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Dual spaces of compact operator spaces and
the weak Radon–Nikodým property

by

Keun Young Lee (Seoul)

Abstract. We deal with the weak Radon–Nikodým property in connection with the
dual space of K(X,Y ), the space of compact operators from a Banach space X to a Banach
space Y . First, under the weak Radon–Nikodým property, we give a representation of that
dual. Next, using this representation, we provide some applications to the dual spaces of
K(X,Y ) and Kw∗w(X

∗, Y ), the space of weak∗-weakly continuous operators.

1. Introduction. Several contributions to the detection of copies of `1
were made in the sixties by A. Pełczyński [Pe]. After his works, many mathe-
maticians tried to characterize `1 * X and find a nonseparable dual Banach
space which contains no `1. In 1973, R. C. James constructed a Banach
space JT (called James tree space) that is separable, contains no `1 and
has nonseparable dual [Ja, LS]. In 1974, Rosenthal provided the true under-
standing of `1’s absence by proving the following theorem (called Rosenthal’s
`1 theorem) [Ro].

Theorem 1 (Rosenthal’s `1 theorem). Each bounded sequence in a Ba-
nach space X has a weakly Cauchy subsequence if and only if X contains no
isomorphic copy of `1.

Shortly after Rosenthal’s `1 theorem, a number of classical characteriza-
tions were formulated. In particular, Musiał proved the following theorem:
a Banach space X contains no isomorphic copy of `1 if and only if for each
complete finite measure space (Ω,Σ, µ) and each µ-continuous X∗-valued
countably additive vector measure ν : Σ → X∗ of bounded variation, there
exists a Pettis integrable function f : Ω → X∗ such that ν(E) = P-

	
E f dµ

for all E ∈ Σ. A Banach space satisfying the latter condition in Musiał’s
theorem is said to have the weak Radon–Nikodým property [M1]. A great deal
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of research about the weak Radon–Nikodým property has been done in the
last decades [F, M1, M2, RSU, SS1, SS2, SS3, T].

The spaces K(X,Y ) and Kw∗w(X∗, Y ) and their dual spaces have been
studied by several mathematicians [FS, G, Jo, K, Ru]. In particular, Feder
and Saphar proved the following theorem [FS].

Theorem 2. Suppose X∗∗ or Y ∗ has the Radon–Nikodým property. For
every φ ∈ K(X,Y )∗ and ε > 0, there are (x∗∗n ) ⊂ X∗∗ and (y∗n) ⊂ Y ∗ such
that φ(T ) =

∑∞
n=1 x

∗∗
n T
∗(y∗n) for all T ∈ K(X,Y ) and

∑∞
n=1 ‖x∗∗n ‖ ‖y∗n‖ <

‖φ‖+ ε.

This theorem characterizes K(X,Y )∗ in the case that X∗∗ or Y ∗ has
the Radon–Nikodým property. Moreover, we observe the following corollary
concerning the topology of K(X,Y )∗: if X∗∗ or Y ∗ has the Radon–Nikodým
property, then X∗∗ ⊗ Y ∗ is w∗-sequentially dense in K(X,Y )∗.

Our aim in this paper is to apply the weak Radon–Nikodým property
to the dual of the compact operator space. Then we provide a generalized
representation of K(X,Y )∗ related to Feder and Saphar’s theorem, and a
topological property of K(X,Y )∗ in the case that X∗∗ or Y ∗ has the weak
Radon–Nikodým property. Moreover, we give similar results forKw∗w(X∗, Y )
in the case that X∗ or Y ∗ has the weak Radon–Nikodým property.

2. Notation and preliminaries. Throughout this paper (Ω,Σ, µ) is a
complete measure space and X and Y are Banach spaces.

Let F(X,Y ) denote the space of finite rank linear operators from X
into Y . Let T ∈ F(X,Y ) and put

N0(T ) = inf
n∑
i=1

‖x∗i ‖ ‖yi‖,

where the infimum is taken over all finite representations T (x)=
∑n

i=1 x
∗
i (x)yi

for all x ∈ X. Then N0(T ) is called a finite nuclear norm [Pi, p. 93].
Recall that T is an integral operator from X to Y if there exist a finite

measure space (Ω,Σ, µ) and a pair of operators S : X → L∞(µ) and R :
L1(µ) → Y ∗∗ such that QY T = RIS where QY is the natural mapping of
Y → Y ∗∗ and I is the canonical mapping from L∞(µ) into L1(µ). Also the
integral norm of an integral operator is defined by

‖T‖I = inf ‖S‖ ‖R‖µ(Ω),

where the infimum is taken over all such factorizations of T . The space of
integral operators from X into Y with this norm will be denoted by I(X,Y ).
We observe that above, the space L∞(µ) can be replaced by a C(K) space,
where the measure µ is a positive regular Borel measure on K, and I is
the canonical mapping from C(K) into L1(µ). Also recall that T : X → Y
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is called a Pietsch integral operator if there exist a finite measure space
(Ω,Σ, µ) and a pair of operators S : X → L∞(µ) and R : L1(µ) → Y such
that T = RIS where I is the canonical mapping from L∞(µ) into L1(µ).
The Pietsch integral norm of a Pietsch integral operator is defined by

‖T‖PI = inf ‖S‖ ‖R‖µ(Ω),

where the infimum is taken over all such factorizations of T . The space of
Pietsch integral operators from X into Y with this norm will be denoted by
PI(X,Y ). Note that if T is a Pietsch integral operator, then T is an integral
operator. Also it is known that I(X,Y ) = PI(X,Y ) if Y is a dual space or
an L1(µ) space [Ry, p. 65].

3. The dual of the compact operator space and the weak Radon–
Nikodým property. In this section, we provide a representation of
K(X,Y )∗ in the case that X∗∗ or Y ∗ has the weak Radon–Nikodým prop-
erty. Throughout this sectionK is a compact topological space and BK is the
σ-algebra of Borel subsets of K. Recall that if T : C(K)→ X is a bounded
linear operator, then FT : BK → X∗∗ is called the representing measure for
T if FT (E) = T ∗∗(χE). It is well known that `1 * X if and only if each
X∗-valued measure of σ-bounded variation has a relatively compact range
[M1, Corollary 10]. Also the operator T : C(K)→ X is compact if and only
if the representing measure of T has a relatively compact vector range [Ry,
Proposition 5.27].

We start by showing the following lemma.

Lemma 3.1. X∗ has the weak Radon–Nikodým property if and only if for
all Banach spaces Y , every integral operator T : Y → X∗ is compact.

Proof. (⇒) First we show that for each compact topological space K,
every Pietsch integral operator T : C(K) → X∗ is compact. Since T is
a weakly compact operator, the representing measure F of T is a regular
countably additive vector measure. Since T is a Pietsch integral operator,
F is of bounded variation. By assumption and [M2, Theorem 9.7], we have
`1 * X, hence F has a relatively compact range, from which we conclude
that T is compact.

Now take T ∈ I(Y,X∗) = PI(Y,X∗). Then there exist a compact Haus-
dorff space Ω with a positive regular Borel measure µ and a pair of op-
erators S : Y → C(Ω), R : L1(µ) → X∗ such that T = RIS, where
I : C(Ω) → L1(µ) is the canonical mapping. Put U = RI : C(Ω) → X∗.
Then U is a Pietsch integral operator (see Section 2). By the above argument,
U is compact. Hence so is T .

(⇐) The argument is standard. Suppose X∗ does not have the weak
Radon–Nikodým property. Then `1 ⊆ X, so by Pełczyński’s Theorem [Pe],
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we have L1([0, 1]) ⊆ X∗. Let S : L1([0, 1]) → X∗ be an isomorphic embed-
ding and let Σ be the σ-algebra of Lebesgue measurable sets on [0, 1]. Define
G : Σ → L1([0, 1]) by G(E) = χE . Clearly G is a countably additive vector
measure. Moreover, it does not have compact range. Indeed, put En = {t ∈
[0, 1] : sin(2nπt) > 0}. It is easily checked that ‖χEm − χEn‖L1([0,1]) ≥ 1/4
for all n 6= m ∈ N so (G(En)) in BL1([0,1]) has no convergent subsequence.
Let I : L∞[0, 1] → L1[0, 1] be the inclusion operator. Put T = SI. Then T
is an integral operator. By assumption, T is compact, so {T (χE) : E ∈ Σ}
is a relatively compact set. Since T (χE) = SI(χE) = S(χE) = S(G(E)) and
S is an isomorphic embedding, this is a contradiction.

Remark 3.2. If X∗ has the weak Radon–Nikodým property, then every
T ∈ I(X,Y ) is compact. Indeed, T ∗ is then an integral operator from Y ∗

to X∗. By Lemma 3.1, T ∗ is compact, hence so is T . Thus we can regard
I(X,Y ) as a subset ofK(X,Y ) ifX∗ has the weak Radon–Nikodým property.

Also we need the following well known lemma and its proof [Ry, Propo-
sition 4.12 and Corollary 4.13].

Lemma 3.3. If either X∗ or Y has the approximation property, then

K(X,Y ) = X∗ ⊗̂ε Y.

Proof. (a) Suppose that Y has the approximation property. Let T :
X → Y be a compact operator and let ε > 0. Then there exists a finite
rank operator R : Y → Y such that ‖y − Ry‖ < ε for every y in the rel-
atively compact subset T (BX) of Y . Let S = RT . Then S is a finite rank
operator and ‖T − S‖ < ε.

(b) Suppose that X∗ has the approximation property. Let T : X → Y
be compact and ε > 0. Since T ∗ : Y ∗ → X∗ is compact, there exists a finite
rank operator R : X∗ → X∗ such that ‖ϕ − Rϕ‖ < ε for every ϕ in the
relatively compact set T ∗(BY ∗). Since T is compact, T ∗∗ maps into Y and
so T ∗∗R∗ is a finite rank operator from X∗∗ into Y . Put S = T ∗∗R∗QX
where QX is the natural mapping from X into X∗∗. Then S is a finite rank
operator from X to Y . We claim that S approximates T . Indeed, if x ∈ BX ,
then

‖Tx− Sx‖ = sup
ψ∈BY ∗

|ψTx− ψT ∗∗R∗QX(x)|

= sup
ψ∈BY ∗

|(T ∗ψ)x− (RT ∗)∗QX(x)ψ|

= sup
ψ∈BY ∗

|(T ∗ψ)x− (RT ∗ψ)x| ≤ sup
ψ∈BY ∗

‖T ∗ −R(T ∗ψ)‖ < ε.

Also we need the following lemma [Pi, p. 102, 6.8.4 Lemma 1].
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Lemma 3.4. Let T ∈ F(X,Y ) and S ∈ I(X,Y ). Then

N0(ST ) ≤ ‖S‖I‖T‖.
Now we provide our main theorem.

Theorem 3.5. Let X and Y be Banach spaces such that X∗∗ or Y ∗ has
the weak Radon–Nikodým property. Then, for all φ ∈ K(X,Y )∗, there exist a
sequence (((xni )

∗∗)mni=1)
∞
n=1 in X∗∗ and a sequence (((yni )

∗)mni=1)
∞
n=1 in Y ∗ such

that

〈φ, T 〉 = lim
n→∞

mn∑
i=1

(xni )
∗∗(T ∗((yni )

∗))

for all T ∈ K(X,Y ). Moreover,

lim sup
n→∞

mn∑
i=1

‖(xni )∗∗‖ ‖(yni )∗‖ ≤ ‖φ‖.

Proof. (a) Suppose that X∗∗ has the weak Radon–Nikodým property.
Let Γ = BY ∗ . Define i : Y → `∞(Γ ) by i(y) = (y∗(y))y∗∈Γ . Then i is
the canonical injection of Y into `∞(Γ ). Since `∞(Γ ) has the approxima-
tion property, we obtain K(X, `∞(Γ )) = `∞(Γ ) ⊗̂ε X∗. So we can define
J : K(X,Y )→ `∞(Γ ) ⊗̂ε X∗ by J(T ) = iT . Since

‖J(T )‖ = sup
x∈BX

‖i(T (x))‖∞ = sup
x∈BX

‖Tx‖ = ‖T‖

for all T ∈ K(X,Y ), J is an isometry from K(X,Y ) into `∞(Γ ) ⊗̂εX∗. Take
any φ ∈ K(X,Y )∗. Then there exists φ̂ ∈ (`∞(Γ ) ⊗̂εX∗)∗ such that 〈φ, T 〉 =
〈φ̂, J(T )〉 for all T ∈ K(X,Y ) and ‖φ‖ = ‖φ̂‖. Since (`∞(Γ ) ⊗̂ε X∗)∗ =
PI(`∞(Γ ), X∗∗) [Ry, Proposition 3.22], there exists R ∈ PI(`∞(Γ ), X∗∗)

with ‖R‖PI = ‖φ̂‖ such that if T ∈ K(X,Y ), then

〈φ, T 〉 = 〈φ̂, J(T )〉 = 〈R, J(T )〉.
By Lemma 3.1, R is a compact operator from `∞(Γ ) to X∗∗. Since `∞(Γ )∗

has the metric approximation property, there exists a sequence (vn) in
`∞(Γ )∗ ⊗ε X∗∗ such that

(3.1) lim
n→∞

‖vn −R‖ = 0.

By the proof of Lemma 3.3, each vn is the form of vn = R∗∗s∗nQ`∞(Γ )∗

where sn is a finite rank operator on `∞(Γ ) and ‖sn‖ ≤ 1. Also each vn is a
Pietsch integral operator from `∞(Γ ) to X∗∗ because each sn is a finite rank
operator. Thus we obtain

‖vn‖PI ≤ ‖R∗∗‖PI‖sn‖ ≤ ‖R‖PI.
Since ‖sn‖ ≤ 1 for all n ∈ N, by Lemma 3.4 we obtain

‖vn‖N0 ≤ ‖R‖PI
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for all n ∈ N. Now, for each n ∈ N, choose ((zni )
∗)mni=1 in `∞(Γ )∗ and

((xni )
∗∗)mni=1 in X∗∗ such that

vn =

mn∑
i=1

(zni )
∗ ⊗ (xni )

∗∗ and
mn∑
i=1

‖(zni )∗‖ ‖(xni )∗∗‖ < ‖R‖PI + 1/n.

Observe that if ν ∈ `∞(Γ )⊗X∗, then by (3.1) we have

(3.2) lim
n→∞

|〈R, ν〉 − 〈vn, ν〉| = 0.

Now we claim that if T ∈ K(X,Y ), then, for each n ∈ N,

(3.3) 〈vn, iT 〉 =
mn∑
i=1

(xni )
∗∗((iT )∗((zni )

∗).

Indeed, fix n ∈ N. Since iT is in `∞(Γ )⊗̂εX∗, we can take a sequence (ωk) in
`∞(Γ )⊗X∗ such that limk→∞ ‖ωk − iT‖ = 0. Each ωk has a representation∑nk

j=1 a
k
j ⊗ bkj . Then, for each k ∈ N,

〈vn, ωk〉 =
nk∑
j=1

vn(a
k
j )b

k
j =

nk∑
j=1

mn∑
i=1

(zni )
∗(akj )(x

n
i )
∗∗(bkj )

=

mn∑
i=1

(xni )
∗∗
( nk∑
j=1

(zni )
∗(akj )b

k
j

)
.

Since limk→∞ ‖ωk − iT‖ = 0, we have, for each (zni )
∗ ∈ `∞(Γ )∗,

(iT )∗((zni )
∗) = lim

k→∞

nk∑
j=1

(zni )
∗(akj )b

k
j .

Thus, for each (xni )
∗∗ ∈ X∗∗,

(xni )
∗∗((iT )∗((zni )

∗)) = lim
k→∞

nk∑
j=1

(xni )
∗∗((zni )

∗(akj )b
k
j ).

Since vn ∈ (`∞(Γ ) ⊗̂ε X∗)∗, by the above argument we obtain (3.3):

〈vn, iT 〉 = lim
k→∞
〈vn, ωk〉 =

mn∑
i=1

lim
k→∞

(xni )
∗∗
( nk∑
j=1

(zni )
∗(akj )b

k
j

)
=

mn∑
i=1

(xni )
∗∗((iT )∗((zni )

∗).

Now we show that if T ∈ K(X,Y ), then

〈R, iT 〉 = lim
n→∞

〈vn, iT 〉.
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Since iT ∈ `∞(Γ ) ⊗̂ε X∗, there exists a sequence (νk) in `∞(Γ ) ⊗X∗ such
that

lim
k→∞

‖νk − iT‖ = 0.

Hence there exists N1 ∈ N such that if k > N1, then ‖νk − iT‖ < ε/‖R‖PI.
Now we choose k0 > N1. Then, by (3.2), there exists N2 such that if n > N2,
then |〈R, νk0〉 − 〈vn, νk0〉| < ε. Since, for all n ∈ N, ‖vn‖PI ≤ ‖R‖PI, we see
that if n > N2,

|〈R, iT 〉 − 〈vn, iT 〉|
≤ |〈R, iT 〉 − 〈R, νk0〉|+ |〈R, νk0〉 − 〈vn, νk0〉|+ |〈vn, νk0〉 − 〈vn, iT 〉|
≤ ‖R‖PI‖iT − νk0‖+ |〈R, νk0〉 − 〈vn, νk0〉|+ ‖vn‖PI‖iT − νk0‖ < 3ε.

Now put (yni )
∗ = i∗((zni )

∗). Then, for each n ∈ N,
mn∑
i=1

‖i∗((zni )∗)‖ ‖(xni )∗∗‖ < ‖R‖PI + 1/n,

and so

lim sup
n→∞

mn∑
i=1

‖i∗((zni )∗)‖ ‖(xni )∗∗‖ ≤ ‖R‖PI.

Finally we check that 〈φ, T 〉 = limn→∞
∑mn

i=1(x
n
i )
∗∗(T ∗((yni )

∗)) for all
T ∈ K(X,Y ). By the above argument and (3.3),

〈φ, T 〉 = 〈φ̂, J(T )〉 = 〈R, J(T )〉 = 〈R, iT 〉 = lim
n→∞

〈vn, iT 〉

= lim
n→∞

mn∑
i=1

(xni )
∗∗((iT )∗((zni )

∗)) = lim
n→∞

mn∑
i=1

(xni )
∗∗(T ∗i∗(zni )

∗)

= lim
n→∞

mn∑
i=1

(xni )
∗∗(T ∗(yni )

∗).

(b) Suppose that Y ∗ has the weak Radon–Nikodým property. Then there
exist a set Γ1 and a canonical quotient map j of `1(Γ1) onto X. Since
(`1(Γ1))

∗ has the approximation property, we obtain K(`1(Γ1), Y )=(`1(Γ1))
∗

⊗̂ε Y . So we can define J : K(X,Y )→ `1(Γ1)
∗ ⊗̂ε Y by J(T ) = Tj. Since j

is a quotient map, we obtain

‖J(T )‖ = sup
(αγ)∈B`1(Γ1)

‖T (j(αγ))‖ = ‖T‖

for all T ∈ K(X,Y ). Thus J is an isometry from K(X,Y ) into `1(Γ1)
∗

⊗̂ε Y . Take any φ ∈ K(X,Y )∗. Since `1(Γ1)∗∗ has the metric approximation
property, it follows from part (a) above that there exist R ∈ PI(`1(Γ1)∗, Y ∗)
and a sequence (vn) in `1(Γ1)∗∗ ⊗ε Y ∗ such that limn→∞ ‖vn −R‖ = 0, and
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if T ∈ K(X,Y ) then
〈R, Tj〉 = lim

n→∞
〈vn, T j〉.

Now, for each n ∈ N, choose ((zni )
∗∗)mni=1 in `1(Γ1)

∗∗ and ((yni )
∗)mni=1 in Y ∗

such that vn =
∑mn

i=1(z
n
i )
∗∗⊗ (yni )

∗ and
∑mn

i=1 ‖(zni )∗∗‖ ‖(yni )∗‖ ≤ ‖φ‖+1/n.
Put (xni )

∗∗ = j∗∗((zni )
∗∗). Then

〈φ, T 〉 = 〈R, Tj〉 = lim
n→∞

〈vn, T j〉 = lim
n→∞

mn∑
i=1

(zni )
∗∗((Tj)∗(yni )

∗)

= lim
n→∞

mn∑
i=1

j∗∗((zni )
∗∗)T ∗(yni )

∗ = lim
n→∞

mn∑
i=1

(xni )
∗∗T ∗(yni )

∗.

Furthermore,

lim sup
n→∞

mn∑
i=1

‖(xni )∗∗‖ ‖(yni )∗‖ ≤ ‖φ‖.

Remark 3.6. 1. In the proof of Theorem 3.5, we used the technique of
Feder and Saphar [FS] as a guideline. However, our proof is quite different.
Namely, in Feder and Saphar’s proof, the crucial point is PI(`∞(Γ ), X∗∗) =
`∞(Γ )∗⊗̂πX∗∗ as Banach spaces under the Radon–Nikodým property of X∗∗
and the metric approximation property of `∞(Γ )∗. On the other hand, the
crucial point of our proofs is PI(`∞(Γ ), X∗∗) ⊂ `∞(Γ )∗ ⊗̂εX∗∗ as sets under
the weak Radon–Nikodým property of X∗∗ and the metric approximation
property of `∞(Γ )∗.

2. Theorem 3.5, in a sense, provides a generalized representation in com-
parison with Feder and Saphar’s. Namely, under the conditions of Theorem 2
in the Introduction, every φ ∈ K(X,Y )∗ can be represented as

φ(T ) = lim
n→∞

n∑
i=1

x∗∗i T
∗(y∗i )

for all T ∈ K(X,Y ), where limn→∞
∑n

i=1 ‖x∗∗i ‖ ‖y∗i ‖ <∞.
3. Since the Radon–Nikodým property is stronger than the weak Radon–

Nikodým property, one can ask whether the result of Feder and Saphar can
be obtained by using Theorem 3.5 and its proof. However, we have not been
able to do that.

4. Applications of the main theorem. In the Introduction, as a
corollary of Feder and Saphar’s theorem, we mentioned that if X∗∗ or Y ∗
has the Radon–Nikodým property, then X∗∗ ⊗ Y ∗ is w∗-sequentially dense
in K(X,Y )∗. We now derive a more general result from our representation
theorem.



Dual spaces of compact operator spaces and WRNP 255

Corollary 4.1. If X∗∗ or Y ∗ has the weak Radon–Nikodým property,
then X∗∗ ⊗ Y ∗ is w∗-sequentially dense in K(X,Y )∗ and BX∗∗⊗Y ∗ is w∗-
sequentially dense in BK(X,Y )∗ .

Proof. First, we assume that X∗∗ has the weak Radon–Nikodým prop-
erty. Let φ be in K(X,Y )∗. By assumption and Theorem 3.5, there exist a
sequence (((xni )

∗∗)mni=1)
∞
n=1 in X∗∗ and a sequence (((yni )

∗)mni=1)
∞
n=1 in Y ∗ such

that

〈φ, T 〉 = lim
n→∞

mn∑
i=1

(xni )
∗∗(T ∗((yni )

∗))

for all T ∈ K(X,Y ). Now we put an =
∑mn

i=1(x
n
i )
∗∗ ⊗ (yni )

∗. Clearly, (an) is
sequence in X∗∗ ⊗ Y ∗. It is weak∗ convergent to φ because

〈an, T 〉 =
mn∑
i=1

(xni )
∗∗(T ∗((yni )

∗))→ lim
n→∞

mn∑
i=1

(xni )
∗∗(T ∗((yni )

∗)) = 〈φ, T 〉

for each T ∈ K(X,Y ). Moreover, ‖an‖ ≤ ‖φ‖ for all n ∈ N. Indeed, by
part (a) of the proof of Theorem 3.5,

an =

mn∑
i=1

(xni )
∗∗ ⊗ (i∗(zni )

∗), vn =

mn∑
i=1

(xni )
∗∗ ⊗ (zni )

∗

for all n ∈ N, where i is the canonical injection of Y into `∞(Γ ), and
((zni )

∗)mni=1 is in `∞(Γ )∗. Since vn ∈ (`∞(Γ ) ⊗̂ε X∗)∗, by (3.3) we have

|〈an, T 〉| =
∣∣∣ mn∑
i=1

(xni )
∗∗(T ∗(i∗(zni )

∗))
∣∣∣ = ∣∣∣ mn∑

i=1

(xni )
∗∗((iT )∗(zni )

∗)
∣∣∣

= |〈vn, iT 〉| ≤ ‖vn‖PI ≤ ‖φ‖

for all T ∈ BK(X,Y ) and n ∈ N. Hence BX∗∗⊗Y ∗ is w∗-sequentially dense in
BK(X,Y )∗ .

Next, we assume that Y ∗ has the weak Radon–Nikodým property. Let φ
be in K(X,Y )∗. By Theorem 3.5, we have

〈an, T 〉 → 〈φ, T 〉

for all T ∈ K(X,Y ) where an =
∑mn

i=1(x
n
i )
∗∗ ⊗ (yni )

∗ ∈ X∗∗ ⊗ Y ∗. Hence
X∗∗⊗Y ∗ is w∗-sequentially dense in K(X,Y )∗. So, it is enough to show that
‖an‖ ≤ ‖φ‖ for all n ∈ N. Indeed, by (b) in the proof of Theorem 3.5,

an =

mn∑
i=1

j∗∗((zni )
∗∗)⊗ (yni )

∗, vn =

mn∑
i=1

(zni )
∗∗ ⊗ (yni )

∗

for all n ∈ N where j is the canonical quotient map of `1(Γ1) onto X and
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((zni )
∗∗)mni=1 is in `1(Γ1)∗∗. Also, ‖T‖ = ‖Tj‖ for all T ∈ K(X,Y ). Therefore

|〈an, T 〉| =
∣∣∣ mn∑
i=1

j∗∗((zni )
∗∗)(T ∗(yni )

∗)
∣∣∣ = ∣∣∣ mn∑

i=1

(zni )
∗∗((Tj)∗(yni )

∗)
∣∣∣

= |〈vn, T j〉| ≤ ‖vn‖PI ≤ ‖φ‖

for all T ∈ BK(X,Y ) and n ∈ N.

Now we describe the dual of the space Kw∗w(X∗, Y ) of weak∗-weakly
continuous compact operators from X∗ to Y . By using Feder and Saphar’s
theorem Choi and Kim [CK] proved the following theorem.

Theorem 4.2. Suppose X∗ or Y ∗ has the Radon–Nikodým property.
Then for every φ ∈ Kw∗w(X∗, Y ) and ε > 0, there are (x∗n) ⊂ X∗ and
(y∗n) ⊂ Y ∗ such that

φ(T ) =

∞∑
n=1

y∗n(T
∗x∗n)

for all T ∈ Kw∗w(X∗, Y ), and
∑∞

n=1 ‖x∗n‖ ‖y∗n‖ < ‖φ‖+ ε.

From the above theorem, we also derive that if X∗ or Y ∗ has the Radon–
Nikodým property, then X∗ ⊗ Y ∗ is w∗-sequentially dense in Kw∗w(X∗, Y ).

Now we are going to characterize Kw∗w(X∗, Y )∗ in the case thatX∗ or Y ∗
has the weak Radon–Nikodým property. Since K(Y,X) is identified with
Kw∗w(X∗, Y ∗) by the bijection T ↔ T ∗, Theorem 3.5 yields the following
corollary.

Corollary 4.3. Let X and Y be Banach spaces such that Y ∗∗ or X∗
has the weak Radon–Nikodým property. Then, for all φ ∈ Kw∗w(X∗, Y ∗)∗,
there exist a sequence (((xni )

∗)mni=1)
∞
n=1 in X∗ and a sequence (((yni )

∗∗)mni=1)
∞
n=1

in Y ∗∗ such that

〈φ, T 〉 = lim
n→∞

mn∑
i=1

(yni )
∗∗(T ((xni )

∗))

for all T ∈ Kw∗w(X∗, Y ∗), and

lim sup
n→∞

mn∑
i=1

‖(xni )∗‖ ‖(yni )∗∗‖ ≤ ‖φ‖.

Combining Corollary 4.3 and the proof of [CK, Theorem 1.2], we obtain
the following corollary. For completeness, we provide a proof.

Corollary 4.4. Suppose that X∗ or Y ∗ has the weak Radon–Nikodým
property. Then, for all φ ∈ Kw∗w(X∗, Y )∗, there exist a sequence
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(((xni )
∗)mni=1)

∞
n=1 in X∗ and a sequence (((yni )

∗)mni=1)
∞
n=1 in Y ∗ such that

〈φ, T 〉 = lim
n→∞

mn∑
i=1

(yni )
∗(T ((xni )

∗)

for all T ∈ Kw∗w(X∗, Y ), and

lim sup
n→∞

mn∑
i=1

‖(xni )∗‖ ‖(yni )∗‖ ≤ ‖φ‖.

Proof. (a) Suppose that X∗ has the weak Radon–Nikodým property. We
define Ψ : Kw∗w(X∗, Y )→ Kw∗w(X∗, Y ∗∗) by Ψ(T ) = QY T , where QY is the
natural mapping from Y into Y ∗∗. We observe that Ψ is an isometry. Take
φ ∈ Kw∗w(X∗, Y )∗. Then there exists φ̂ ∈ Kw∗w(X∗, Y ∗∗)∗ such that 〈φ, T 〉 =
〈φ̂, Ψ(T )〉 for all T ∈ Kw∗w(X∗, Y ) and ‖φ‖ = ‖φ̂‖. By Corollary 4.3, there
exist a sequence (((xni )

∗)mni=1)
∞
n=1 in X∗ and a sequence (((yni )

∗∗∗)mni=1)
∞
n=1 in

Y ∗∗∗ such that

〈φ̂, S〉 = lim
n→∞

mn∑
i=1

(yni )
∗∗∗(S((xni )

∗))

for all S ∈ Kw∗w(X∗, Y ∗∗), and lim supn
∑mn

i=1 ‖(xni )∗‖ ‖(yni )∗∗∗‖ ≤ ‖φ̂‖. We
consider (((xni )

∗)mni=1)
∞
n=1 ⊂ X∗ and (((yni )

∗∗∗QY )
mn
i=1)

∞
n=1 ⊂ Y ∗. Then

〈φ, T 〉 = 〈φ̂, Ψ(T )〉 = lim
n→∞

mn∑
i=1

(yni )
∗∗∗(QY T ((x

n
i )
∗))

= lim
n→∞

mn∑
i=1

(yni )
∗∗∗QY (T ((x

n
i )
∗))

for all T ∈ Kw∗w(X∗, Y ), and

lim sup
n→∞

mn∑
i=1

‖(xni )∗‖ ‖(yni )∗∗∗QY ‖ ≤ ‖φ‖.

(b) Suppose that Y ∗ has the weak Radon–Nikodým property. We define

ψ : Kw∗w(X∗, Y )→ Kw∗w(Y ∗, X)

by ψ(T ) = Q−1X T ∗, where QX is the natural map from X into X∗∗. It is
known that T ∈ B(X∗, Y ) is w∗-to-w continuous if and only if T ∗(Y ∗) ⊂
QX(X). Thus ψ is well defined and it is an isometry onto Kw∗w(Y ∗, X).

Now let φ ∈ Kw∗w(X∗, Y )∗. We consider φ̂ : Kw∗w(Y ∗, X)→ F given by

φ̂(S) = φ(ψ−1(S))

for all S ∈ Kw∗w(Y ∗, X). Then φ̂ ∈ Kw∗w(Y ∗, X)∗ and ‖φ‖ = ‖φ̂‖. By
part (a), there exist a sequence (((xni )

∗)mni=1)
∞
n=1 in X∗ and a sequence
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(((yni )
∗)mni=1)

∞
n=1 in Y ∗ such that

〈φ̂, S〉 = lim
n→∞

mn∑
i=1

(xni )
∗(S((yni )

∗))

for all S ∈ Kw∗w(Y ∗, X), and lim supn
∑mn

i=1 ‖(xni )∗‖ ‖(yni )∗‖ ≤ ‖φ̂‖ = ‖φ‖.
Hence

〈φ, T 〉 = 〈φ, ψ−1ψT 〉 = 〈φ̂, ψT 〉 = lim
n→∞

mn∑
i=1

(xni )
∗(ψT ((yni )

∗))

= lim
n→∞

mn∑
i=1

QX(ψT ((y
n
i )
∗))(xni )

∗ = lim
n→∞

mn∑
i=1

(yni )
∗(T ((xni )

∗))

for all T ∈ Kw∗w(X∗, Y ).

Furthermore, the following can be obtained directly from our corollary.

Corollary 4.5. If X∗ or Y ∗ has the weak Radon–Nikodým property,
then X∗ ⊗ Y ∗ is w∗-sequentially dense in Kw∗w(X∗, Y )∗, and BX∗⊗Y ∗ is
w∗-sequentially dense in BKw∗w(X∗,Y )∗ .

Proof. This can be proved in the same manner as Corollary 4.1. For
completeness, we just provide the proof in the case that X∗ has the weak
Radon–Nikodým property. Let φ be in Kw∗w(X∗, Y )∗. Then, by assumption
and Corollary 4.4, we have 〈an, T 〉 → 〈φ, T 〉 for all T ∈ Kw∗w(X∗, Y ), where
an =

∑mn
i=1(x

n
i )
∗⊗ (yni )

∗ ∈ X∗⊗Y ∗. Hence X∗⊗Y ∗ is w∗-sequentially dense
in Kw∗w(X∗, Y )∗.

Now we claim that ‖an‖ ≤ ‖φ‖ for all n ∈ N. Indeed, as in the proofs of
Corollaries 4.1 and 4.4, we observe that

an =

mn∑
i=1

(xni )
∗ ⊗ j∗∗((zni )∗∗)QY , vn =

mn∑
i=1

(xni )
∗ ⊗ (zni )

∗∗

for all n ∈ N where j is the canonical quotient map of `1(Γ1) onto Y ∗

and ((zni )
∗∗)mni=1 is in `1(Γ1)

∗∗. Let T be in BKw∗w(X∗,Y )∗ . Since QY T ∈
Kw∗w(X∗, Y ∗∗), there is S ∈ K(Y ∗, X) such that S∗ = QY T . Also, since
‖S‖ = ‖Sj‖, we have

‖T‖ = ‖QY T‖ = ‖S∗‖ = ‖S‖ = ‖Sj‖.

Then

|〈an, T 〉| =
∣∣∣ mn∑
i=1

(yni )
∗(T ((xni )

∗))
∣∣∣ = ∣∣∣ mn∑

i=1

j∗∗((zni )
∗∗)QY (T ((x

n
i )
∗))
∣∣∣
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=
∣∣∣ mn∑
i=1

j∗∗((zni )
∗∗)QY T ((x

n
i )
∗)
∣∣∣ = ∣∣∣ mn∑

i=1

j∗∗((zni )
∗∗)S∗((xni )

∗)
∣∣∣

=
∣∣∣ mn∑
i=1

(zni )
∗∗(Sj)∗((xni )

∗)
∣∣∣ = |〈vn, Sj〉| ≤ ‖vn‖PI ≤ ‖φ‖

for all n ∈ N.
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