstract. For a non-precompact topological group G, we consider the space C(G)
of bounded, continuous, scalar-valued functions on G with the supremum norm, together
with the subspace LMC (G) of left multiplicatively continuous functions, the subspace
LUC (G) of left norm continuous functions, and the subspace WAP(G) of weakly almost
periodic functions.

We establish that the quotient space LUC (G)/WAP(G) contains a linear isometric
copy of `∞, and that the quotient space C(G)/LMC (G) (and a fortiori C(G)/LUC (G))
contains a linear isometric copy of `∞ when G is a normal non-P -group. When G is not a
P -group but not necessarily normal we prove that the quotient is non-separable. For non-
discrete P -groups, the quotient may sometimes be trivial and sometimes non-separable.
When G is locally compact, we show that the quotient space LUC (G)/WAP(G) contains
a linear isometric copy of `∞(κ(G)), where κ(G) is the minimal number of compact sets
needed to cover G. This leads to the extreme non-Arens regularity of the group algebra
L1(G) when in addition either κ(G) is greater than or equal to the smallest cardinality of
an open base at the identity e of G, or G is metrizable. These results are improvements
and generalizations of theorems proved by various authors along the last 35 years and
until very recently.

1. Introduction. Throughout the paper, G is a Hausdorff topological
group with identity e, and C(G) is the space of bounded, continuous, scalar-
valued functions on G with the supremum norm. For each f ∈ C(G) and
s ∈ G, fs is the left translate of f by s, defined on G by fs(t) = f(st), and
fG = {fs : s ∈ G}. We follow primarily the notation used in [1], from which
we also recall the definitions of the following subspaces of C(G). We start
with the space of weakly almost periodic functions on G,

WAP(G) = {f ∈ C(G) : fG is relatively weakly compact in C(G)}.
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Grothendieck’s famous iterated limit criterion shows that a function f in
C(G) is in WAP (G) if and only if, for any sequences (xn) and (ym) in G,

lim
n→∞

lim
m→∞

f(xnym) = lim
m→∞

lim
n→∞

f(xnym)

whenever these iterated limits exist; see for example [1, Appendix A].
Another space we will consider is

LUC (G) = {f ∈ C(G) : s 7→ fs is norm continuous}.
This space is denoted by LC(G) in [1] and is referred to as the space of
left norm continuous functions on G. We note that these are in fact the
bounded functions f on G which are uniformly continuous with respect to
the right uniformity on G, i.e., for every ε > 0, there is a neighbourhood
O of the identity in G such that |f(s) − f(t)| < ε whenever ts−1 ∈ O.
Thus, left norm continuous functions in the sense of [1] and right uniformly
continuous functions in the sense of [25] are the same. It is well known that
WAP(G) ⊆ LUC (G) (see for example [1, Corollary 4.4.11]).

There will also be the space

LMC (G) = {f ∈ C(G) : s 7→ fs is σ(C(G), βG)-continuous}
= {f ∈ C(G) : s 7→ x(fs) is continuous for each x ∈ βG};

this is the space of left multiplicatively continuous functions on G, which can
be easily identified with the functions f ∈ C(G) such that

lim
n

lim
m
f(xnym) = lim

m
lim
n
f(xnym)

whenever (xn) and (ym) are nets in G with (xn) converging in G and (ym)
converging in βG, the Stone–Čech compactification of G. It is clear that
LUC (G) ⊆ LMC (G), and when G is locally compact, LUC (G) = LMC (G).
But in general, the equality may fail as for example when G is the group of
rationals with its usual topology (see [1, Example 4.5.8]).

When G is locally compact, we will also consider the Banach space
L∞(G) of scalar-valued measurable functions which are essentially bounded
with respect to the Haar measure; two functions are identified if they differ
only on a locally null set, and the norm is given by the essential supremum
norm.

The paper is concerned with the Banach quotients LUC (G)/WAP(G)
and C(G)/LMC (G) for a general topological group G, and the quotient
L∞(G)/WAP(G) when G is locally compact. In the following section, we
prove that LUC (G)/WAP(G) contains a linear isometric copy of `∞ for
any non-precompact group G. This was established by different authors in
some special cases and finally settled by Dzinotyiweyi in [9] for any locally
compact non-compact group. In [31], Megrelishvili, Pestov and Uspenskij
considered topological groups and proved that G is precompact if and only



Size of quotients of function spaces 245

if LUC (G) = WAP(G). A simplified proof of this theorem was provided
later on by Bouziad and Troallic in [4].

In [9], Dzinotyiweyi also showed that the quotient C(G)/LUC (G) is
non-separable for any locally compact, non-discrete, non-compact group G.
The third section of the present paper generalizes this result to a vast
class of topological groups. We show that C(G)/LMC (G) (and a fortiori
C(G)/LUC (G)) contains in fact a linear isometric copy of `∞ whenever G is
a non-precompact, normal, topological group which is not a P -group. Note
that this improves Dzinotyiweyi’s result also for locally compact groups.
Without the hypothesis of normality, we prove that the quotient is non-
separable when G is not a P -group. For P -groups, the quotient may contain
a linear isometric copy of `∞, but may also be trivial even ifG is non-discrete.

The last section specializes to locally compact groups and shows further
that LUC (G)/WAP(G) contains a linear isometric copy of `∞(κ(G)), where
κ(G) is the minimal number of compact sets required to cover G. This
immediately yields the same property for the quotient L∞(G)/WAP(G), and
accordingly the extreme non-Arens regularity of the group algebra L1(G)
whenever κ(G) is greater than or equal to the smallest cardinality b(G) of
an open base at the identity e of G. The latter result includes [17, Theorem
4.3], and is precisely the dual of Hu’s result in [26] which states that the
Fourier algebra A(G) is extremely non-Arens regular when b(G) ≥ κ(G).

We recall that a topological group G is precompact (or totally bounded)
if for every neighbourhood U of the identity e there exists a finite subset F
of G such that G = UF . A topological space X is said to be pseudocompact
if every continuous real-valued function on X is bounded.

The following lemma presents the common argument finishing the proof
of each of the theorems in the paper.

Lemma 1.1. Let S, T be two families of nets on G with the property
that if (si) is in S (respectively, in T ) then every subnet of (si) is in S
(respectively, in T ). Let h : G→ R be a bounded function with the property
that whenever (si) ∈ S, (tj) ∈ T and both iterated limits of h(sitj) exist, then
these limits are equal. Let f : G → R, and suppose there are nets (si) ∈ S,
(tj) ∈ T with

lim
j

lim
i
f(sitj) = a, lim

i
lim
j
f(sitj) = b.

Then ‖f + h‖ ≥ |a− b|/2.
Proof. If limj limi h(sitj) = limi limj h(sitj) = `, then

‖f + h‖ ≥ sup
i,j
|f(sitj) + h(sitj)| ≥ max{|a+ `|, |b+ `|} ≥ |a− b|

2
.

Replacing (si)i∈I and (tj)j∈J by subnets does not change the iterated limits
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of f(sitj), so all we need to do is to show that for any nets (si)i∈I , (tj)j∈J
we can find subnets for which the iterated limits of (h(sitj)) exist.

Take K with ‖h‖ ≤ K. For each i ∈ I, (h(sitj))j∈J ∈ [−K,K]J , and
so by compactness of the product, for some subnet of (si), (h(sitj))j∈J →
(uj)j∈J , say. We can then take a subnet of (uj) for which the j-limit exists.
Interchanging the roles of (si) and (tj) we find further subnets for which the
other iterated limit exists.

2. On the quotient LUC (G)/WAP(G). For locally compact non-
compact groups, the quotient LUC (G)/WAP(G) contains an isometric lin-
ear copy of `∞. This was proved by Granirer for amenable groups in [20],
by Chou for E-groups in [6] and extended by Dzinotyiweyi to all locally
compact groups in [9]. Accordingly, the same property holds if G is a non-
precompact, locally precompact group. This is due to the known fact that
the completion G̃ of such a group is a locally compact non-compact group,
and to the facts that WAP(G̃)|G = WAP(G) and LUC (G̃)|G = LUC (G)
(see, for example, [1]).

In this section, we prove the result for any non-precompact topological
group. Our method is inspired by that of Chou, but it is much simplified
and covers all the locally compact case. Due to the highly technical proofs
presented in both papers by Chou and Dzinotyiweyi, we shall present the
proofs for any topological group including the locally compact case as well.

Recall that a topological group G is called a SIN-group if the left and the
right uniform structures on G coincide. Equivalently, a topological group G
is a SIN-group if every neighbourhood U of the identity e in G contains a
neighbourhood of e which is invariant under all inner automorphisms of G.

Lemma 2.1. Let G be a non-precompact topological group. Suppose that
G is either SIN (we can also take G as an E-group in the sense of [6]) or
not locally precompact. Then G contains two infinite countable sets S and T
and a symmetric neighbourhood V of e such that ST is right (left) uniformly
discrete with respect to V 2; that is,

(V 2sntm) ∩ (ST ) = {sntm} ((sntmV 2) ∩ (ST ) = {sntm})
for every pair (n,m) ∈ N× N.

Proof. The case when G is not locally precompact is taken from [3] or [4].
Since G is not precompact, we may pick a symmetric neighbourhood U of e
and an infinite subset T = {tn : n ∈ N} of G which is right uniformly discrete
with respect to U2, that is, Utl and Utn are disjoint whenever l, n ∈ N, l < n.
Let W be a neighbourhood of e such that W 2 ⊆ U. Since W is in turn not
precompact, we may pick again a symmetric neighbourhood V of e, V ⊆W,
and an infinite subset S = {sm : m ∈ N} of W such that V sk and V sm
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are disjoint whenever k,m ∈ N, k < m. Consider now the set ST and let
(k, l) 6= (m,n) in N× N. If l 6= n, then Utl ∩ Utn = ∅, and so

(V sktl) ∩ (V smtn) ⊆ (W 2tl) ∩ (W 2tn) ⊆ (Utl) ∩ (Utn) = ∅.
If l = n, then k 6= m, and so (V sk) ∩ (V sm) = ∅, which clearly implies our
claim.

Suppose now that G is a SIN-group, and pick a symmetric invariant
neighbourhood U of e such that G 6= UF (since G is not precompact)
for any finite subset F of G. We start by putting s0 = t0 = e. We argue
by induction, and suppose that s0, s1, . . . , sn and t0, t1, . . . , tn have been
defined. First choose

sn+1 /∈ U{sptqt−1
r : p, q, r ≤ n},

then choose
tn+1 /∈ U{s−1

p sqtr : p, q ≤ n+ 1, r ≤ n}.
We claim that sktl /∈ Usmtn whenever (k, l) 6= (m,n).

Case 1: k ≥ l,m, n. If k = m, then sktl ∈ Usmtn implies that tl ∈ Utn
(since U is invariant), and so l = n. Thus, (k, l) = (m,n). If k > m then
sk ∈ Usmtnt

−1
l is not possible by the choice of sk. Thus, we have again

sktl /∈ Usmtn.

Case 2: l ≥ k,m, n. If l = n, then sktl ∈ Usmtn implies that sk ∈ Usm,
and so k = m. Thus, (k, l) = (m,n). If l > n, then tl ∈ s−1

k Usmtn is
not possible by the choice of tl (since U is invariant). Thus, we have again
sktl /∈ Usmtn. Now any symmetric neighbourhood V of e such that V 2 ⊆ U
has the required property of the claim.

The other cases m ≥ k, l, n and n ≥ k, l,m are treated similarly.

Theorem 2.2. Let G be any non-precompact topological group. Then
the quotient LUC (G)/WAP(G) contains a linear isometric copy of `∞. In
particular, the quotient space LUC (G)/WAP(G) is non-separable.

Proof. Suppose first that G is a non-SIN locally precompact group. Then
the completion G̃ of G is a non-SIN locally compact group. By [24], the
quotient LUC (G̃)/UC(G̃) contains an isometric copy of `∞ (see also [3]). It
is then clear that the quotient LUC (G̃)/WAP(G̃) has the same property,
and so does LUC (G)/WAP(G) as already noted at the beginning of this
section.

Suppose now that our group G either is not locally precompact or is
locally precompact and SIN. These are the groups considered in Lemma 2.1,
so we may pick a symmetric neighbourhod V of e in G and two countably
infinite subsets S and T of G such that ST is right uniformly discrete with
respect to V 2, i.e., (V sktl)∩ (V smtn) = ∅ whenever (k, l) 6= (m,n) in N×N.
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Partition N into infinitely many subsets In, n ∈ N. Let φ ∈ LUC (G) be
such that 0 ≤ φ ≤ 1, φ(e) = 1 and φ(G \V ) = 0 (see [25, Theorem 8.4], [34,
Theorem 3.18.10], [27, p. 7] or [4, Lemma 2.4]). Fix ξ ∈ `∞(N×N) with the
property limi ξ(i, j) = 1 for each j ∈ N, and limj ξ(i, j) = −1 for each i ∈ N.
Define, for each k ∈ N, a function fk on G by

fk(s) =
∑
i,j∈Ik

ξ(i, j)φ(st−1
j s−1

i ),

and for each bounded scalar sequence c = (ck), let

fc =
∑
k∈N

ckfk.

Note that if fc(s) 6= 0, then fk(s) 6= 0 for some k ∈ N, and so φ(st−1
j s−1

i ) 6= 0
for some i, j ∈ Ik. Accordingly, st−1

j s−1
i ∈ V , and so s ∈ V sitj for only one

pair (i, j) ∈ Ik × Ik. Thus, fc(s) = ξ(i, j)φ(st−1
j s−1

i ). It follows that fc is
well-defined, and it is in LUC (G) since φ is in LUC (G), is supported in V
and (V sitj) ∩ (V sktl) = ∅ whenever (i, j) 6= (k, l) in N×N (see for example
[1, Exercise 4.4.16] or [17, Lemma 1.3]).

We prove that the composition map

`∞ → LUC (G)→ LUC (G)/WAP(G) : c 7→ fc 7→ fc + WAP(G)

is a linear isometry, where each of the spaces is equipped with its usual
norm. Since the map `∞ → LUC (G) : c 7→ fc is clearly a linear isometry,
we only need to check that the map fc 7→ fc + WAP(G) is an isometry. So
let fc ∈ LUC (G) with c a function in `∞.

Note that fc(sitj) = ckξ(i, j) for each pair (i, j) ∈ Ik × Ik. Therefore,
when (i, j) ∈ Ik × Ik,

lim
j

lim
i
f(sitj) = ck and lim

i
lim
j
f(sitj) = −ck.

By Lemma 1.1, we deduce that ‖fc + h‖ ≥ |ck| for every h ∈WAP(G) and
for every k ∈ N. Therefore,

‖fc + h‖ ≥ ‖c‖ for every h ∈WAP(G).

If we let ‖ · ‖q denote the norm in LUC (G)/WAP(G), then we have

‖fc + WAP(G)‖q = inf{‖fc + h‖ : h ∈WAP(G)} ≥ ‖c‖.
Of course, ‖fc+WAP(G)‖q ≤ ‖fc‖ = ‖c‖ since the quotient map is bounded.
Thus we obtain the required isometry.

Corollary 2.3. Let G be a topological group. Then the following state-
ments are equivalent:

(i) G is not precompact.
(ii) LUC (G) 6= WAP(G).
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(iii) LUC (G)/WAP(G) is non-separable.

Proof. (ii)⇒(i) is known, see for instance [1]. (iii)⇒(ii) is clear. (i)⇒(iii)
by the theorem above.

3. On the quotient C(G)/LMC (G). In [9], Dzinotyiweyi proved that
the Banach quotient C(G)/LUC (G) is non-separable when G is a locally
compact group which is neither compact nor discrete. To reach this con-
clusion, he showed in fact that C(G) contains a linear isometric copy {fc :
c ∈ `∞} of `∞ such that ‖fc + LMC (G)‖q ≥ 1

2‖c‖ for every c ∈ `∞.
In this section, we improve and generalize Dzinotyiweyi’s result. We show

that for a wide class of topological groups the quotient C(G)/LMC (G) con-
tains in fact a linear isometric copy of `∞ (i.e., ‖fc + LMC (G)‖q = ‖c‖ for
every c ∈ `∞).

Our methods are less technical and are inspired by [16], and our con-
clusion is valid for any non-precompact normal topological group which
is not a P -group. Without normality, we still deduce that the quotient
C(G)/LMC (G) is non-separable. For a P -group, the conclusion may, or
may not, hold. Indeed, we know from [16] that for Lindelöf P -groups, the
quotient is trivial since LUC (G) = C(G) for this class of groups. But we
will also present in this section a class of P -groups for which the quotient
contains a linear isometric copy of `∞.

Recall that a P -space is a topological space in which every countable
intersection of open subsets remains open. For several interesting properties
of P -spaces, see [18]. A P -group is a topological group which is also a P -
space.

Theorem 3.1. Let G be a non-precompact topological group which is not
a P -group. Then

(i) The quotient C(G)/LMC (G) is non-separable.
(ii) If in addition G is normal, then the quotient C(G)/LMC (G) con-

tains a linear isometric copy of `∞.

Proof. Suppose that G is not precompact and pick a neighbourhood U
of e in G and a sequence (xn)n≥1 such that (Uxn) ∩ (Uxm) = ∅ whenever
n 6= m. Note that the sequence (xn)n≥1 does not have any cluster point
in G. Since G is not a P -group, there exists a countable decreasing family
{Un}n≥1 of open symmetric neighbourhoods of e such that

Int
(⋂
n≥1

Un

)
= ∅.

We may assume that U2
1 ⊆ U and Un+1 ( Un ⊆ U for every n ≥ 1. Let

{Bi}i∈I be a base at the identity e in G. Since the interior of
⋂
n≥1 Un is
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empty,

Bi ∩
(
G \

⋂
n≥1

Un

)
6= ∅ for every i ∈ I.

Hence, for every i ∈ I, we may choose the smallest index ni ≥ 1 such that

Bi ∩ (Uni \ Uni+1) 6= ∅,
and so we may form a net (si)i∈I such that si ∈ Bi ∩ (Uni \ Uni+1) for each
i ∈ I. Note that (si)i∈I converges to e in G.

First suppose that G is only completely regular, and let {φn}∞n=1 be a
family of continuous functions on G with values in [0, 1] satisfying

φn(e) = 1 and φn(G \ Un) = 0 for every n ≥ 1.

Partition N into infinitely many infinite subsets Ik, k ∈ N, and for each
k ∈ N, define

fk(s) =
∑
n∈Ik

φn(sx−1
n ).

Then, as before, since φn(sx−1
n ) 6= 0 for at most one n ∈ N, each function

fk is well-defined on G and, clearly, bounded and continuous.
Now define, for each bounded scalar sequence c = (ck), a function fc

on G by
fc =

∑
k∈N

ckfk.

As in Theorem 2.2, the mapping

c 7→ fc : `∞ → C(G)

is a linear isometry. We claim further that 2‖fc + h‖ ≥ ‖c‖ for every h ∈
LMC (G). Note first that

lim
i

lim
j
fc(sixj) = 0 while lim

j
lim
i
fc(sixj) = ck

for j ∈ Ik, and remember that h ∈ LMC (G) implies

lim
i

lim
j
h(siyj) = lim

j
lim
i
h(siyj)

whenever the limits exist, since (si) is a net which converges in G. So Lemma
1.1 yields

‖fc + h‖ ≥ 1
2
|ck| for every k ∈ N and h ∈ LMC (G).

Therefore,

‖fc + LMC (G)‖q = inf{‖fc + h‖ : h ∈ LMC (G)} ≥ 1
2
‖c‖

for every c ∈ `∞, hence the quotient C(G)/LMC (G) is non-separable.
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If G is normal, then we may take a family {φn}∞n=1 of continuous func-
tions on G with values in [−1, 1] satisfying

φn(e) = 1, φn(U1 \ Un) = −1 and φn(G \ U) = 0 for every n ≥ 1.

As in the case above, we consider the functions {fk}∞k=1, and for each c ∈ `∞,
the function fc. Here, Lemma 1.1 implies that ‖fc + h‖ ≥ ‖c‖ for every
h ∈ LMC (G). As in Theorem 2.2, this yields the required linear isometry of
`∞ into C(G)/LMC (G).

Corollary 3.2. Let G be topological group which is not a P -group, and
consider the following statements:

(i) G is not precompact.
(ii) C(G)/LMC (G) is non-separable.

(iii) C(G) 6= LMC (G).
(iv) G is not pseudocompact.

Then (i)⇒(ii)⇒(iii)⇔(iv).

Proof. (i)⇒(ii) follows by Theorem 3.1. (ii)⇒(iii) is clear. (iii)⇒(iv) is
known (see for instance [1]). (iv)⇒(iii) is proved in [16].

For non-discrete P -groups the quotient C(G)/LMC (G) is sometimes
non-separable and sometimes trivial. In fact, for every Lindelöf P -group,
the quotient is trivial since LUC (G) = LMC (G) = C(G) (see [16, Theorem
5.1]. Next, we give a criterion which helps to construct examples of P -groups
with a non-separable quotient C(G)/LMC (G).

Theorem 3.3. Let G be a non-discrete topological group with a base B
at e consisting of open subgroups, and suppose that |G/H| ≥ |B| for some
H ∈ B. Then the quotient C(G)/LMC (G) contains a linear isometric copy
of `∞(|B|), and so the quotient is non-separable.

Proof. Let B = {Hi : i ∈ I}. We may assume that Hi ⊆ H for every
i ∈ I. Since |G/H| ≥ |B|, we may pick, for each i ∈ I, an element xi ∈ G
such that the family {Hxi : i ∈ I} is pairwise disjoint. Hence, the family
{Hixi : i ∈ I} is also pairwise disjoint. Partition I into |B| subsets Ik each
with cardinality |B|. Then we may define, for each k < |B|, a function fk by

fk =
∑
n∈Ik

(χHnxn − χ(H\Hn)xn),

and for each c ∈ `∞(|B|), a function fc by

fc =
∑
k<|B|

ckfk =
∑
k<|B|

ck
∑
n∈Ik

(χHnxn − χ(H\Hn)xn).

Since each Hn is open, fc is continuous. The mapping

c 7→ fc : `∞(|B|)→ C(G)
is clearly a linear isometry.



252 A. Bouziad and M. Filali

As in Theorem 3.1, pick si from each Hi\{e} and consider the net (si)i∈I
which converges to e in G. Let x be any cluster point of {xn : n ∈ Ik} in βG
(note that x ∈ βG \ G), and let (xj) be a net in this set converging to x.
Then, clearly,

lim
j

lim
i
fk(sixj) = lim

j
fk(xj) = lim

j
χHjxj (xj) = 1.

Since si 6∈ Hj starting from some index j0, we see

lim
j
fk(sixj) = lim

j
(χHjxj − χ(H\Hj)xj )(sixj) = −1,

and so

lim
i

lim
j
fk(sixj) = lim

i
lim
j

(χHjxj − χ(H\Hj)xj )(sixj) = −1.

Lemma 1.1 leads again to the required inequality, namely,

‖fc + h‖ ≥ 1 for every h ∈ LMC (G),

and so to the desired conclusion.

There is a P -group with the quotient C(G)/LMC (G) non-separable.

Example 3.4. Let T be an uncountable set and letG be the permutation
group of T (with composition of functions as operation). Let the sets

UA = {x ∈ G : x(t) = t for every t ∈ A},
where A ⊆ T is countable, form a base at the identity e in G. Then G
becomes a P -group. Fix t ∈ T . Then, for every x ∈ G,

xU{t} = {y ∈ G : y = xu where u(t) = t} = {y ∈ G : y(t) = x(t)}.
Therefore, xU{t}∩x′U{t} = ∅ if and only if x(t) 6= x′(t). Thus, |G/U{t}| ≥ |T |.
Since |B| = |{UA : A ⊆ T is countable}| = |T |, we see that |G/U{t}| ≥ |B|,
and so Theorem 3.3 implies that the quotient C(G)/LMC (G) contains a
linear isometric copy of `∞(|B|).

4. On extreme non-Arens regularity of the group algebra. This
section is concerned with the extreme non-Arens regularity of the group al-
gebra L1(G) with the convolution product, G being a locally compact group.
Before stating our main theorem, we need to recall a few definitions about
Banach algebras A. As is known ([7], [15] or [33]), two Arens multiplications
may be introduced in the second Banach dual A∗∗ of A; each extends that
of A and makes A∗∗ a Banach algebra. When these two products coincide,
A is said to be Arens regular. Let WAP(A∗) be the space of weakly almost
periodic functionals on A. This is the space of all elements a′ ∈ A∗ with the
property that the set {a′a : a ∈ A, ‖a‖ ≤ 1} is relatively weakly compact
in A∗, where a′a ∈ A∗ is defined on A by 〈a′a, b〉 = 〈a′, ab〉. In [35], Pym
proved that A is Arens regular if and only if WAP(A∗) = A∗. Well-known
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examples of Arens regular Banach algebras are C∗-algebras. The group alge-
bra L1(G) is Arens regular if and only if G is finite ([38]). For more details,
see for example [15].

In [19], Granirer introduced the concept of extreme non-Arens regular-
ity by defining A to be extremely non-Arens regular (ENAR for short) when
the quotient A∗/WAP(A∗) contains a closed linear subspace having A∗ as
a continuous linear image, and proved in particular that the Fourier alge-
bras A(R) and A(T) are ENAR. (Thus the group algebras L1(R) and `1(Z)
are ENAR.) In [26], Hu generalized Granirer’s results and proved that the
Fourier algebra A(G) is extremely non-Arens regular whenever b(G) ≥ κ(G),
where κ(G) is the minimal number of compact sets required to cover G and
b(G) is the minimal cardinality of an open base at e.

In [17], Fong and Neufang proved that the group algebra L1(G) is ENAR
when G is σ-compact or it contains an open σ-compact subgroup H which
is either normal or such that |H| < |G|. In this section we prove the full
dual of Hu’s result, that is, L1(G) is ENAR whenever κ(G) ≥ b(G). Since by
[37], WAP(L∞(G)) = WAP(G), we are really concerned with the quotient
L∞(G)/WAP(G). To this end, we go back to Theorem 2.2, we use a dif-
ferent method and prove that in fact for any locally compact, non-compact
group the quotient LUC (G)/WAP(G) contains an isometric linear copy of
`∞(κ(G)).

It may be worth reminding the reader that following [8], A is said to
be strongly Arens irregular when the topological centre Z(A∗∗) of A∗∗ is
precisely A. (Recall that Z(A∗∗) is the set of a′′ ∈ A∗∗ such that the map-
ping A∗∗ 3 b′′ 7→ a′′b′′ ∈ A∗∗ is weak∗-weak∗-continuous.) By [28] (see also
[8], [32] and [14]), the group algebra L1(G) is strongly Arens irregular. Ex-
treme non-Arens regularity in the sense of Granirer does not imply strong
Arens irregularity in the sense of Dales and Lau, since A(SO(3)) is extremely
non-Arens regular by [26] but it is not strongly Arens irregular as recently
proved by Losert [30]. However, it is still not known whether strong Arens
irregularity implies extreme non-Arens regularity.

Let GLUC be the LUC -compactification of G. This is the largest semi-
group compactification of G in the sense that every other semigroup com-
pactification of G is a quotient of the LUC -compactification (see [1]). The
LUC -compactification may be realized as the spectrum of the C∗-algebra
LUC (G), that is,

GLUC = {x ∈ LUC (G)∗ \ {0} : x(fg) = x(f)x(g) for all f, g ∈ LUC (G)},

and may be regarded as a weak∗-compact subsemigroup of LUC (G)∗. We
shall identify G with its image in GLUC .
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For each A ⊆ G, let κ(A) be the minimal number of compact sets re-
quired to cover A, and define the height of x ∈ GLUC by

ρ(x) = min{κ(A) : x ∈ A}.
Then the set

U(G) = {x ∈ GLUC : ρ(x) = κ(G)}
is a closed left ideal of GLUC . When G is discrete, GLUC = βG, κ(G) = |G|
and U(G) is known as the subspace of uniform ultrafilters in βG. For more
details on the structure ofGLUC , see [5], [10]–[14], [29] and references therein.

The construction of the functions necessary for the proof of the main
theorem in this section is included in the proof of the following lemma.

Lemma 4.1. Let G be a locally compact, non-compact group. Then G
contains a left uniformly discrete subset T such that |T | = κ(G) and any
two distinct points x and y in T can be separated by some function f from
LUC (G)\WAP(G). Moreover, if the points x and y are in U(T ) = U(G)∩T ,
then two nets (tα)α and (tβ)β may be chosen in T converging respectively to
x and y in GLUC such that

f(y) = f(xy) = lim
α

lim
β
f(tαtβ) = −1 and f(x) = lim

β
lim
α
f(tαtβ) = 1.

Proof. Put κ = κ(G). Let U be an open symmetric relatively compact
neighbourhood of e in G. Let (Kα)α<κ be a covering family of symmetric
compact subsets of G with U ⊆ Kα and such that any finite union of Kα’s
is contained in some Kγ . Now form an increasing family (Vα)α<κ of open
sets inductively by writing

V0 = U2K0, Vα = U2
( ⋃
γ<α

Kγ

)
,

and observe that κ(Vα) ≤ α for α < κ. Next choose inductively elements
tα ∈ G with

U
2
VγtγVγ ∩ U

2
VαtαVα = ∅ when α 6= γ,

using
κ
(
V −1
α U

−2
U

2
( ⋃
γ<α

VγtγVγ

)
V −1
α

)
≤ α.

Put T = {tα : α < κ}. Then T is left uniformly discrete, and so T \ T ⊆
GLUC \G.

Take x, y ∈ U(T ) with x 6= y. Let A,B be disjoint subsets of T with
x ∈ A and y ∈ B. Define wxy to be 1 on

⋃
{UVαtαVα : tα ∈ A}, and −1 on⋃

{UVαtαVα : tα ∈ B}, and 0 elsewhere. The function wxy is in L∞(G). Let
ϕ ∈ L1(G) be such that

ϕ ≥ 0, suppϕ ⊆ U,
�

G

ϕ(u) du = 1.



Size of quotients of function spaces 255

Denote the modular function on G by ∆, let ϕ̃ be the function defined on
G by ϕ̃(s) = ∆(s−1)ϕ(s−1), and consider the function f = ϕ̃ ∗ wxy. Then f
is in LUC (G). Since the sets U2VαtαVα are disjoint, f is 1 on VαtαVα when
tα ∈ A, and−1 on this set when tα ∈ B, and 0 off

⋃
{U2

VαtαVα : tα ∈ A∪B}.
Now take any t ∈ G. Because Vα → G, eventually t ∈ Vα. Therefore when

tβ ∈ B and β is sufficiently large, we find ttβ ∈ VβtβVβ so that f(ttβ) = −1.
Similarly, for tα ∈ A and α sufficiently large, we find tαt ∈ VαtαVα so that
f(tαt) = 1. Thus,

f(xy) = lim
tα∈A

lim
tβ∈B

f(tαtβ) = −1 = f(y) and lim
tβ∈B

lim
tα∈A

f(tαtβ) = 1 = f(x).

Clearly, f separates x and y.

Theorem 4.2. Let G be a locally compact non-compact group. Then the
quotient LUC (G)/WAP(G) contains a linear isometric copy of `∞(κ(G)).

Proof. Put κ = κ(G). Let T be a left uniformly discrete subset of G as
in Lemma 4.1, and partition it into κ subsets Tλ in such a way that each Tλ
also has cardinal κ. On each Tλ, fix two distinct points x and y in U(G)
together with two nets (tα)α and (tβ)β picked in two disjoint subsets Aλ
and Bλ of Tλ and a function fλ ∈ LUC (G) \WAP(G) as constructed in the
proof of Lemma 4.1 such that −1 ≤ fλ ≤ 1,

lim
tβ∈Bλ

lim
tα∈Aλ

fλ(tβtα) = fλ(x) = 1 and lim
tα∈Aλ

lim
tβ∈Bλ

fλ(tαtβ) = fλ(y) = −1.

Next we assign to each function c in `∞(κ) the function

fc =
∑
λ<κ

cλfλ.

Then fc is well-defined since the supports of the functions fλ are non-
overlapping, and fc ∈ LUC (G). Again, it is clear that

c→ fc : `∞(κ(G))→ LUC (G)

is a linear isometry. So we only need to check that fc 7→ fc + WAP(G) is an
isometry into the quotient LUC (G)/WAP(G). But this follows again as in
the previous theorems from Lemma 1.1. To see this, simply note that

lim
tα∈Aλ

lim
tβ∈Bλ

fc(tαtβ) = −cλ and lim
tβ∈Bλ

lim
tα∈Aλ

fc(tαtβ) = cλ,

so
‖fc + h‖ ≥ |cλ| for every λ < κ and h ∈WAP(G).

Thus,
‖fc + WAP(G)‖q ≥ ‖c‖.

As in the previous theorems, this yields the required linear isometry of
`∞(κ(G)) into LUC (G)/WAP(G).
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Remark 4.3. Originally, slowly oscillating functions were used to obtain
the theorem above. These functions are the antipodes of the weakly almost
periodic ones and have shown to be very effective in studying semigroup
compactifications of a locally compact group and convolution algebras re-
lated to it (see [14]). But as the referee pointed out, slow oscillation is not
necessary to obtain the theorem. This has greatly simplified and shortened
the proof of Lemma 4.1.

Recall that b(G) is the smallest cardinality of an open base at e, and let
d(G) be the smallest cardinality of a norm-dense subset of L1(G). As noted
in [17], d(G) = max{κ(G), b(G)}. The following theorem is the dual of [26,
Corollary 4.2] and encompasses [17, Theorem 4.7].

Theorem 4.4. If an infinite locally compact group G satisfies κ(G) ≥
b(G), then L1(G) is extremely non-Arens regular.

Proof. We follow the general argument given in [26, Lemma 2.1]. Suppose
that d(G) = κ(G) and let {φi : i < κ(G)} be norm-dense in L1(G). Define
π : L∞(G)→ `∞(κ(G)) by

π(f)(i) = 〈f, φi〉 for every f ∈ L∞(G), i < κ(G).

Then π is the required linear isometry.

When κ(G) ≤ b(G), we have the following special case.

Theorem 4.5. If G is an infinite locally compact metrizable group, then
L1(G) is extremely non-Arens regular.

Proof. Here b(G) = ω. If G is non-compact then κ(G) = b(G) = ω,
and so we are in the situation of the previous theorem. If G is compact,
then C(G) = LUC (G) = WAP(G) and d(G) = ω. Since G is infinite, it is
not discrete and so by [36] (see also [22]), G is not extremely disconnected.
Now we follow the argument used by Gulick in [23, Lemma 5.2] showing
that L∞(G)/C(G) is non-separable. (As noted by Granirer in [22], Gulick’s
argument holds also for non-abelian groups). Let U and V be disjoint open
subsets in G with e ∈ U ∩ V . Let {Wk}k≥1 be a family of neighbourhoods
of e and (xk)k≥1 a sequence of elements in G such that (Wkxk)∩ (Wlxl) = ∅
whenever k 6= l. For every k ∈ N, let Tk = Wk ∩U and Sk = Wk ∩ V . Then,
for each bounded scalar sequence c = (ck), let fc be the function on G given
by

fc =
∑
k∈N

ck(χTkxk − χSkxk).

Then fc ∈ L∞(G). To conclude, we only need to check that the quotient
map

fc 7→ fc + C(G) : L∞(G)→ L∞(G)/C(G)
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is an isometry, the rest being clear. We suppose otherwise that ‖fc+f‖∞ < 1
for some f ∈ C(G) and c ∈ `∞, ‖c‖ = 1, pick ε > 0 such that ‖fc + f‖∞ <
1− ε, and let k ∈ N be such that |ck| > 1− ε/2. Then

−1 + ε− ck < f(s) < 1− ε− ck for every s ∈ (Wk ∩ U)xk,
−1 + ε+ ck < f(s) < 1− ε+ ck for every s ∈ (Wk ∩ V )xk.

If ck > 0, then f(s) < −ε/2 if s ∈ (Wk ∩ U)xk, while f(s) > ε/2 if s ∈
(Wk∩V )xk. If ck < 0, then f(s) > ε/2 if s ∈ (Wk∩U)xk, while f(s) < −ε/2
if s ∈ (Wk ∩ V )xk. In both situations, the function f cannot be continuous.
Therefore, ‖fc + f‖∞ ≥ 1 for every f ∈ C(G). This gives as in the previous
theorem the linear isometry of `∞ into the quotient L∞(G)/C(G).

As earlier, this shows that the quotient contains a linear isometric copy
of L∞(G), and so L1(G) is ENAR.

Remark 4.6. Theorem 3.1 is now proved without the hypothesis of
normality (see [2]).
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