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The Banach algebra of continuous bounded functions with
separable support

by

M. R. Koushesh (Isfahan and Tehran)

Abstract. We prove a commutative Gelfand–Naimark type theorem, by showing that
the set Cs(X) of continuous bounded (real or complex valued) functions with separable
support on a locally separable metrizable space X (provided with the supremum norm) is
a Banach algebra, isometrically isomorphic to C0(Y ) for some unique (up to homeomor-
phism) locally compact Hausdorff space Y . The space Y , which we explicitly construct as
a subspace of the Stone–Čech compactification of X, is countably compact, and if X is
non-separable, is moreover non-normal; in addition C0(Y ) = C00(Y ). When the underly-
ing field of scalars is the complex numbers, the space Y coincides with the spectrum of
the C∗-algebra Cs(X). Further, we find the dimension of the algebra Cs(X).

1. Introduction. Throughout this article the underlying field of scalars
(which is fixed throughout each discussion) is assumed to be either the real
field R or the complex field C, unless specifically stated otherwise. All spaces
considered are assumed to be Hausdorff. Let X be a completely regular
space. Denote by Cb(X) the set of all continuous bounded functions on X.
If f ∈ Cb(X), the zero-set of f , denoted by Z(f), is f−1(0), the cozero-set
of f , denoted by Coz(f), is X \ Z(f), and the support of f , denoted by
supp(f), is clX Coz(f). Let

Coz(X) = {Coz(f) : f ∈ Cb(X)}.
The elements of Coz(X) are called cozero-sets of X. Denote by C0(X) the
set of all f ∈ Cb(X) which vanish at infinity (i.e., |f |−1([ε,∞)) is compact
for each ε > 0) and denote by C00(X) the set of all f ∈ Cb(X) with compact
support.

The purpose of this article is to show that the set Cs(X) of continuous
bounded (real or complex valued) functions with separable support on a
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locally separable metrizable space X (provided with the supremum norm)
is a Banach algebra, which is isometrically isomorphic to the Banach algebra
C0(Y ), for some unique (up to homeomorphism) locally compact space Y .
(This is a direct conclusion of the commutative Gelfand–Naimark Theorem
when the underlying field of scalars is C, provided that one assumes Cs(X)
to be a Banach algebra.) The space Y , which is explicitly constructed as a
subspace of the Stone–Čech compactification of X, is shown to be countably
compact and non-normal (the latter provided that X is non-separable) and
moreover C0(Y ) = C00(Y ). In the case when the underlying field of scalars
is C, the space Y coincides with the spectrum of the C∗-algebra Cs(X).
Further, the dimension of the algebra Cs(X) is found in terms of the density
of X.

We now briefly review some known facts from the theories of the Stone–
Čech compactification and metrizable spaces. Additional information on
these subjects may be found in [3] and [4].

1.1. The Stone–Čech compactification. Let X be a completely reg-
ular space. The Stone–Čech compactification βX ofX is the compactification
of X which is characterized among all compactifications of X by the follow-
ing property: Every continuous f : X → K, where K is a compact space,
is continuously extendable over βX; denote by fβ this continuous extension
of f . Use will be made in what follows of the following properties of βX.
(See Sections 3.5 and 3.6 of [3].)

• X is locally compact if and only if X is open in βX.
• Any open-closed subspace of X has open-closed closure in βX.
• If X ⊆ T ⊆ βX then βT = βX.
• If X is normal then βT = clβX T for any closed subspace T of X.

1.2. Separability and local separability in metrizable spaces.
The density of a space X, denoted by d(X), is the smallest cardinal number
of the form |D|, where D is dense in X. Therefore, a space X is separable if
d(X) ≤ ℵ0. Note that in any metrizable space the three notions of separabil-
ity, being Lindelöf, and second countability coincide; thus any subspace of
a separable metrizable space is separable. A space is called locally separable
if each of its points has a separable open neighborhood. By a theorem of
Alexandroff, any locally separable metrizable space X can be represented as
a disjoint union

X =
⋃
i∈I

Xi,

where I is an index set, and Xi is a non-empty separable open-closed sub-
space of X for each i ∈ I. (See Problem 4.4.F of [3].) Note that d(X) = |I|,
provided that I is an infinite set.
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2. The Banach algebra Cs(X)

Definition 2.1. For any metrizable space X let

Cs(X) = {f ∈ Cb(X) : supp(f) is separable}.

Recall that any subspace of a separable metrizable space is separable.
Also, note that any metrizable space X is completely regular, that is, if
x ∈ X and U is an open neighborhood of x in X, then there exists a
continuous f : X → [0, 1] such that f(x) = 1 and f |(X \ U) ≡ 0.

Proposition 2.2. Let X be a metrizable space. Then Cs(X) is a closed
subalgebra of Cb(X). Furthermore, if X is locally separable, then Cs(X) is
unital if and only if X is separable.

Proof. To show that Cs(X) is a subalgebra of Cb(X), let f, g ∈ Cs(X).
Note that

Coz(f + g) ⊆ Coz(f) ∪ Coz(g),

and Coz(f) ∪ Coz(g) is separable, as it is contained in supp(f) ∪ supp(g)
and the latter is so. Thus Coz(f + g) is separable, and then so is its closure
supp(f + g) in X. That is, f + g ∈ Cs(X). Similarly, fg ∈ Cs(X).

To show that Cs(X) is closed in Cb(X), let f1, f2, . . . be a sequence in
Cs(X) converging to some f ∈ Cb(X). Note that

Coz(f) ⊆
∞⋃
n=1

Coz(fn) = C

and Coz(fn) is separable for each n, as it is contained in supp(fn). Thus the
countable union C is also separable. But then the subspace Coz(f) of C is
separable, and thus so is its closure supp(f) in X. Therefore f ∈ Cs(X).

It is obvious that if X is separable, then Cs(X) is unital with the unit
element 1 (the function which maps every element of X to 1). Now suppose
that X is locally separable and that Cs(X) is unital. We show that X is
separable. Let u be the unit element of Cs(X). Let x ∈ X. Since X is locally
separable, there exist a separable open neighborhood Ux of x in X. Let
fx : X → [0, 1] be continuous with fx(x) = 1 and fx|(X \ Ux) ≡ 0. Since
Coz(fx) is separable (as Coz(fx) ⊆ Ux), so is its closure supp(fx) in X,
and thus fx ∈ Cs(X). But then u(x).fx(x) = fx(x) implies that u(x) = 1.
Therefore u = 1, and thus X = supp(u) is separable.

The following subspace of βX will play a crucial role in our study.

Definition 2.3. For any metrizable space X let

λX =
⋃
{intβX clβX C : C ∈ Coz(X) is separable}.
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Observe that λX coincides with λPX, as defined in [6] (see also, in [7]
and [8]), with P taken to be separability (provided that X is metrizable).

Note that if X is a space and D is a dense subspace of X, then clX U =
clX(U ∩D) for every open subspace U of X; this simple observation will be
used below.

Lemma 2.4. Let X be a metrizable space. Then X is locally separable if
and only if X ⊆ λX.

Proof. Suppose that X is locally separable. Let x ∈ X, and let U be a
separable open neighborhood of x in X. Let f : X → [0, 1] be continuous
with f(x) = 0 and f |(X \U) ≡ 1. Let C = f−1([0, 1/2)). Then C ∈ Coz(X).
(To see the latter, define

g = max{0, 1/2− f(x)}.
Then observe that C = Coz(g).) Note that C is separable, as C ⊆ U . Since

f−1β ([0, 1/2)) ⊆ clβX f
−1
β ([0, 1/2))

= clβX(X ∩ f−1β ([0, 1/2))) = clβX f
−1([0, 1/2)) = clβX C

it follows that

x ∈ f−1β ([0, 1/2)) ⊆ intβX clβX C ⊆ λX.
Now, suppose that X ⊆ λX. Let x ∈ X. Then x ∈ λX, which implies

that x ∈ intβX clβX D for some separable D ∈ Coz(X). Let

V = X ∩ intβX clβX D.

Then V is an open neighborhood of x in X, and it is separable, as

V ⊆ X ∩ clβX D = clX D,

and the latter is so.

Definition 2.5. Let X be a locally separable metrizable space. For any
f ∈ Cb(X) denote fλ = fβ|λX.

Note that by Lemma 2.4 the function fλ extends f .

Lemma 2.6. Let X be a locally separable metrizable space. For any f ∈
Cb(X) the following are equivalent:

(1) f ∈ Cs(X).
(2) fλ ∈ C0(λX).

Proof. (1) implies (2). Note that Coz(f), being a subspace of supp(f),
is separable. Now

Coz(fβ) ⊆ clβX Coz(fβ) = clβX(X ∩ Coz(fβ)) = clβX Coz(f)

and thus
Coz(fβ) ⊆ intβX clβX Coz(f) ⊆ λX.
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For any ε > 0, the space

|fλ|−1([ε,∞)) = |fβ|−1([ε,∞)),

being closed in βX, is compact.
(2) implies (1). Let n be a positive integer. Since |fλ|−1([1/n,∞)) is a

compact subspace of λX, we have

(∗) |fλ|−1([1/n,∞)) ⊆ intβX clβX C1 ∪ · · · ∪ intβX clβX Ck

for some separable C1, . . . , Ck ∈ Coz(X). Intersecting both sides of (∗)
with X, it follows that |f |−1([1/n,∞)), being a subspace of the separable
metrizable space

clX C1 ∪ · · · ∪ clX Ck,

is separable. But then

Coz(f) =

∞⋃
n=1

|f |−1([1/n,∞))

is also separable, and thus so is its closure supp(f) in X.

Observe that any open-closed subspace A of a space X is a cozero-set
of X; indeed, A = Coz(f), where f = χA is the characteristic function of A.

Lemma 2.7. Let X be a locally separable metrizable space. Let X be
represented as a disjoint union X =

⋃
i∈I Xi such that Xi is a separable

open-closed subspace of X for each i ∈ I. Then

λX =
⋃{

clβX

(⋃
i∈J

Xi

)
: J ⊆ I is countable

}
.

Proof. Denote

µX =
⋃{

clβX

(⋃
i∈J

Xi

)
: J ⊆ I is countable

}
.

To show that λX ⊆ µX, let C ∈ Coz(X) be separable. Then C is
Lindelöf and therefore C ⊆

⋃
i∈J Xi for some countable J ⊆ I. Thus

clβX C ⊆ clβX

(⋃
i∈J

Xi

)
.

Next, we show that µX ⊆ λX. Let J ⊆ I be countable. Then D =⋃
i∈J Xi is a cozero-set of X, as it is open-closed in X, and it is separable.

Also, since D is open-closed in X, its closure clβX D in βX is open-closed
in βX. Thus

clβX D = intβX clβX D ⊆ λX.
LetX be a locally compact non-compact space. It is known that C0(X) =

C00(X) if and only if every σ-compact subspace of X is contained in a
compact subspace of X. (See Problem 7G.2 of [4].) In particular, C0(X) =
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C00(X) implies that X is countably compact, and thus non-paracompact,
as every countably compact paracompact space is compact. (See Theorem
5.1.20 of [3].) Below, it will be shown that C0(λX) = C00(λX) for any locally
separable metrizable space X.

Lemma 2.8. Let X be a locally separable metrizable space. Then λX
is locally compact and C0(λX) = C00(λX). In particular, λX is countably
compact.

Proof. Note that λX, being open in βX, is locally compact. To prove the
lemma, it suffices to show that every σ-compact subspace of λX is contained
in a compact subspace of λX. Let T be a σ-compact subspace of λX. Then

T =

∞⋃
n=1

Tn,

where Tn is compact for each positive integer n. Consider the representation
of X given in Section 1.2. Using Lemma 2.7, for each positive integer n
(by compactness of Tn and the fact that clβX(

⋃
i∈J Xi) is open in βX, as⋃

i∈J Xi is open-closed in X for each countable J ⊆ I) there are countable
Jn1 , . . . , J

n
kn
⊆ I with

Tn ⊆ clβX

( ⋃
i∈Jn

1

Xi

)
∪ · · · ∪ clβX

( ⋃
i∈Jn

kn

Xi

)
.

If we now let

J =
∞⋃
n=1

(Jn1 ∪ · · · ∪ Jnkn),

then J is countable, and clβX(
⋃
i∈J Xi) is a compact subspace of λX con-

taining T .

Let D be an uncountable discrete space. Let E be the subspace of βD\D
consisting of elements in the closure in D of countable subsets of D. Then
E = λD \ D. (Observe that separable cozero-sets of D are exactly count-
able subspaces of D, and each subspace of D, being open-closed in D, has
open closure in βD.) In [9], the author proves the existence of a continuous
(2-valued) function f : E → [0, 1] which is not continuously extendible over
βD \ D. This, in particular, proves that λD is not normal. (To see this,
suppose, to the contrary, that λD is normal. Note that E is closed in λD, as
D, being locally compact, is open in βD. By the Tietze–Urysohn Extension
Theorem, f is extendible to a continuous bounded function over λD, and
thus over β(λD) = βD. But this is not possible.) This fact will be used
below to show that in general λX is non-normal for any locally separable
non-separable metrizable space X. This, together with Lemma 2.8, provides
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an example of a locally compact countably compact non-normal space Y
with C0(Y ) = C00(Y ).

Observe that if X is a space and D ⊆ X, then

U ∩ clX D = clX(U ∩D)

for every open-closed subspace U of X; this simple observation will be used
below.

Lemma 2.9. Let X be a locally separable non-separable metrizable space.
Then λX is non-normal.

Proof. Assume the representation ofX given in Section 1.2. Choose some
xi ∈ Xi for each i ∈ I. Consider the subspace

D = {xi : i ∈ I}
of X. Then D is a closed discrete subspace of X, and since X is non-
separable, it is uncountable. Suppose to the contrary that λX is normal.
Using Lemma 2.7, the space

λX ∩ clβX D =
⋃{

clβX

(⋃
i∈J

Xi

)
∩ clβX D : J ⊆ I is countable

}
,

being closed in λX, is normal. Now, let J ⊆ I be countable. Since
clβX(

⋃
i∈J Xi) is open in βX (as

⋃
i∈J Xi is open-closed in X) we have

clβX

(⋃
i∈J

Xi

)
∩ clβX D = clβX

(
clβX

(⋃
i∈J

Xi

)
∩D

)
= clβX

(⋃
i∈J

Xi ∩D
)

= clβX({xi : i ∈ J}).

But clβX D = βD, as D is closed in (the normal space) X. Therefore

clβX({xi : i ∈ J}) = clβX({xi : i ∈ J}) ∩ clβX D = clβD({xi : i ∈ J}).
Thus

λX ∩ clβX D = λD,

contradicting the fact that λD is not normal.

A version of the classical Banach–Stone Theorem states that if X and
Y are locally compact spaces, the Banach algebras C0(X) and C0(Y ) are
isometrically isomorphic if and only if the spacesX and Y are homeomorphic
(see Theorem 7.1 of [2]); this will be used in the proof of the following main
theorem.

Theorem 2.10. Let X be a locally separable metrizable space. Then
Cs(X) is a Banach algebra isometrically isomorphic to the Banach algebra
C0(Y ) for some unique (up to homeomorphism) locally compact space Y . The
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space Y is countably compact, and if X is non-separable, Y is non-normal.
Furthermore, C0(Y ) = C00(Y ).

Proof. Let Y = λX and define ψ : Cs(X) → C0(Y ) by ψ(f) = fλ for
any f ∈ Cs(X). By Lemma 2.6 the function ψ is well-defined. It is clear that
ψ is an isometric homomorphism and ψ is injective. (Note that X ⊆ Y by
Lemma 2.4.) Let g ∈ C0(Y ). Then (g|X)λ = g and thus g|X ∈ Cs(X) by
Lemma 2.6. Now ψ(g|X) = g. This shows that ψ is surjective. Note that by
Lemma 2.8 the space Y is locally compact. The uniqueness of Y follows, as
for any locally compact space T the Banach algebra C0(T ) determines the
topology of T . Lemmas 2.8 and 2.9 now complete the proof.

Remark 2.11. Theorem 2.10 holds true if one replaces “locally separa-
ble” and “the Banach algebra of continuous bounded functions with sepa-
rable support”, respectively, by “locally Lindelöf (locally second countable,
respectively)” and “the Banach algebra of continuous bounded functions
with Lindelöf (second countable, respectively) support”.

Remark 2.12. By a version of the Banach–Stone Theorem, if X and Y
are locally compact spaces, the rings C0(X) and C0(Y ) are isomorphic if and
only if the spaces X and Y are homeomorphic. (See [1].) Thus, Theorem 2.10
(and its subsequent results) holds true if one replaces “Banach algebra” by
“ring”.

3. The dimension of Cs(X). The Tarski Theorem states that for any
infinite set I, there is a collection A of cardinality |I|ℵ0 consisting of count-
able infinite subsets of I, such that the intersection of any two distinct
elements of A is finite (see [5]); this will be used in the following.

Note that the collection of all subsets of cardinality at most m in a set
of cardinality n ≥ m has cardinality at most nm.

Theorem 3.1. Let X be a locally separable non-separable metrizable
space. Then

dimCs(X) = d(X)ℵ0 .

Proof. Assume the representation of X given in Section 1.2. Note that
I is infinite, as X is non-separable, and d(X) = |I|.

Let A be a collection of cardinality |I|ℵ0 consisting of countable infinite
subsets of I, such that the intersection of any two distinct elements of A is
finite. Define

fA = χ⋃
i∈AXi

for any A ∈ A . Then, no element of

F = {fA : A ∈ A }
is a linear combination of other elements (since each element of A is infinite
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and each pair of distinct elements of A has finite intersection). Observe that
F is of cardinality |A |. This shows that

dimCs(X) ≥ |A | = |I|ℵ0 = d(X)ℵ0 .

To simplify the notation, denote

HJ =
⋃
i∈J

Xi

for any J ⊆ I. If f ∈ Cs(X), then supp(f) (being separable) is Lindelöf, and
thus supp(f) ⊆ HJ , where J ⊆ I is countable; therefore, it may be assumed
that f ∈ Cb(HJ). Conversely, if J ⊆ I is countable, then each element of
Cb(HJ) can be extended trivially to an element of Cs(X) (by defining it to
be identically 0 elsewhere). Thus Cs(X) may be viewed as the union of all
Cb(HJ), where J runs over all countable subsets of I. Note that if J ⊆ I is
countable, then HJ is separable; thus any element of Cb(HJ) is determined
by its value on a countable set. This implies that for each countable J ⊆ I,
the set Cb(HJ) is of cardinality at most 2ℵ0 . Note that there are at most
|I|ℵ0 countable J ⊆ I. Now

dimCs(X) ≤ |Cs(X)| ≤
∣∣∣⋃{Cb(HJ) : J ⊆ I is countable}

∣∣∣
≤ 2ℵ0 · |I|ℵ0 = |I|ℵ0 = d(X)ℵ0 ,

which together with the first part proves the theorem.

4. The spectrum of the C∗-algebra Cs(X). In this section the under-
lying field of scalars is C. Let A be a commutative Banach algebra. A non-
zero algebra homomorphism φ : A→ C is called a character of A; the set of
all characters of A is denoted by ΦA. If A is a C∗-algebra then every algebra
homomorphism φ : A → C is a ∗-homomorphism, and thus ΦA coincides
with the spectrum of A. Every character on A is continuous, and therefore
ΦA is a subset of the space A∗ of continuous linear functionals on A; more-
over, when equipped with the relative weak∗ topology, ΦA turns out to be
locally compact. The space ΦA is compact (in the topology just defined)
if and only if the algebra A has an identity element. Given a ∈ A, let the
function â : ΦA → C be defined by â(φ) = φ(a) for any φ ∈ ΦA. The map
a 7→ â defines a norm-decreasing, unit-preserving algebra homomorphism
from A to C0(ΦA). This homomorphism is called the Gelfand representation
of A. In general the representation is neither injective nor surjective. The
commutative Gelfand–Naimark Theorem states that if A is a commutative
C∗-algebra then the Gelfand map is an isometric ∗-isomorphism.

Theorem 4.1. Let X be a locally separable non-separable metrizable
space. Then the spectrum of Cs(X) is homeomorphic to λX, and thus it is
locally compact, countably compact and non-normal.
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Proof. By the commutative Gelfand–Naimark Theorem the C∗-algebra
Cs(X) is isometrically ∗-isomorphic to C0(S), where S is the spectrum of
Cs(X). On the other hand, Cs(X) is isometrically isomorphic (as a Banach
algebra) to C0(λX), by (the proof of) Theorem 2.10. This implies that C0(S)
is isometrically isomorphic to C0(λX), which by the Banach–Stone Theorem
(and Lemmas 2.8 and 2.9) gives the result.

5. The Banach algebra Cσ(X). Recall that in any locally compact
space, σ-compactness coincides with being Lindelöf (see Problem 3.8.C
of [3]); thus, in any locally compact metrizable space, σ-compactness and
separability coincide.

The following variation of Theorem 2.10 might be of some interest; results
dual to Theorems 3.1 and 4.1 may be stated and proved analogously.

Definition 5.1. For any metrizable space X let

Cσ(X) = {f ∈ Cb(X) : supp(f) is σ-compact}.
Theorem 5.2. Let X be a locally compact metrizable space. Then Cσ(X)

is a Banach algebra isometrically isomorphic to the Banach algebra C0(Y )
for some unique (up to homeomorphism) locally compact space Y . The space
Y is countably compact, and if X is non-σ-compact, Y is non-normal. Fur-
thermore, C0(Y ) = C00(Y ).

Proof. This follows from Theorem 2.10 and the fact that Cσ(X) =
Cs(X).
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